Handout For the PH504 Course:

December 30, 2009

Syllabus

Ordinary Differential Equations: First and second order equations with constant coefficients, series solution-Frobenius' method, Sturm-Liouville equations, Legendre, Bessel, Hermite, and Laguerre functions, Hypergeometric and confluent hypergeometric equations.

Integral Transforms: Fourier and Laplace transforms, applications.

Partial Differential Equations: Laplace equation, method of separation of variables in Cartesian, Spherical, and Cylindrical coordinates, Green's function for Laplace equation, wave equations, Helmholtz equation.

Group Theory: Groups, subgroups, conjugacy classes, cosets, invariant subgroups, factor groups, homomorphism, kernels, continuous groups, Lie groups, generators, SO(2) and SO(3), SU(2). Group representations.

Texts

- 1. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, Academic Press (1994).
- 2. A. W. Joshi, Elements of Group Theory, New Age (1997).

References

- 1. M. L. Boas, Mathematical Methods in Physical Sciences, John Wiley & Sons (1983).
- 2. E. A. Coddington, Introduction to Ordinary Differential Equations, Prentice Hall of India (1995).
- 3. I. Sneddon, Elements of Partial Differential Equations, McGraw Hill (1986).
- 4. M. Hamermesh, Group Theory and Its Applications to Physical Problems, Dover (1989).

Lecture Plan

No	Topic	Subtopic	#l
1	Ordinary Differential	First order DE with Constant	2
	Equations (15 Lectures)	Coefficients: 1.1,1.3	
		Second order DE with	2
		constant coefficients: 2.2, 2.3	
		Series solution-Frobenius'	4
		method: 2.4	
		Sturm-Liouville Theory	3
		Legendre, Bessel, Hermite,	4
		and Laguerre functions,	
		Hypergeometric and confluent	
		hypergeometric equations.	
2	Integral Transforms	Fourier and Laplace	3
	(3 lectures)	transforms, applications.: 5	
3	Partial Differential Equations	Laplace equation: 3	4
	(12 lectures)		
		wave equations: 4	4
		Helmholtz equation:	4
4	Group Theory	Groups, subgroups	2
	(12 lectures)		
		conjugacy classes, cosets,	2
		invariant subgroups, factor	
		groups	
		$\operatorname{homomorphism}$	2
		continuous groups, $\overline{\text{Lie}}$	2
		groups, generators	
		SO(2) and $SO(3)$, $SU(2)$	2
		Group representations	2