In non-relativistic quantum mechanics, the wave function of an electron is a pair of two complex functions. Usually it is written as a column matrix

$$\Psi(r,t) = \begin{bmatrix} \psi_{\uparrow}(r,t) \\ \psi_{\downarrow}(r,t) \end{bmatrix}$$
(1)

The probability density function is given by $\Psi^{\dagger}(r,t)\Psi(r,t)$. The probability density of finding the particle at r with spin up is given by $|\psi_{\uparrow}(r,t)|^2$ etc.

The spin operator is given by $\vec{\mathbf{S}} = \frac{1}{2}\hbar\vec{\sigma}$, where $\vec{\sigma}$ are pauli matrices. $S^2 = \frac{3}{4}\hbar^2$ is a constant operator. The eigenfunctions of S_z operator are

$$\left[egin{array}{c} \psi_{\uparrow}(r,t) \ 0 \end{array}
ight] \quad ext{and} \left[egin{array}{c} 0 \ \psi_{\downarrow}(r,t) \end{array}
ight]$$

with eigenvalues $\hbar/2$ and $-\hbar/2$ respectively, where ψ_{\uparrow} and ψ_{\downarrow} are arbitrary functions.

Angular momentum operator must be promoted to the matrix form. It can be written as

$$\vec{\mathbf{L}} \otimes I_2 = \left[\begin{array}{cc} \vec{\mathbf{L}} & 0\\ 0 & \vec{\mathbf{L}} \end{array} \right]$$

We will continue to denote this operator by simply $\vec{\mathbf{L}}$. It is possible to find a set of simultaneous eigenfunctions of operators L^2 , L_z , S^2 and S_z . The set is given below:

 Ψ	L^2	L_z	S^2	S_z
$\begin{array}{c} Y_{lm}(\theta,\phi) \\ 0 \end{array}$	$l(l+1)\hbar^2$	$m\hbar$	$\frac{3}{4}\hbar^2$	$\frac{1}{2}\hbar$
$egin{array}{c} 0 \ Y_{lm}(heta,\phi) \end{array}$	$l(l+1)\hbar^2$	$m\hbar$	$\frac{3}{4}\hbar^2$	$-\frac{1}{2}\hbar$

The quantity of interest is the total angular momentum which is defined as $\vec{\mathbf{J}} = \vec{\mathbf{L}} + \vec{\mathbf{S}}$. Now the mutually commuting set of operators is L^2 , S^2 , J^2 and J_z . The operator J_z is given by

$$J_z = \begin{bmatrix} L_z + \frac{1}{2}\hbar & 0\\ 0 & L_z - \frac{1}{2}\hbar \end{bmatrix}$$
(2)

and the J^2 operator is given by

$$J^{2} = \begin{bmatrix} L^{2} + \frac{3}{4}\hbar^{2} + \frac{1}{2}\hbar L_{z} & \frac{1}{2}\hbar L_{-} \\ \frac{1}{2}\hbar L_{+} & L^{2} + \frac{3}{4}\hbar^{2} + \frac{1}{2}\hbar L_{z} \end{bmatrix}$$
(3)

We can easily verify that the simultaneous eigenfunctions of L^2 , S^2 , J^2 and J_z

We will denote these functions by \mathcal{Y}_l^{jm} . It is also easy to see that $J^2 = L^2 + \frac{3}{4}\hbar^2 + \hbar L \cdot \sigma$. Hence $L \cdot \sigma$ has same eigenfunctions.