1. [7 Marks] The wave function of a free particle is given by

$$\psi(x) = \frac{A}{a^2 + x^2} e^{ip_0 x/\hbar}$$

where p_0 , A and a are real constants.

- (a) Obtain the momentum space wave function
- (b) What is the most probable value of the momentum.
- (c) Find the average value of the momentum.
- (d) If the wave function above describes 100 independent particles, how many particles would have momentum between p_0 and $p_0 + \frac{a}{\hbar}$
- 2. [3 Marks] If a particle trapped in a box (of length L) has the wave function

$$\psi(x) = \begin{cases} \frac{1}{\sqrt{L}} & x \in [0, L] \\ 0 & \text{otherwise.} \end{cases}$$

What is the probability that the energy measurement yields $9\epsilon_1$ or $16\epsilon_1$? What is the probability that the particle is moving to the right? The mass of the particle is m and $\epsilon_1 = \hbar^2 \pi^2 / 2mL^2$.

The fourier transform of $(1+x^2)^{-1}$ is $\sqrt{\pi/2} \exp(-|k|)$.