1. A square well potential is given by $V(x) = -V_0$ if |x| < a, and 0 otherwise. The energy eigenfunctions (even boundstates) are given by

$$\phi_n(x) = \begin{cases} A\cos\left(\xi_n \frac{x}{a}\right) & |x| < a\\ F\exp\left(-\eta_n \frac{|x|}{a}\right) & \text{otherwise} \end{cases}$$

where η_n and ξ_n are positive numbers.

- (a) Find F in terms of A.
- (b) Find A by normalizing the wave function. (Express A in terms of a, ξ_n and, η_n).
- (c) Find the expression for the probability that the particle will be found outside the well if it is in state ϕ_n at a given instant.
- (d) Do the same excercise for odd boundstates.
- 2. Set $\hbar = m = a = 1$ and $V_0 = 50$ in the square well potential, given in problem 1. Then $\gamma^2 = 2V_0, \, \xi^2 = \alpha^2 = 2(V_0 + E)$ and $\eta^2 = \beta^2 = -2E$.
 - (a) Estimate the number of boundstates.
 - (b) Solve the equations

$$\xi \tan \xi = \sqrt{\gamma^2 - \xi^2}$$

and

$$-\xi\cot\xi = \sqrt{\gamma^2 - \xi^2}$$

numerically by any method (one method is given below) to obtain the energy spectrum.

- (c) Find the normalization constants for each bound state.
- (d) Find the probability that particle is found outside the well for the ground state and the highest energy state.
- 3. Consider a potential given by

$$V(x) = \begin{cases} \infty & x < 0 \\ -V_0 & 0 < x < a \\ 0 & x > a \end{cases}$$

Find out the condition determining the energy eigenvalues of the bound states of this potential.

- 4. If a wavefunction is given by $\psi(x) = c f(x)$, where c is a constant (may be complex) and f is a real-valued function, show that the probability current density vanishes everywhere.
- 5. Consider a wavepacket given by

$$\Psi(x,t=0) = A \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right) \exp\left(i\frac{p_0x}{\hbar}\right).$$

Find the probability current density.

6. The potential energy is given by

$$V(x) = \begin{cases} V_0 & x > 0 \\ 0 & x < 0. \end{cases}$$

Find the transmission and reflection coefficients assuming a plane wave incident from the left side with energy $E > V_0$.

7. Determine the transmission coefficient for a rectangular barrier with the potential given by

$$V(x) = \begin{cases} +V_0 & \text{if } |x| < a \\ 0 & \text{otherwise} \end{cases}$$

where V_0 is a positive constant. Treat the three cases, $E < V_0$, $E = V_0$, and $E > V_0$ separately.

8. Find the scattering matrix for the rectangular barrier given in problem 7 assuming $E > V_0$.

Solution 2:

Fixed Point Iterative method: Transform the first equation to

$$\xi = g(\xi) = (n-1)\frac{\pi}{2} + \tan^{-1}\left(\frac{\sqrt{\gamma^2 - \xi^2}}{\xi}\right)$$

Here $n = 1, 3, \ldots, g(\xi)$ is called iterating function. Now use iterative method, that is

$$\xi^{(k+1)} = g(\xi^{(k)}) = (n-1)\frac{\pi}{2} + \tan^{-1}\left(\frac{\sqrt{\gamma^2 - (\xi^{(k)})^2}}{\xi^{(k)}}\right).$$

You must choose the initial guess, that is, $\xi^{(0)}$. Choose a value closer to the solutions. There is a theorem that claims that $\xi^{(k)}$ converges to a root for $k \to \infty$. To get an accuracy of two or three digits, you may have to go up to k = 4 or 5. Do this on your calculator. Here is an example, for n = 1, let $\xi^{(0)} = 1$, then $\xi^{(1)} = 1.4706$, $\xi^{(2)} = 1.4232$, $\xi^{(3)} = 1.4280$, $\xi^{(4)} = 1.4276$ and $\xi^{(5)} = 1.4275$. Here is complete table.

n	ξ_n	E_n	A_n	P(x > a) %
1	1.4275	-48.9811	0.9530	0.19
2	2.8523	-45.9321	0.9516	0.77
3	4.2711	-40.8789	0.9489	1.82
4	5.6792	-33.8733	0.9443	3.49
5	7.0689	-25.0154	0.9360	6.19
6	8.4232	-14.5249	0.9148	11.10
7	9.6789	-3.1596	0.8458	26.66

Solutions:

1. Given

$$\phi_n(x) = \begin{cases} A\cos\left(\xi_n \frac{x}{a}\right) & |x| < a \\ F\exp\left(-\eta_n \frac{|x|}{a}\right) & \text{otherwise} \end{cases}$$

(a) At x = a, ϕ_n must be continuous, hence

$$A\cos(\xi_n) = F\exp(-\eta_n)$$
$$\implies F = A\frac{\cos(\xi_n)}{\exp(-\eta_n)}$$

(b) Square of the norm of ϕ_n is

$$\int_{-\infty}^{\infty} |\phi_n(x)|^2 dx = 2 \int_0^{\infty} |\phi_n(x)|^2 dx$$

= $2 \int_0^a |A|^2 \cos^2\left(\xi_n \frac{x}{a}\right) + 2 \int_a^{\infty} |F|^2 \exp\left(-2\eta_n \frac{x}{a}\right) dx$
= $|A|^2 \left[a\left(1 + \frac{\sin(2\xi_n)}{2\xi_n} + \frac{\cos^2\xi_n}{\eta_n}\right)\right]$

Thus,

$$A = \left[a\left(1 + \frac{\sin(2\xi_n)}{2\xi_n} + \frac{\cos^2\xi_n}{\eta_n}\right)\right]^{-1/2}$$

(c) Probability that the particle is found outside the well is

$$P\left(\left|\hat{X}\right| > a\right) = 2\int_{a}^{\infty} |F|^{2} \exp\left(-2\eta_{n}\frac{x}{a}\right) dx.$$
$$= \frac{A^{2}a}{\eta_{n}} \cos^{2}\left(\xi_{n}\right)$$

(d) For odd states,

$$\phi_n(x) = \begin{cases} A \sin\left(\xi_n \frac{x}{a}\right) & |x| < a \\ F \exp\left(-\eta_n \frac{|x|}{a}\right) & x > a \\ -F \exp\left(-\eta_n \frac{|x|}{a}\right) & x < -a \end{cases}$$

Follow simillar procedure to obtain

$$A = \left[a\left(1 - \frac{\sin(2\xi_n)}{2\xi_n} + \frac{\sin^2\xi_n}{\eta_n}\right)\right]^{-1/2}$$

and

$$P\left(\left|\hat{X}\right| > a\right) = \frac{A^2 a}{\eta_n} \sin^2\left(\xi_n\right)$$

- 2. Given above.
- 3. Boundary conditions for the wave function:
 - (a) At x = a, the wave function and its first derivative must be continuous.
 - (b) At x = 0, the wave function must vanish.

For bound states, energy eigenvalue, E < 0. General solution in Region I ($x \in [0, a]$),

$$\phi_I = A\sin\left(\alpha x\right) + B\cos\left(\alpha x\right)$$

and in Region 2 (x > a),

$$\phi_{II} = Ce^{\beta x} + De^{-\beta x},$$

where $\beta = \sqrt{2mE}/\hbar$ and $\alpha = \sqrt{2m(E+V_0)}/\hbar$. Applying boundary condition (b), we get B = 0. And applying boundary condition (a), we get

$$\eta = -\xi \cot \xi.$$

This is exactly same as in case of the odd eigen-states of a square well potential. We could have arrived at this conclusion just by guessing.

4. Given: $\psi(x) = cf(x)$, where f is a real function of x and c may be a complex constant.

$$J(x) = \frac{\hbar}{2mi} \left[\psi^* \frac{\partial}{\partial x} \psi - \psi \frac{\partial}{\partial x} \psi^* \right]$$
$$= \frac{\hbar}{2mi} |c|^2 \left[f \frac{\partial}{\partial x} f - f \frac{\partial}{\partial x} f \right] = 0.$$

5. Probability current density is

$$J(x) = \frac{\hbar}{2mi} \left[\psi^* \frac{\partial}{\partial x} \psi - \psi \frac{\partial}{\partial x} \psi^* \right]$$

$$= \frac{\hbar}{2mi} |A|^2 \exp\left(-\frac{(x-x_0)^2}{\sigma^2}\right) \left[\left(-\frac{(x-x_0)}{\sigma^2} + i\frac{p_0}{\hbar}\right) - \left(-\frac{(x-x_0)}{\sigma^2} - i\frac{p_0}{\hbar}\right) \right]$$

$$= \frac{p_0}{m} |A|^2 \exp\left(-\frac{(x-x_0)^2}{\sigma^2}\right)$$

6. Assuming $E > V_0$, the solution to the Schrödinger equation is

$$\psi(x) = \begin{cases} Ae^{i\alpha x} + Be^{-i\alpha x} & x < 0\\ Ce^{i\beta x} & x > 0, \end{cases}$$

where $\alpha = \sqrt{2mE}/\hbar$, and $\beta = \sqrt{2m(E-V_0)}/\hbar$. Applying BC at x = 0, we get

$$A + B = C$$
$$A - B = \frac{\beta}{\alpha}C$$

Thus

$$\frac{C}{A} = \frac{2\alpha}{\alpha + \beta}$$

and

$$\frac{B}{A} = \frac{\beta - \alpha}{\alpha + \beta}$$

The transmission coefficient is

$$T = \frac{J_t}{J_i} = \frac{\beta}{\alpha} \left| \frac{C}{A} \right|^2 = \frac{2\alpha\beta}{(\alpha + \beta)^2}$$

 $\quad \text{and} \quad$

$$R = \left|\frac{B}{A}\right|^2 = \frac{(\alpha - \beta)^2}{(\alpha + \beta)^2} = \frac{\left(\sqrt{E} - \sqrt{E - V_0}\right)^2}{\left(\sqrt{E} + \sqrt{E - V_0}\right)^2}$$
$$= 1 \qquad \frac{E}{V_0} = 1$$
$$\rightarrow 0 \qquad \frac{E}{V_0} \gg 1$$

7. The transmission coefficient for rectangular barrier is given by

$$T = \left[1 + \frac{V_0^2 \sinh^2(2\beta a)}{4E(V_0 - E)}\right]^{-1} \quad E < V_0$$

$$\to \frac{1}{1 + 2mV_0 a^2/\hbar^2} \quad \text{as } E \to V_0$$

$$= \left[1 + \frac{V_0^2 \sin^2(2\beta a)}{4E(V_0 - E)}\right]^{-1} \quad E > V_0$$

where, $\beta = \sqrt{2m(E - V_0)}/\hbar$.

8. The solution of the SE is

$$\psi(x) = \begin{cases} Ae^{i\alpha x} + Be^{-i\alpha x} & x < -a\\ Ce^{i\beta x} + De^{-i\beta x} & -a < x < a,\\ Ee^{i\alpha x} + Ee^{-i\alpha x} & a < x \end{cases}$$

where $\alpha = \sqrt{2mE}/\hbar$, and $\beta = \sqrt{2m(E-V_0)}/\hbar$. Applying BC at x = -a, we get

$$\begin{bmatrix} \bar{q} & q \\ \beta \bar{q} & -\beta q \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} \bar{p} & p \\ \alpha \bar{p} & -\alpha p \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$
$$\begin{bmatrix} C \\ D \end{bmatrix} = \frac{1}{2} \begin{bmatrix} q & \frac{1}{\beta}q \\ \bar{q} & -\frac{1}{\beta}\bar{q} \end{bmatrix} \begin{bmatrix} \bar{p} & p \\ \alpha \bar{p} & -\alpha p \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$

Applying BC at x = a, we get

$$\begin{bmatrix} p & \bar{p} \\ \alpha p & -\alpha \bar{p} \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} q & \bar{q} \\ \beta q & -\beta \bar{q} \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix}$$
$$\begin{bmatrix} p & \bar{p} \\ \alpha p & -\alpha \bar{p} \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \frac{1}{2} \begin{bmatrix} q & \bar{q} \\ \beta q & -\beta \bar{q} \end{bmatrix} \begin{bmatrix} q & \frac{1}{\beta}q \\ \bar{q} & -\frac{1}{\beta}\bar{q} \end{bmatrix} \begin{bmatrix} \bar{p} & p \\ \alpha \bar{p} & -\alpha p \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$
$$\begin{bmatrix} p & \bar{p} \\ \alpha p & -\alpha \bar{p} \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} \cos(2\beta a) & \frac{i}{\beta}\sin(2\beta a) \\ i\beta\sin(2\beta a) & \cos(2\beta a) \end{bmatrix} \begin{bmatrix} \bar{p} & p \\ \alpha \bar{p} & -\alpha p \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$$

Without substituting for p, we can simplify this to

$$B = \frac{\bar{p}^2 \left(\left(\alpha^2 - \beta^2 \right) \sin \left(2\beta a \right) A + 2i\alpha\beta F \right)}{2i\alpha\beta\cos\left(2\beta a \right) + \left(\alpha^2 + \beta^2 \right) \sin\left(2\beta a \right)}$$
$$E = \frac{\bar{p}^2 \left(2i\alpha\beta A + \left(\alpha^2 - \beta^2 \right) \sin\left(2\beta a \right) F \right)}{2i\alpha\beta\cos\left(2\beta a \right) + \left(\alpha^2 + \beta^2 \right) \sin\left(2\beta a \right)}$$

~ `

Now we can write down the scattering matrix. The transmission coefficient can be found by setting F = 0. Compare with solution of 7.