1. Find allowed energies of the *half* harmonic oscillator

$$V(x) = \begin{cases} \frac{1}{2}m\omega^2 x^2, & x > 0, \\ \infty, & x < 0. \end{cases}$$

- 2. A charged particle (mass m, charge q) is moving in a simple harmonic potential (frequency $\omega/2\pi$). In addition, an external electric field \mathcal{E}_0 is also present. Write down the hamiltonian of this particle. Find the energy eigenvalues, eigenfunctions. Find the average position of the particle, when it is in one of the stationary states.
- 3. Assume that the atoms in a CO molecule are held together by a spring. The spacing between the lines of the spectrum of CO molecule is 2170 cm⁻¹. Estimate the spring constant.
- 4. If the hermite polynomials $H_n(x)$ are defined using the generating function $G(x,s) = \exp(-s^2 + 2xs)$, that is

$$\exp\left(-s^2 + 2xs\right) = \sum_{n} \frac{H_n(x)}{n!} s^n,$$

(a) Show that the Hermite polynomials obey the differential equation

$$H_n''(x) - 2xH_n'(x) + 2nH_n(x) = 0$$

and the recurrence relation

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x).$$

(b) Derive Rodrigues' formula

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

5. Let ϕ_n be the *n*th stationary state of a particle in harmonic oscillator potential. Given that the lowering operator is

$$\hat{a} = \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega \hat{X} + i\hat{P} \right).$$

and $\xi = \sqrt{m\omega/\hbar}x$,

(a) show that

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\xi + \frac{d}{d\xi} \right).$$

(b) Show that

$$\hat{a}\phi_n(\xi) = \sqrt{n}\phi_{n-1}(\xi)$$

- 6. Let $B = \{\phi_n | n = 0, 1, ...\}$ be the set of energy eigenfunctions of the harmonic oscillator. Find the matrix elements of \hat{X} and \hat{P} wrt to basis B
- 7. Suppose that a harmonic oscillator is in its n^{th} stationary state.

- (a) Compute uncertainties σ_x and σ_P in position and momentum. [Hint: To calculate expectation values, first write \hat{X} and \hat{P} in terms of the lowering operator \hat{a} and its adjoint.]
- (b) Show that the average kinetic energy is equal to the average potential energy (Virial Theorem).
- 8. A particle of mass m in the harmonic oscillator potential, starts out at t = 0, in the state

$$\Psi(x,0) = A \left(1 - 2\xi\right)^2 e^{-\frac{m\omega}{2\hbar}\xi^2}$$

where A is a constant and $\xi = \sqrt{m\omega/\hbar x}$.

- (a) What is the average value of energy?
- (b) After time T, the wave function is

$$\Psi(x,T) = B (1+2\xi)^2 e^{-\frac{m\omega}{2\hbar}\xi^2}$$

for some constant B. What is the smallest value of T?

9. Let ϕ_n be eigenstates of the harmonic oscillator. For a given complex number μ , let

$$\chi_{\mu} = e^{-\frac{|\mu|}{2}} \sum_{n=0}^{\infty} \frac{\mu^n}{\sqrt{n!}} \phi_n.$$

Such states are called *coherent* states.

(a) Show that

$$\hat{a}\chi_{\mu} = \mu\chi_{\mu}$$

that is χ_{μ} is an eigenstate of \hat{a} .

- (b) If the state of the oscillator is χ_{μ} , then show that $\sigma_x \sigma_p = \hbar/2$.
- (c) The state of the oscillator $\Psi(t=0) = \chi_{\mu}$, then show that

$$\Psi(t) = \chi_{\mu'}$$

where $\mu' = e^{-i\omega t}\mu$. That means, if the state of the system, at an instant is a coherent state, then it is a coherent state at all times.

(d) Optional: If you choose the hilbert space to be $L_2(R)$, then show that $|\Psi(x,t)|^2$ is a gaussian wave packet and the wave packet performs a harmonic oscillations without changing the shape.