- 1. Which of the following sets are vector spaces? (Assume usual function addition. Check only closure and existence of inverse.)
 - (a) Piecewise continuous functions on [a, b].
 - (b) Twice differentiable functions on [a, b].
 - (c) Functions on [0, a] satisfying the boundary conditions f(0) = f(a).
 - (d) Functions on [0, a] satisfying the boundary conditions f(0) = 0 and f(a) = 2.
 - (e) Functions satisfying the differential equation $y'' + y^2 = 0$.
 - (f) Functions satisfying the differential equation y'' + y = 0.
- 2. Let $f_n : [0,\pi] \to \mathbb{R}$ such that $f_n(x) = \sin(nx)$ for $n = 1, 2, \ldots$ Show that the set $\{f_n | n = 1, 2, \ldots\}$ is orthogonal with respect to the inner product

$$\langle f_n, f_m \rangle = \int_0^\pi f_n(x) f_m(x) dx$$

Normalize these functions.

3. Prove Schwarz inequality,

$$\left| \int_{a}^{b} f^{*}(x)g(x)dx \right|^{2} \leq \left[\int_{a}^{b} |f(x)|^{2} dx \right] \left[\int_{a}^{b} |g(x)|^{2} dx \right]$$

for $f, g \in L_2([a, b])$. Use this identity to show that $L_2([a, b])$ is a vector space.

- 4. For what range of ν , is the function $f(x) = x^{\nu}$ in $L_2([0,1])$. Assume ν to be real but not necessarily positive. For a specific case of $\nu = 1/2$, is f in $L_2([0,1])$? What about xf(x)? And (d/dx)f?
- 5. Prove the following:
 - (a) $(cA)^{\dagger} = c^* A^{\dagger}$
 - (b) $(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}$. Thus the sum of two hermitian operators is hermitian.
 - (c) Show that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. Thus the product of two hermitian operators is hermitian if they commute.
 - (d) Hamiltonian operator

$$-\frac{\hbar^2}{2m}\hat{D}^2 + V(\hat{X})$$

is hermitian. Here $V(\hat{X})$ is a function of the operator \hat{X} and

$$\left(V(\hat{X})f\right)(x) = V(x)f(x)$$

Assume that the function V(x) is real valued.

6. Let V be a finite dimensional inner product space. Let M_A be the matrix of an operator A with respect to an orthonormal basis. Show that

$$M_{A^{\dagger}} = [M_A^*]^T$$

- 7. Show that the eigenvalues of hermitian operator are real. Also show that the eigenfunctions corresponding to distinct eigenvalues are orthogonal.
- 8. Let $W = \{f(\phi) \in L_2([0, 2\pi]) | f(0) = f(2\pi) \text{ and } f'(0) = f'(2\pi)\}$. Consider an operator $\hat{Q} = d^2/d\phi^2$ on W. Is \hat{Q} hermitian? Find its eigenfunctions and eigenvalues.
- 9. The position operator $\hat{X}: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ is defined as

$$\left(\hat{X}f\right)(x) = xf(x).$$

Find the eigenvalues and eigenfunctions of the position operator.

10. The matrix of an operator A on \mathbb{R}^3 is given by

$\begin{bmatrix} a \end{bmatrix}$	0	b	
$\begin{vmatrix} a \\ 0 \\ a \end{vmatrix}$	c	0	
$\lfloor a$	0	a	

Find the eigenvalues and eigenvectors.