1. A modified infinite well potential is given by

$$V(x) = \begin{cases} \epsilon x & \text{if } 0 \le x \le b \\ \infty & \text{otherwise} \end{cases}$$
(1)

Obtain approximate energy eigenvalues to the first order in ϵ . Also find the second order correction to the ground state energy.

Solution

$$E_n^{(1)} = \frac{\epsilon b}{2} \tag{2}$$

$$E_0^{(2)} = \left(\frac{\epsilon b}{\pi}\right)^2 \frac{2mb^2}{\hbar^2 \pi^2} \sum_{n=2}^{\infty} \frac{8n}{(4n^2 - 1)^3}$$
(3)

$$= \frac{8mb^{2}\epsilon^{2}}{\hbar^{2}\pi^{2}} \left(-\frac{3}{4} + \frac{7}{8}\zeta(3)\right)$$
(4)

$$= 0.3018 \frac{8mb^2\epsilon^2}{\hbar^2\pi^2}$$
(5)

2. The bottom of an infinite well is changed to have the shape

$$V(x) = \epsilon \sin \frac{\pi x}{b} \qquad 0 \le x \le b \tag{6}$$

Calculate the energy shifts for all the states to first order in ϵ . Solution

$$E_n^{(1)} = \frac{\epsilon}{\pi} \frac{8n^2}{4n^2 - 1} \tag{7}$$

3. A simple harmonic oscillator is perturbed by a constant force. Find the energy eigenvalues. Calculate second order perturbation correction to the energy values and compare with the exact answer.

Solution

$$E_n^{(2)} = -\frac{\lambda^2}{2m\omega^2} \tag{8}$$

Same as exact answer.

4. A simple harmonic oscillator is perturbed by a potential $V(x) = \lambda x^4$. Show that the perturbation can be written as

$$V(x) = \lambda \left(\frac{\hbar}{2m\omega}\right)^2 \left(a^4 + a^2(4\hat{n} - 2) + (6\hat{n}^2 + 6\hat{n} + 3) + a^{\dagger 2}(4\hat{n} + 6) + a^{\dagger 4}\right)$$
(9)

where $\hat{n} = a^{\dagger}a$. Obtain the first order correction to the energies. Discuss validity of this approximation for states with large \hat{n} eigenvalues.

Solution

$$E_n^{(1)} = \lambda \left(\frac{\hbar}{2m\omega}\right)^2 \left(6n^2 + 6n + 3\right)$$
(10)

This is valid only if $E_n^{(1)} \ll E_n^{(0)}$.

5. The Hamiltonian of a rigid rotator in magnetic field is of the form $A\mathbf{L}^2 + BL_z + CL_y$, if quadratic terms are neglected. Obtain exact eigenvalues and eigenfunctions of this Hamiltonian. Assuming $B \gg C$, use second order perturbation theory to obtain approximate values of energy and compare with the exact answers.

Solution

Exact energies are

$$E_{l,m} = Al(l+1)\hbar^2 + \sqrt{(B^2 + C^2)}m\hbar$$

Second order correction by perturbation method

$$E_{l,m}^{(2)} = \left(\frac{C^2}{2B^2}\right) Bm\hbar$$

6. A charged particle is constrained to move on a spherical shell in a weak uniform electric field. Obtain the energy spectrum to the second order in the field strength. (Is it ok to use non-degenerate perturbation theory?)

Solution

If perturbation is $B\cos\theta$ then

$$E_{l=0,m=0}^{(2)} = -\frac{B^2}{6A\hbar^2}$$
(11)

$$E_{1,0}^{(2)} = \frac{B^2}{10A\hbar^2} \tag{12}$$

$$E_{1,\pm}^{(2)} = -\frac{B^2}{20A\hbar^2} \tag{13}$$

(14)

7. In hydrogenic atoms, assume that the nucleus is uniformly charged sphere of radius R. Calculate the energy shift for n = 1 and n = 2 states.

Solution

The electrostatic potential due to the nucleus is

$$V(r) = \frac{Ze^2}{4\pi\epsilon_0 2R} \left(\frac{r^2}{R^2} - 3\right) \qquad r \le R \tag{15}$$

$$= -\frac{Ze^2}{4\pi\epsilon_0 r} \qquad r > R \tag{16}$$

The first order correction due to the perturbation is

$$\Delta E = \frac{Ze^2}{4\pi\epsilon_0 2R} \int_0^R [R_{nl}(r)]^2 \left(\frac{r^2}{R^2} + \frac{2R}{r} - 3\right) r^2 dr$$
(17)

$$= \frac{Ze^2}{(4\pi)^2\epsilon_0 2R} \left(\frac{a^2}{R^2} - 3 + \frac{2R}{a} + 3\frac{(a+R)^2}{R^2}e^{-2R/a}\right)$$
(18)

8. Find out the energy shifts due to linear Stark effect in n = 3 state of hydrogen atom. Solution

n = 3 level splits into 5 equispaced lines with separation given by $(9/2)e\mathcal{E}\dashv$, where \mathcal{E} is external electric field and a is Bohr radius.

9. Consider a Hamiltonian of the form

$$\mathbf{H} = \begin{pmatrix} E_0 & 0\\ 0 & -E_0 \end{pmatrix} + \lambda \begin{pmatrix} \alpha & U\\ U^* & \beta \end{pmatrix}$$
(19)

Find the energy shift to first and second order in λ . Compare your results with exact eigenvalues.

Solution

Exact solution:

$$\frac{\lambda}{2}(\alpha+\beta) \pm E_0 \left(1 + \frac{\lambda(\alpha-\beta)}{E_0} + \frac{\lambda^2((\alpha-\beta)^2/4 - |U|^2)}{E_0^2}\right)^{1/2}$$
(20)

Approximate Solution:

$$E_0 + \lambda \alpha + \frac{\lambda^2 |U|^2}{2E_0} \tag{21}$$

$$-E_0 + \lambda\beta + \frac{\lambda^2 |U|^2}{2E_0} \tag{22}$$

10. The perturbing hamiltonian for Hydrogen atom in constant magnetic field is given by

$$V = -\frac{e}{2mc} \mathbf{B} \cdot (\mathbf{L} + \mathbf{S}) \tag{23}$$

Show that, in this case a level of given total angular momentum quantum number j splits in (2j + 1) levels according to the formula $E_{jm}^{(1)} = -g_j \mu Bm$ where g_j is Lande's factor.