1. Consider a particle trapped in a cubical box given by potential

$$V(x, y, z) = \begin{cases} 0 & 0 \le x, y, z \le L \\ \infty & \text{otherwise.} \end{cases}$$

- (a) Let n(E) be the number of energy eigenstates with energy less than E. Find n(E).
- (b) Find the density of states, which is defined as

$$g(E) = \frac{1}{L^3} \frac{dn}{dE}(E).$$

- (c) Sketch g(E).
- 2. An anisotropic harmonic oscillator has the potential energy function

$$V(x, y, z) = \frac{1}{2}m\omega^2 (x^2 + y^2) + \frac{1}{2}m\omega_z^2 z^2.$$

(Assume that ω_z/ω is large and irrational.)

- (a) Write down first few eigen-energies and their degeneracies.
- (b) This problem is separable in cartesian coordinates. Write down the eigenfunctions corresponding to the first few eigenstates.
- (c) Do the operators \mathbf{L}_x , \mathbf{L}_y and \mathbf{L}_z commute with the hamiltonian? And does \mathbf{L}^2 ?
- (d) Write down the ground state. Is this eigenfunction \mathbf{L}_z ? If so, what is the eigenvalue?
- (e) The degeneracy of the first excited state (energy: $\frac{1}{2}\hbar\omega_z + 2\hbar\omega$) is two. When separated in cartesian coordinates, the *un-normalized* eigenfunctions are

$$\begin{split} \phi_{100}(x,y,z) &= x \exp\left[-\frac{\alpha^2 x^2}{2}\right] \exp\left[-\frac{\alpha^2 y^2}{2}\right] \exp\left[-\frac{\alpha_z^2 z^2}{2}\right] \\ \phi_{010}(x,y,z) &= y \exp\left[-\frac{\alpha^2 x^2}{2}\right] \exp\left[-\frac{\alpha^2 y^2}{2}\right] \exp\left[-\frac{\alpha_z^2 z^2}{2}\right] \end{split}$$

where $\alpha = \sqrt{m\omega/\hbar}$ and $\alpha_z = \sqrt{m\omega_z/\hbar}$. Show that these functions are not eigenfunctions of \mathbf{L}_z ? Can you construct linear combinations of ϕ_{100} and ϕ_{010} , which are eigenfunctions of \mathbf{L}_z ? (Hint: Write these functions in spherical polar coordinates and remember $e^{im\phi}$ are eigenfunctions of \mathbf{L}_z .)

- 3. Let $x_1 = x$, $x_2 = y$, and $x_3 = z$. Similarly, for any vector quantity **A**, let $A_1 = A_x$, $A_2 = A_y$ and $A_3 = A_z$.
 - (a) Prove that **L** is a hermitian operator.
 - (b) Prove $[L_i, x_j] = i\hbar \sum_{k=1}^{3} \epsilon_{ijk} x_k$. Here ϵ_{ijk} is called Levi-Civita antisymmetric symbol, given by

$$\epsilon_{ijk} = \begin{cases} 1 & \text{if } ijk = 123, 231, 312 \\ -1 & \text{if } ijk = 132, 321, 213 \\ 0 & \text{otherwise.} \end{cases}$$

(c) Prove $[L_i, p_j] = i\hbar \sum_{k=1}^3 \epsilon_{ijk} p_k$.

- 4. For Legendre polynomials, Prove:
 - (a) Orthogonality:

$$\int_{-1}^{1} P_m(x) P_n(x) = \frac{2}{2n+1} \delta_{m,n}$$

(b) Recursion Relations:

$$(n+1)P_{n+1}(x) = (2l+1)xP_n(x) - nP_{n-1}(x)$$

$$(1-x^2)\frac{dP_n}{dx} = -nxP_n(x) + nP_{n-1}(x)$$

- 5. Let l > m > 0.
 - (a) Show that $P_l^m(-x) = (-1)^{l-m} P_l^m(x)$.
 - (b) If the spherical coordinates of a vector \mathbf{r} are (r, θ, ϕ) , what are the sperical coordinates of $-\mathbf{r}$?
 - (c) Show that $Y_{l,m}$ has a parity $(-1)^l$ under $\mathbf{r} \to -\mathbf{r}$ transformation.
- 6. Show that $\mathbf{L}_{-} = \hbar e^{-i\phi} \left(-\frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right)$. Also show that $\mathbf{L}_{-}Y_{l,m} = \hbar \sqrt{l(l+1) m(m-1)}Y_{l,m-1}$. Use recurrence relation 6.97d given on page 282 of Bransden.
- 7. Just as $Y_{l,m}$ is a an eigenfunctions of \mathbf{L}^2 and \mathbf{L}_z , let $Z_{l,n}$ be an eigenfunction of \mathbf{L}^2 and \mathbf{L}_x that is

$$\mathbf{L}^2 Z_{l,n} = l(l+1)\hbar^2 Z_{l,n}$$

$$\mathbf{L}_x Z_{l,n} = n\hbar Z_{l,n}.$$

We already know the eigenvalues of \mathbf{L}^2 , that is $l = 0, 1, 2, \ldots$

- (a) What are allowed values for n for given l?
- (b) Show that $\langle Z_{l,n}, Y_{l',m} \rangle = 0$ if $l \neq l'$.
- (c) Show that $Z_{l,n}$ can be expressed in terms of $Y_{l,m}$, that is

$$Z_{l,n} = \sum_{m=-l}^{l} C_{n,m} Y_{l,m}.$$

- (d) Find $Z_{1,n}$ in terms of $Y_{1,m}$ explicitly.
- 8. Let the state of a particle constrained to move on a sphere, be $Y_{1,0}$. What are the possible results of measurement of L_x ? What is the probability associated with each outcome?
- 9. The state of a particle constrained to move on a sphere is

$$\Psi(\theta, \phi, t = 0) = \frac{1}{\sqrt{4\pi}} \left(e^{i\phi} \sin \theta + \cos \theta \right)$$

- (a) What are the probabilities for the various results of the measurement of \mathbf{L}_z at t = 0? What about at t > 0?
- (b) What is the expectation value of \mathbf{L}_z at t = 0?