[Note: Only the first five problems will be discussed in tutorial classes. You should attempt the remaining problems and in case you get stuck, ask your tutorial instructor]

- 1. [G 2.34] Consider two concentric spherical shells, of radii *a* and *b*. Suppose the inner one carries a charge *q*, and the outer one a charge -q (both of them uniformly distributed over the surface). Calculate the energy of this configuration, (a) using $W = \frac{\epsilon_0}{2} \int E^2 d\tau$, and (b) using $W_{tot} = W_1 + W_2 + \epsilon_0 \int \mathbf{E}_1 \cdot \mathbf{E}_2 d\tau$.
- 2. [G 2.45] A sphere of radius R carries a charge density $\rho(r) = kr$ (where k is a constant). Find the energy of the configuration. Check your answer by calculating it in at least two different ways.
- 3. [G 2.36] Two spherical cavities, of radii a and b, are hollowed out from the interior of a (neutral) conducting sphere of radius R (Fig.). At the center of each cavity a point charge is placed call these charges q_a and q_b .
 - (a) Find the surface charges σ_a , σ_b , and σ_R .
 - (b) What is the field outside the conductor?
 - (c) What is the field within each cavity?
 - (d) What is the force on q_a and q_b ?
 - (e) Which of these answers would change if a third charge, q_c , were brought near the conductor?
- 4. [G 2.43] Find the net force that the southern hemisphere of a uniformly charged sphere exerts on the northern hemisphere. Express your answer in terms of the radius R and the total charge Q.
- 5. Let $q_1 (> 0)$ and $-q_2$, (where $q_2 > 0$) be two charges located at (d, 0, 0) and (-d, 0, 0) respectively. Show that the zero potential surface is spherical with center on x axis. If center of the surface is at (c, 0, 0) and radius is R, find c/d and R/d in terms of q_1/q_2 . Sketch surfaces for $q_1/q_2 = \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1, 234$.
- 6. [G 2.35] A metal sphere of radius R, carrying charge q, is surrounded by a thick concentric metal shell (inner radius a, outer radius b, as shown in Fig.). The shell carries no net charge.
 - (a) Find the surface charge density σ at R, at a, and at b.
 - (b) Find the potential at the center, using infinity as the reference point.
 - (c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero (same as at infinity). How do your answers to (a) and (b) change?

- 7. [G 2.39] Find the capacitance per unit length of two coaxial metal cylindrical tubes, of radii a and b (Fig.).
- 8. [G 2.42] If the electric field in some region is given (in spherical coordinates) by the expression $\mathbf{E}(\mathbf{r}) = \frac{A\hat{\mathbf{r}} + B\sin\theta\cos\phi\hat{\phi}}{r}$,

where A and B are constants, what is the charge density?

9. A charge distribution on the surface of a sphere of radius R, is given by

$$\sigma(\theta,\phi) = \sigma_0 \sin \theta \sin \phi$$

Find the electric field and the potential on the z axis.

- 10. Use Gauss's law to find electric field at any point due to the charge distribution
 - (a) $\rho = \frac{\rho_0 a}{r}$ if r < a and is zero otherwise;
 - (b) $\rho = \rho_0 (1 r^2/a^2)$ if r < a and is zero otherwise.