
CYK\2010\PH405+PH213\Tutorial 5 Quantum Mechanics

1. Find allowed energies of the half harmonic oscillator

V (x) =

{
1
2mω

2x2, x > 0,
∞, x < 0.

2. A charged particle (mass m, charge q) is moving in a simple harmonic potential (frequency
ω/2π). In addition, an external electric �eld E0 is also present. Write down the hamiltonian
of this particle. Find the energy eigenvalues, eigenfunctions. Find the average position of
the particle, when it is in one of the stationary states.

3. Assume that the atoms in a CO molecule are held together by a spring. The spacing
between the lines of the spectrum of CO molecule is 2170 cm−1. Estimate the spring
constant.

4. If the hermite polynomials Hn(x) are de�ned using the generating function G(x, s) =
exp

(
−s2 + 2xs

)
, that is

exp
(
−s2 + 2xs

)
=
∑
n

Hn(x)
n!

sn,

(a) Show that the Hermite polynomials obey the di�erential equation

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0

and the recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

(b) Derive Rodrigues' formula

Hn(x) = (−1)n ex
2 dn

dxn
e−x

2
.

5. Let φn be the nth stationary state of a particle in harmonic oscillator potential. Given
that the lowering operator is

â =
1√

2~mω

(
mωX̂ + iP̂

)
.

and ξ =
√
mω/~x,

(a) show that

â =
1√
2

(
ξ +

d

dξ

)
.

(b) Show that
âφn(ξ) =

√
nφn−1(ξ)

6. Let B = {φn |n = 0, 1, . . .} be the set of energy eigenfunctions of the harmonic oscillator.
Find the matrix elements of X̂ and P̂ wrt to basis B

7. Suppose that a harmonic oscillator is in its nth stationary state.
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(a) Compute uncertainties σx and σP in position and momentum. [Hint: To calculate
expectation values, �rst write X̂ and P̂ in terms of the lowering operator â and its
adjoint.]

(b) Show that the average kinetic energy is equal to the average potential energy (Virial
Theorem).

8. A particle of mass m in the harmonic oscillator potential, starts out at t = 0, in the state

Ψ(x, 0) = A (1− 2ξ)2 e−ξ
2

where A is a constant and ξ =
√
mω/~x.

(a) What is the average value of energy?

(b) After time T , the wave function is

Ψ(x, T ) = B (1 + 2ξ)2 e−ξ
2

for some constant B. What is the smallest value of T?

9. Let φn be eigenstates of the harmonic oscillator. For a given complex number µ, let

χµ = e−
|µ|
2

∞∑
n=0

µn√
n!
φn.

Such states are called coherent states.

(a) Show that
âχµ = µχµ

that is χµ is an eigenstate of â.

(b) If the state of the oscillator is χµ, then show that σxσp = ~/2.
(c) The state of the oscillator Ψ(t = 0) = χµ, then show that

Ψ(t) = χµ′

where µ′ = e−iωtµ. That means, if the state of the system, at an instant is a coherent
state, then it is a coherent state at all times.

(d) Optional: If you choose the hilbert space to be L2(R), then show that |Ψ(x, t)|2 is a
gaussian wave packet and the wave packet performs a harmonic oscillations without
changing the shape.

Solutions:

1. Since V (x) = ∞ for x ≤ 0, ψ(x) = 0 for x ≤ 0. The Schrodinger time-independent
equation is then

− ~2

2m
ψ′′ +

1
2
mω2x2ψ = Eψ x ≥ 0

ψ(0) = 0

and ψ must be square integrable. This problem is same as usual harmonic oscillator except
that we must choose only those eigenfunction which satisfy the bc of the half harmonic
oscillator, that is ψ(0) = 0. If φn(x) = Hn(ξ) exp(−ξ2/2), then we know that φn satis�es
the above de and bc if n is odd. Thus, the energy eigenvalues of the half harmonic oscillator
are

En =
(
n+

1
2

)
~ω n = 1, 3, 5, . . .
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2. The potential energy can be written as

V (x) =
1
2
mω2x2 − qE0x

=
1
2
mω2

(
x− qE0

mω2

)2

− q2E2
0

mω2

Let x0 = qE0/mω
2 and H0 = −q2E2

0/mω
2. Let x − x0 = z and H1 = H −H0. Then the

hamiltonian

H1 =
P 2

2m
+

1
2
mω2z2.

The eigenvalues of H1 are En =
(
n+ 1

2

)
~ω, then the eigenvalues of H are En +H0. Note

H0 is just a number.

3. Then ~ω = 2170 cm−1 = 2170× 1.24× 10−4 eV. Calculate force constant K = mω2.

4. See Arfken.

5. Prove this by using the recurrence relations given in problem 4.

6. Note

X̂ =

√
~

2mω

(
a+ a†

)
P̂ = 1

i

√
mω~

2

(
a− a†

)
The matrix elements are

X̂mn =
〈
φm, X̂φn

〉
=

√
~

2mω

〈
φm,

(
a+ a†

)
φn

〉
=

√
~

2mω
〈
φm,

(√
nφn−1 +

√
n+ 1φn+1

)〉
= =

√
~

2mω
(√
nδm,n−1 +

√
n+ 1δm,n+1

)
Simillarly

P̂m,n =
〈
φm, P̂ φn

〉
=

√
mω~

2
(−i)

(√
nδm,n−1 −

√
n+ 1δm,n+1

)
7. Note

X̂ =

√
~

2mω

(
a+ a†

)
P̂ = 1

i

√
mω~

2

(
a− a†

)
.

Then 〈
X̂
〉

= X̂n,n = 0

and 〈
P̂
〉

= P̂n,n = 0.
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Now 〈
X̂2
〉

=
~

2mω

〈
φn,
(
a+ a†

)(
a+ a†

)
φn

〉
=

~
2mω

〈
φn,
(
a2 + a†2 + aa† + a†a

)
φn

〉
=

~
2mω

(0 + 0 + (n+ 1) + n) =
~

2mω
(2n+ 1).

Simillarly 〈
P̂ 2
〉

=
~mω

2
(2n+ 1)

(a) Thus,

σXσP =
(
n+

1
2

)
~

(b) Note:

〈K〉 =
1

2m

〈
P̂ 2
〉

=
~ω
2

(n+
1
2

)

and

〈V 〉 =
1
2
mω2

〈
X̂2
〉

=
~ω
2

(n+
1
2

)

8. Now,

ψ(x, 0) =
1
5

(
3φ0 − 2

√
2φ1 + 2

√
2φ2

)
where φn is the nth eigenfunction of energy operator.

(a) The average energy

〈E〉 =
1
25

(9E0 + 8E1 + 8E2)

=
(

1
2

+
24
25

)
~ω.

(b) After time T

ψ(x, T ) = B
(
1 + 2ξ2

)
e−ξ

2

1
5

(
3φ0e

−iωT/2 − 2
√

2φ1e
−iω3T/2 + 2

√
2φ2e

−iω5T/2
)

=
1
5

(
3φ0 + 2

√
2φ1 + 2

√
2φ2

)
Must �nd T such that e−iωT/2 = e−i5ωT/2 = 1 and e−i3ωT/2 = −1. when, ωT = π,

exp (−iωT/2) = −i
exp (−i3ωT/2) = i

exp (−iωT/2) = −i

This will do.

9. Given:

χµ = e−
|µ|2
2

∞∑
n=0

µn√
n!
φn
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(a) Now

âχµ = e−
|µ|2
2

∞∑
n=0

µn√
n!
âφn

= e−
|µ|2
2

∞∑
n=1

µn√
n!
nφn−1

= µe−
|µ|2
2

∞∑
n=1

µn−1√
(n− 1)!

φn−1

= µχµ

Interestingly, χµ is not an eigenstate of â†.

(b) First note:

〈χµ, χµ〉 = e−|µ|
2
∞∑
n=0

(µ̄)n√
n!

µm√
m!
〈φn, φm〉

= e−|µ|
2
∞∑
n=0

(µ̄)n√
n!

µm√
m!
δm,n

= e−|µ|
2
∞∑
n=0

|µ|2n

n!
= 1

Then,

〈χµ, âχµ〉 = µ〈
χµ, â

†χµ

〉
= 〈âχµ, χµ〉 = µ̄.

Now, X̂ =
√

~
2mω

(
â+ â†

)
,

〈
χµ, X̂χµ

〉
=

√
~

2mω

〈
χµ,
(
â+ â†

)
χµ

〉
=

√
~

2mω
(µ+ µ̄) =

√
2~
mω

(Reµ)

And, X̂2 = ~
2mω

(
â+ â†

)2 = ~
2mω

(
â2 +

(
â†
)2 + 2â†â+ 1

)
, so

〈
X̂2
〉

=
~

2mω
(
µ2 + µ̄2 + 2|µ|2 + 1

)
=

~
2mω

(
(2Reµ)2 + 1

)
Finally,

σ2
x =

~
2mω

(
(2Reµ)2 + 1

)
− 2~
mω

(Reµ)2

=
~

2mω

Now, simillary, σ2
p = ~2

2

(
mω
~
)
and

σxσp =
~
2
.

Here the product of uncertainties is as minimum as it can get!
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(c) If Ψ(0) = χµ, then

Ψ(t) = e−
|µ|2
2

∞∑
n=0

µn√
n!
e−iω(n+ 1

2
)tφn

= e−iωt/2e−
|µ|2
2

∞∑
n=0

(
µe−iωt

)n
√
n!

φn

= e−iωt/2χµ′

where µ′ = µe−iωt.

(d) Now if we write χµ(x) in space represenetation, we need to substitute

φn(x) =
(
α√
π

)1/2 1√
2nn!

e−ξ
2/2Hn(ξ)

= =
(
α√
π

)1/2 (−1)n√
2nn!

eξ
2/2 d

n

dxn
e−ξ

2

using Rodrigue's formular for Hermite polynomials.

Ψ(x, t) =
(
α√
π

)1/2

e−iωt/2e−
|µ|2
2 eξ

2/2
∞∑
n=0

(−1)n√
2nn!

(
µe−iωt

)n
√
n!

dn

dxn
e−ξ

2

=
(
α√
π

)1/2

e−iωt/2e−
|µ|2−ξ2

2 e−(ξ−η)2

Use Taylor expansion for the last step and η = |µ| exp(−i(ωt− x))/
√

2. Now

|Ψ(x, t)|2 =
α√
π
e−|µ|

2+ξ2e−(ξ−η)2e−(ξ−η̄)2

=
α√
π
e−(ξ−

√
2|µ| cos(ωt−Argµ))2

This is a gaussian wave packet performing simple harmonic motion with frequency ω
and amplitude A =

√
2~/mω|µ| . Now show that the average energy of this state is

EΨ −
1
2

~ω =
1
2
mω2A2.
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