1. For the potential shown in the figure, find the approximate ground state energy upto the second order in V_0 , assuming that $V_0 << \frac{\hbar^2 \pi^2}{2mL^2}$. [5]

Here $H_0 = \frac{p^2}{2m}$ and $V(x) = V_0$ if $x \in [0, L/2]$ and is 0 otherwise. Unperturbed states is $\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$ with energy $E_n^{(0)} = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$. The first order correction is given by

$$\begin{aligned} \langle \phi_1, V \phi_1 \rangle &= \frac{2V_0}{L} \int_0^{L/2} \sin^2\left(\frac{\pi x}{L}\right) dx \\ &= \frac{1}{2}V_0 \end{aligned}$$

For even n,

$$\begin{aligned} \langle \phi_1, V \phi_n \rangle &= \frac{2V_0}{L} \int_0^{L/2} \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx \\ &= -2V_0 \frac{(-1)^{n/2} n}{\pi \left(-1+n^2\right)} \end{aligned}$$

For odd n, $\langle \phi_1, V \phi_n \rangle = 0$.

Hence the second order correction is

$$E_1^{(2)} = \sum \frac{|V_{1n}|^2}{E_1^{(0)} - E_n^{(0)}}$$

= $-\frac{8V_0^2 m L^2}{\pi^4 \hbar^2} \sum_{\text{even } n} \frac{n^2}{(n^2 - 1)^3}$
= $-\frac{V_0^2 m L^2}{8\pi^2 \hbar^2}$

(The last step is not expected. $\sum_{n=1}^{\infty} \frac{4n^2}{(4n^2-1)^3} = \frac{1}{64}\pi^2$)

2. Consider a particle (mass m) moving in a perturbed 2D infinite well represented by a potential energy function

$$U(x,y) = \begin{cases} \frac{\eta E_0}{L^2} xy & \text{if } x, y \in [0,L] \\ \infty & \text{Otherwise} \end{cases}$$

where η is a small positive real number and $E_0 = \frac{\pi^2 \hbar^2}{2mL^2}$. Find the first order correction to the first excited energy level (which is 2-fold degenerate). Also find the correction to the wave functions. [5]

The first excited state is degenerate. Let $\psi_1 = \phi_{12}(x, y) = \frac{2}{L} \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{2\pi y}{L}\right)$ and $\psi_2 = \phi_{21}(x, y) = \frac{2}{L} \sin\left(\frac{2\pi x}{L}\right) \sin\left(\frac{\pi y}{L}\right)$. Both have energy $\frac{5\hbar^2 \pi^2}{2mL^2}$. Then

$$V_{11} = \frac{4}{L^2} \frac{\eta E_0}{L^2} \int_0^L \int_0^L xy \sin^2\left(\frac{\pi x}{L}\right) \sin^2\left(\frac{2\pi y}{L}\right) dxdy$$
$$= \frac{1}{4} \eta E_0$$

Also, $V_{22} = V_{11}$.

$$V_{12} = \frac{4}{L^2} \frac{\eta E_0}{L^2} \left(\int_0^L x \sin\left(\frac{\pi x}{L}\right) \sin\left(\frac{2\pi x}{L}\right) dx \right)^2$$
$$= \frac{256}{81} \eta \frac{E_0}{\pi^4}$$

Hence the matrix of the pertubation $\begin{bmatrix} \frac{1}{4}\eta E_0 & \frac{256}{81}\eta \frac{E_0}{\pi^4} \\ \frac{256}{81}\eta \frac{E_0}{\pi^4} & \frac{1}{4}\eta E_0 \end{bmatrix}$, And the eigenvalues are $\frac{\eta E_0}{209952\pi^8}$ (52488 π^4 + 663552) = 2.8996×10⁻³ ηE_0 and $\frac{\eta E_0}{209952\pi^8}$ (52488 π^4 - 663552) = 2.2334×10⁻³ ηE_0 . The eigen vectors are $\frac{\psi_1 \pm \psi_2}{\sqrt{2}}$.

- 3. To obtain an estimate of the ground state of hydrogen atom, use the trial function $\phi(r) = \frac{1}{\alpha^2 + r^2}$ (in atomic units).
 - (a) Show that $\langle \phi, \phi \rangle = \frac{\pi^2}{\alpha}$.
 - (b) Show that $\frac{1}{2}\langle \phi, p^2\phi \rangle = \frac{\pi^2}{4\alpha^3}$.
 - (c) Show that $\left\langle \phi, \frac{1}{r}\phi \right\rangle = \frac{2\pi}{\alpha^2}$.
 - (d) Show that the energy estimate is -0.405 au.

$$\phi\left(r\right) = \frac{1}{\alpha^2 + r^2}$$

[2+4+2+2]

The integrals in parts (a), (b) and (c) are simple and a substitution $r = \alpha \tan \theta$ will simplify these.

•
$$\langle \phi, \phi \rangle = \int_0^\infty (\phi(r))^2 4\pi r^2 dr = \frac{\pi^2}{\alpha}$$

• $\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \left(\frac{1}{a^2 + r^2} \right) \right) = \frac{1}{r^2} \left(-6 \frac{r^2}{(a^2 + r^2)^2} + 8 \frac{r^4}{(a^2 + r^2)^3} \right)$
• $\frac{1}{2} \langle \phi, p^2 \phi \rangle = -\frac{1}{2} \int_0^\infty \phi(r) \left(\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \phi(r) \right) \right) 4\pi r^2 dr = \frac{\pi^2}{4\alpha^3}$
• $\left\langle \phi, \frac{1}{r} \phi \right\rangle = \int_0^\infty \phi(r) \left(\frac{1}{r} \phi(r) \right) 4\pi r^2 dr = \frac{2\pi}{\alpha^2}$
• $E = \frac{\alpha}{\pi^2} \left(\frac{\pi^2}{4\alpha^3} - \frac{2\pi}{\alpha^2} \right) = \frac{1}{4\alpha^2} - \frac{2}{\alpha\pi}$
• $\frac{d}{d\alpha} \left(\frac{1}{4\alpha^2} - \frac{2}{\alpha\pi} \right) = -\frac{1}{2\alpha^3} + \frac{2}{\alpha^2\pi}$
• $-\frac{1}{2\alpha^3} + \frac{2}{\alpha^2\pi} = 0 \Rightarrow \alpha = \frac{1}{4}\pi$
• Minimum $E = -0.405$ at $\alpha = \frac{\pi}{4}$

4. Two electrons, moving in a common harmonic potential are described by a Hamiltonian

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + \frac{1}{2}m\omega^2\left(x_1^2 + x_2^2\right)$$

in independent particle approximation. Sketch energy spectrum, separately for singlets (S = 0) and triplets (S = 1), showing atleast five levels. Write down the energy and the degeneracy of each level. [5]

5. Show that the ground state energy of the helium atom, treating the electronic coulomb repulsion as perturbation, is $-Z^2 + \frac{5}{8}Z$. [5]

Useful Information

$$\int_0^{\pi/2} \sin^n \theta \, d\theta = \frac{n-1}{n} \int_0^{\pi/2} \sin^{n-2} \theta \, d\theta$$

Figure for Problem 1

