- The relation for total energy (E) and momentum (p) for a relativistic particle is $E^2 = c^2p^2 + m^2c^4$, where m is the rest mass and c is the velocity of light. Using the relativistic relations $E = \hbar \omega$ and $p = \hbar k$, where ω is the angular frequency and k is the wave number, show that the product of group velocity (v_g) and the phase velocity (v_p) is equal to c^2 , that is $v_p v_g = c^2$
- Given $\psi(x) = \left(\frac{\pi}{\alpha}\right)^{-\frac{1}{4}} \exp\left(-\frac{\alpha^2 x^2}{2}\right)$, calculate $\operatorname{Var} x$
- ³ If $\psi(x) = \frac{N}{x^2 + a^2}$, calculate the normalization constant *N*.
- 4 The state of a free particle is described by the following wave function $\psi(x) = 0$ for x < -3a = c for -3a < x < a = 0 for x > a
 - (a) Determine c using the normalization condition
 - (b) Find the probability of finding the particle in the interval [0, a]
- 5 In the above problem,
 - (a) Compute $\langle x \rangle$ and σ^2
 - (b) Calculate the momentum probability density.
- 6 Assuming that the radial wave function

$$U(r) = r\psi(r) = C \exp(-kr)$$

is valid for the deuteron from r = 0 to $r = \infty$ find the normalization constant C.

Hence if $k = 0.232 \,\text{fm}^{-1}$ find the probability that the neutron – proton separation in the deuteron exceeds 2 fm. Find also the average distance of interaction for this wave function.

2.6
$$E^{2} = c^{2}p^{2} + m^{2}c^{4}$$
 $v_{p} = \frac{\omega}{k} = \left(c^{2}k^{2} + \frac{m^{2}c^{4}}{\hbar^{2}}\right)^{1/2}/k$
 $\hbar^{2}\omega^{2} = c^{2}\hbar^{2}k^{2} + m^{2}c^{4}$ $v_{g} = \frac{d\omega}{dk} = kc^{2}\left(c^{2}k^{2} + \frac{m^{2}c^{4}}{\hbar^{2}}\right)^{-1/2}$
 $\omega = \left(c^{2}k^{2} + \frac{m^{2}c^{4}}{\hbar^{2}}\right)^{1/2}$ $\therefore v_{p}v_{g} = c^{2}$

3.2
$$\psi(x) = (\pi/\alpha)^{-1/4} \exp\left(-\frac{\alpha^2}{2} x^2\right)$$

$$\text{Var } x = < x^2 > - < x >^2$$

The expectation value

$$\langle x \rangle = \int_{-\infty}^{\infty} \psi^* x \, \psi \, \mathrm{d}x = 0$$

because ψ and also ψ^* are even functions while x is an odd function. Therefore the integrand is an odd function

$$\langle x^2 \rangle = \left(\frac{\pi}{\alpha}\right)^{-1/2} \int_{-\infty}^{\infty} x^2 \exp(-\alpha^2 x^2) dx$$

Put
$$\alpha^2 x^2 = y$$
; $dx = \frac{1}{2} \alpha \sqrt{y}$

$$< x^2 > = (\pi \alpha^5)^{-1/2} \int_0^\infty y^{1/2} e^{-y} dy$$

But
$$\int_0^\infty y^{1/2} e^{-y} dy = \Gamma(3/2) = \sqrt{\pi/2}$$

Var
$$x = \langle x^2 \rangle = (4 \alpha^5)^{-1/2}$$

3.3 Normalization condition is

$$\int_{-\infty}^{\infty} |\psi|^2 dx = 1$$

$$N^2 \int_{-\infty}^{\infty} (x^2 + a^2)^{-2} dx = 1$$

Put
$$x = a \tan \theta$$
; $dx = \sec^2 \theta d\theta$

$$\left(\frac{2N^2}{\alpha^3}\right) \int_0^{\pi/2} \cos^2 \theta \, d\theta = N^2 \pi / 2a^3 = 1$$

Therefore
$$N = \left(\frac{2a^3}{\pi}\right)^{1/2}$$

3.10 (a) The normalization condition requires

$$\int_{-\infty}^{\infty} |\psi|^2 dx = \int_{-3a}^{a} |c|^2 dx = 1 = 4a|c|^2$$

Therefore $c = 1/2\sqrt{a}$

(b)
$$\int_0^a |\psi|^2 dx = \int_0^\alpha c^2 dx = 1/4$$

3.11 (a) The expectation values are

$$\langle x \rangle = \int_{-\infty}^{\infty} \psi^* x \, \psi \, dx = \int_{-3a}^{a} x \frac{dx}{4a} = -a$$

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} \psi^* x^2 \, \psi \, dx = \int_{-3a}^{a} (1/4a) \, x^2 dx = \left(\frac{7}{3}\right) a^2$$

$$x\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = \left(\frac{7}{3}\right) a^2 - (-a)^2 = \frac{4}{3} a^2$$

(b) Momentum probability density is $|\varphi(p)|^2$

$$\begin{split} &\varphi(p) = (2\pi\hbar)^{-1/2} \int_{-\infty}^{\infty} \mathrm{d}x \, \psi \, (x) e^{-ipx/\hbar} \\ &= (2\pi\hbar)^{-1/2} \int_{-3a}^{a} \mathrm{d}x c e^{-ipx/\hbar} \\ &= \left(\frac{ic}{p}\right) \left(\frac{\hbar}{2\pi}\right)^{1/2} \left[e^{-\frac{ipa}{\hbar}} - e^{\frac{3ipa}{\hbar}}\right] \\ &= \left(-\frac{ic}{p}\right) \left(\frac{\hbar}{2\pi}\right)^{1/2} e^{ipa/\hbar} \left[e^{\frac{2ipa}{\hbar}} - e^{\frac{-2ipa}{\hbar}}\right] \\ &= \left(\frac{2c}{p}\right) \left(\frac{\hbar}{2\pi}\right)^{\frac{1}{2}} e^{\frac{ipa}{\hbar}} \sin\left(\frac{2pa}{\hbar}\right) \end{split}$$
 Therefore $|\varphi(p)|^2 = \frac{\hbar}{2\pi ap^2} \sin^2\left(\frac{2pa}{\hbar}\right)$

3.21
$$u = C e^{-kr}$$

$$\int_0^\infty |u|^2 dr = c^2 \int_0^\infty e^{-2kr} = \frac{c^2}{2k} = 1$$
 $C = \sqrt{2k}$

The probability that the neutron – proton separation in the deuteron exceeds R is

$$P = \int_{R}^{\infty} |u|^2 dr = 2k \int_{R}^{\infty} e^{-2kr} dr$$
$$= e^{-2kR} = e^{-(2 \times 0.232 \times 2)} \approx 0.4$$

Average distance of interaction

$$< r > = \int_0^\infty r |u^2| dr = 2k \int_0^\infty r e^{-2kr} dr$$

= $\frac{1}{2k} = \frac{1}{2 \times 0.232} = 2.16 \text{ fm}$