1. A square well potential is given by $V(x) = -V_0$ if |x| < a, and 0 otherwise. The energy eigenfunctions (even boundstates) are given by

$$\phi_n(x) = \begin{cases} A\cos\left(\xi_n \frac{x}{a}\right) & |x| < a\\ F\exp\left(-\eta_n \frac{|x|}{a}\right) & \text{otherwise} \end{cases}$$

where η_n and ξ_n are positive numbers.

- (a) Find F in terms of A.
- (b) Find A by normalizing the wave function. (Express A in terms of a, ξ_n and, η_n).
- (c) Find the expression for the probability that the particle will be found outside the well if it is in state ϕ_n at a given instant.
- (d) Do the same excercise for odd boundstates.
- 2. Set $\hbar = m = a = 1$ and $V_0 = 50$ in the square well potential, given in problem 1. Then $\gamma^2 = 2V_0, \, \xi^2 = \alpha^2 = 2(V_0 + E)$ and $\eta^2 = \beta^2 = -2E$.
 - (a) Estimate the number of boundstates.
 - (b) Solve the equations

$$\xi \tan \xi = \sqrt{\gamma^2 - \xi^2}$$

and

$$-\xi\cot\xi = \sqrt{\gamma^2 - \xi^2}$$

numerically by any method (one method is given below) to obtain the energy spectrum.

- (c) Find the normalization constants for each bound state.
- (d) Find the probability that particle is found outside the well for the ground state and the highest energy state.
- 3. Consider a potential given by

$$V(x) = \begin{cases} \infty & x < 0 \\ -V_0 & 0 < x < a \\ 0 & x > a \end{cases}$$

Find out the condition determining the energy eigenvalues of the bound states of this potential.

- 4. If a wavefunction is given by $\psi(x) = c f(x)$, where c is a constant (may be complex) and f is a real-valued function, show that the probability current density vanishes everywhere.
- 5. Consider a wavepacket given by

$$\Psi(x,t=0) = A \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right) \exp\left(i\frac{p_0x}{\hbar}\right).$$

Find the probability current density.

6. The potential energy is given by

$$V(x) = \begin{cases} V_0 & x > 0\\ 0 & x < 0. \end{cases}$$

Find the transmission and reflection coefficients assuming a plane wave incident from the left side with energy $E > V_0$.

7. Determine the transmission coefficient for a rectangular barrier with the potential given by

$$V(x) = \begin{cases} +V_0 & \text{if } |x| < a \\ 0 & \text{otherwise} \end{cases}$$

where V_0 is a positive constant. Treat the three cases, $E < V_0$, $E = V_0$, and $E > V_0$ separately.

8. Find the scattering matrix for the rectangular barrier given in problem 7 assuming $E > V_0$.

Solution 2:

Fixed Point Iterative method: Transform the first equation to

$$\xi = g(\xi) = (n-1)\frac{\pi}{2} + \tan^{-1}\left(\frac{\sqrt{\gamma^2 - \xi^2}}{\xi}\right)$$

Here $n = 1, 3, \ldots, g(\xi)$ is called iterating function. Now use iterative method, that is

$$\xi^{(k+1)} = g(\xi^{(k)}) = (n-1)\frac{\pi}{2} + \tan^{-1}\left(\frac{\sqrt{\gamma^2 - (\xi^{(k)})^2}}{\xi^{(k)}}\right).$$

You must choose the initial guess, that is, $\xi^{(0)}$. Choose a value closer to the solutions. There is a theorem that claims that $\xi^{(k)}$ converges to a root for $k \to \infty$. To get an accuracy of two or three digits, you may have to go up to k = 4 or 5. Do this on your calculator. Here is an example, for n = 1, let $\xi^{(0)} = 1$, then $\xi^{(1)} = 1.4706$, $\xi^{(2)} = 1.4232$, $\xi^{(3)} = 1.4280$, $\xi^{(4)} = 1.4276$ and $\xi^{(5)} = 1.4275$. Here is complete table.

n	ξ_n	E_n	A_n	P(x > a) %
1	1.4275	-48.9811	0.9530	0.19
2	2.8523	-45.9321	0.9516	0.77
3	4.2711	-40.8789	0.9489	1.82
4	5.6792	-33.8733	0.9443	3.49
5	7.0689	-25.0154	0.9360	6.19
6	8.4232	-14.5249	0.9148	11.10
7	9.6789	-3.1596	0.8458	26.66