- 1. Atomic Units: The mass of electron (m_e) , the charge of electron (e), the Bohr radius (a_0) and Planck's constant (\hbar) are set to 1 in the scheme of atomic units. Show that the 1 au of time is 2.42×10^{-17} s and that the speed of light is 137.036 a.u.
- 2. **Prolate Ellipsoidal Coordinates**: Show that the prolate ellipsoidal coordinate system is orthogonal and find the volume element.
- 3. In ionized Hydrogen molecule (H_2^+) calculation (refer to class notes), show that

$$\nabla^2 \phi_a = \left(\gamma^2 - \frac{2\gamma}{r_a}\right) \phi_a$$

where $\phi_a = (\gamma^3 / \pi)^{1/2} e^{-\gamma r_a}$.

4. In ionized Hydrogen molecule $({\cal H}_2^+)$ calculation (refer to class notes), evaluate

$$C = \frac{\gamma^3}{\pi} \int d\tau \frac{e^{-2\gamma r_a}}{r_b}$$

and

$$D = \frac{\gamma^3}{\pi} \int d\tau \frac{e^{-\gamma(r_a + r_b)}}{r_b}$$

and

- 5. Show that following two-spin states are eigenstates of \mathbf{S}^2 operator, where $\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2$: (a) $\alpha \alpha$ (b) $\beta \beta$ (c) $(\alpha \beta - \beta \alpha)/\sqrt{2}$ (d) $(\alpha \beta + \beta \alpha)/\sqrt{2}$
- 6. Consider the helium atom in the approximation in which electron-electron interaction is neglected. Write down all possible 2-electron product states such that one electron is in (1s) state and the other in (2s). From these product states construct eigenstates of electron exchange operator.
- 7. Prove addition theorem for spherical harmonics. (See section 11.4 of Merzbacher)
- 8. Show that the first order correction due to electron-electron repulsion to the helium atom is $\frac{5}{8}Z$.
- 9. Evaluate J_{2s} and K_{2s} for the helium atom.