
CYK/2007/PH 410/Tutorial 2 Eletrodynamis I1. Jakson: Problems 1.6, 1.7, 1.8, 1.10, 1.12, 1.132. Jakson: Problems 2.2, 2.3, 2.4, 2.7, 2.11Some AnswersJakson (1.6) Capaitane in eah ase: (a) ǫ0A/d (b) 4πǫ0ba/(b− a) () 2πǫ0/ ln(b/a) (perunit length)Jakson (1.7) Here we assume that the onduting wires are far apart, hene the harge isuniformly distributed over the surfae of eah wire.
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(2)Jakson (1.8) In all ases the answer is 1
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QV .Jakson (1.10) By integral formula (Eq 1.36 of Jakson) for potentials (Given that ρ(x′) = 0for x

′ ∈ V )
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= −1/R2 for x
′ ∈ S, the �rst integral vanishes byGauss law and seond integral is simply the average value of the potential on the surfaeof the sphere.Jakson (1.12) Hint: Use Green's seond identity (Eq 1.35 of Jakson). Instead of ψ hoose

φ′. Remember that ρ = −ǫ0∇2φ and σ = +ǫ0∇φ · n̂′ and simillarly for φ′.1
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Situation a Situation bJakson (1.13) See Figure In situation a, we know ρ(x) = qδ(x− b̂i) for x ∈ V and φ(x) = 0for x ∈ S. We dont know σ on S and φ in V.In situation b, onsider a parallel plate apaitor. Here, we know ρ′(x) = 0 for x ∈ V ,
φ′(x) = 0 for x ∈ S1 and φ′(x) = V0 for x ∈ S2. We also know that φ′(x) = V0(1−x/d),where x = x · i. Using the result of the previous problem, we get

∫
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∫

V
δ(x − bi)φ′(x)dv = −q(1 − b/d)Jakson (2.2)1. Given that the a harge qis kept inside a hollow onduting sphere (radius a) ata distane y from the enter (along z axis, say), the image harge of magnitude

−qa/y must be kept outside at a distane a2/y. Potential is given by
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k4. All you need to do is to add a onstant V0 to the result of part (a). The induedharge densities are same!Jakson (2.3)(a) Plae image harges (wires, in this ontext) as shown in the �gure.
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The potential at point P is given by
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)where r1 and r2 are distanes from +λ wires and r3 and r4 from −λ wires. Equipo-tential surfaes are shown in the �gure.
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Figure 1: Jakson 2.3 (a) Equipotential surfaes.(b) Charge density along x axis(b) The required plots are shown in the �gure.
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]() Integrate σ.Jakson (2.4) (a) The fore on harge q is given by
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] (4)Equating magnitude of the fore to zero, we get three real solutions for d/R = −0.61803, 0.7549, 1.61803.Only one solution is outside the sphere. 3



Jakson (2.7) The required Green's Funtion is
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