- 1. **[G 1.27]** Prove that the curl of a gradient is always zero. Check it for the function $f(x, y, z) = x^2 y^3 z^4$.
- 2. Find the length of one turn of a helical wire(with radius R and pitch p).
- 3. Find the work done by the force field $\mathbf{F}(x, y) = x\hat{\mathbf{x}} + (y+2)\hat{\mathbf{y}}$ in moving an object along an arch of the cycloid $\mathbf{r}(t) = (t \sin t)\hat{\mathbf{x}} + (1 \cos t)\hat{\mathbf{y}}, 0 \le t \le 2\pi$.
- 4. Evaluate $\int \int \mathbf{A} \cdot \hat{\mathbf{n}} ds$, where $\mathbf{A} = 18z \hat{\mathbf{x}} 12 \hat{\mathbf{y}} + 3y \hat{\mathbf{z}}$ and S is that part of the plane 2x + 3y + 6z = 12 which is located in the first octant.
- 5. **[G 1.30]** Calculate the volume integral of the function $T = z^2$ over the tetrahedron with corners at (0,0,0), (1,0,0), (0,1,0) and (0,0,1).
- 6. **[G 1.31]** Check the fundamental theorem for gradients, using $T = x^2 + 4xy + 2yz^3$, the points $\mathbf{a} = (0, 0, 0)$, $\mathbf{b} = (1, 1, 1)$, and the three paths in Fig.:

Figure 1: Problem 7

- (a) $(0,0,0) \to (1,0,0) \to (1,1,0) \to (1,1,1);$
- (b) $(0,0,0) \rightarrow (0,0,1) \rightarrow (0,1,1) \rightarrow (1,1,1);$
- (c) the parabolic path $z = x^2$; y = x.
- 7. **[G 1.33]** Test Stokes' theorem for the function $\mathbf{v} = (xy)\hat{\mathbf{x}} + (2yz)\hat{\mathbf{y}} + (3zx)\hat{\mathbf{z}}$, using the triangular shaded area of Fig. .
- 8. [G 1.39] Compute the divergence of the function

$$\mathbf{v} = (r\cos\theta)\hat{\mathbf{r}} + (r\sin\theta)\hat{\theta} + (r\sin\theta\cos\phi)\hat{\phi}.$$

Check the divergence theorem for this function, using as your volume the inverted hemispherical bowl of radius R, resting on the xy plane and centered at the origin (Fig.).

9. [G 1.41] Derive the relations for unit vectors of cylindrical coordinate system:

$$\hat{\mathbf{s}} = \cos \phi \hat{\mathbf{x}} + \sin \phi \hat{\mathbf{y}}, \hat{\phi} = -\sin \phi \hat{\mathbf{x}} + \cos \phi \hat{\mathbf{y}}, \hat{\mathbf{z}} = \hat{\mathbf{z}}.$$

Invert the formulas to get $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ in terms of $\hat{\mathbf{s}}$, $\hat{\phi}$, $\hat{\mathbf{z}}$ (and ϕ).

- 10. **[G 1.44]** Evaluate the following integrals:
 - (a) $\int_{-2}^{2} (2x+3)\delta(3x)dx$.
 - (b) $\int_0^2 (x^3 + 3x + 2)\delta(1 x)dx.$
 - (c) $\int_{-1}^{1} 9x^2 \delta(3x+1) dx$.
 - (d) $\int_{-\infty}^{a} \delta(x-b) dx$.