
Physics II

Electromagnetism and Optics

Charudatt Kadolkar

Indian Institute of Technology Guwahati

Jan 2009



Charge Distributions

There are no point charges or smooth charge distributions.

Example

Consider two situations:

A: Two �Point� charges, of magnitude q each, are located at
(0, d , 0) and (0,−d , 0).

B: One �Point� charge of magnitude 2q at (0, 0, 0)

The electric �eld at a point (x , 0, 0) is given by

EA =
q

4πε0

[
(x x̂− d ŷ)

(d2 + x2)3/2
+

(x x̂ + d ŷ)

(d2 + x2)3/2

]

=
1

4πε0

(2q) x x̂

(d2 + x2)3/2

=
1

4πε0

(2q) x̂

x2

[
1− 3

2

d2

x2
+ · · ·

]
And

EB =
1

4πε0

(2q) x̂

x2
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Charge Distributions

Example

If d = 1mm and x = 1m then∣∣∣∣EA − EB

EB

∣∣∣∣ ≈ 10−6

I As far as measurements are concerned, modelling two distinct charges as a
single point charge is �ne.

I Fundamental Laws? But Electromagnetism is not about charges and
currents but about electric and magnetic �eld. We have �correct� laws for
�elds!
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Charge Distributions

I Volume charge density is de�ned as

ρ(r) = lim
∆V→0

∆Q

∆V
.

I Can ρ(r) = 0 in any material? It is common to model ρ(r) = 0 inside
conductors! In reality, ∆V must be much larger than the atomic sizes.
Say, of the order of one cubic µm.

I This will work if we are measuring �elds outside the materials.

I Surprisingly, such averaging works inside materials, too!
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Charge Distributions

Four types of distributions

I 3D charge distributions: volume charge density

ρ(r) = lim
∆V→0

∆Q

∆V
.

I 2D charge distributions: surface charge density, σ(r).

I 1D charge distributions: linear charge density, λ(r).

I 0D charge distributions: point charges.
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Charge Distributions

Example

Let ρ(r) = ρ0.

I Are there any point charges in this distribution?

I How much charge at a point?

I How much charge on the surface of a sphere of radius R?

All charge distributions can, eventually, be represented as volume charge
densities.

Example

Volume charge density of

I a point charge q at r0 = (x0, y0, z0)

ρ(r) = qδ3(r − r0)

= qδ(x − x0)δ(y − y0)δ(z − z0)

I a uniform surface charge density σ0 on xy-plane

ρ(r) = σ0δ(z)
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Charge Distributions

Example

Let S be a spherical surface given by r = R. Surface charge density
σ(θ, φ) = σ0 cos θ. Find the total charge on upper hemisphere.

If S ′ is upper hemisphere, total charge is given by

Q =

ˆ
S′
σ(r) ds

Remember: Elementary area of spherical surface in spherical coordinates is
ds = R2 sin θ dθ dφ. Then

Q =

ˆ
S′
σ0 cos θ R

2 sin θ dθ dφ

=
σ0R

2

2

ˆ π/2

0

sin 2θ dθ

ˆ 2π

0

dφ

=
σ0R

2

2

[
−cos 2θ

2

]π/2
0

(2π) = πσ0R
2.

Total charge on S is zero.
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Electrostatics

I Interaction (forces) between two point particles depend, not only on their
charges and positions, but also on their velocities and accelerations.

I However when particles are at rest, a relatively simple form for interaction
emerges.

I Such simple form is also applicable when charges are moving at very low

speeds and accelerations.

I It is relevant to study Electrostatics from application point of view.



Coulomb's Law

Coulomb's Law

Let q1 and q2 be two point charges located at r1 and r2 resp. Then the force
exerted by q1 on q2 is

F21 = k q1q2
(r2 − r1)

|r2 − r1|3
.

I In SI units, k = 1/4πε0, where ε0 is called permittivity of free space. Its
value is exactly known

ε0 =
1

µ0c2
≈ 8.85× 10−12

C2

N m
.

I Based on experiments, CL is believed to hold from 10−18 m (indirect
evidence) to 107 m (geomagnetic measurements)

I If F ∝ 1/r2+ε, experimental evidence puts limit |ε| < (2.7± 3.1)× 10−16

(laboratory).

I Also linked to mass of photon, believed that mγ < 4× 10−51 kg
(geomagnetic).
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Linear Superposition

Linear Superposition

Force FAB on a charge, say A, due to another charge, say B, is independent of
presence of a third charge, say C . Total force on A is given by

F = FAB + FAC .

I Easily generalize to several charges.

I Experimental evidence veri�ed this law to accuracy of 10−4.

I Very accurate even at atomic distances and high strengths of forces.

I Non-linearities are evident at subatomic level and are legitimately
incorporated in quantum theory.

Classical Electrodynamic Theory is built on this principle.
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Electric Field

If there are several point charges, qi ; i = 1, . . . , n, at locations ri , then electric
�eld at r is de�ned as

E(r) =
1

4πε0

n∑
i=1

qi (r − ri )

|r − ri |3

I Electric �eld is a vector quantity.

I Linear superposition holds for electric �eld.

I If a point charge of magnitude Q, is kept at r, then the net force on the
charge

F = QE(r).

I Is electric �eld, a real physical quantity?
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Electric Field

If there is continuous charge distribution with volume charge density ρ then
electric �eld at r is

E(r) =
1

4πε0

ˆ ρ(r
′
)
(
r − r

′
)

|r − r
′ |3

dv
′
.

Clearly, if there is only surface charge with density σ, the de�nition would
reduce to

E(r) =
1

4πε0

ˆ
S

σ(r
′
)
(
r − r

′
)

|r − r
′ |3

dS
′
.
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Electric Field

Example

[G2.3] Straight line segment C : r
′
(t) = (t, 0, 0); t ∈ [0, L] with uniform linear

charge density λ0. Calculate electric �eld at (0, 0, z). Electric Field

E(r) =
1

4πε0

ˆ
C

λ(r
′
)
(
r − r

′
)

|r − r
′ |3

dl
′



Electric Field

Example

I r = (0, 0, z), r
′

= (t, 0, 0)

I r − r
′
(t) = (−t, 0, z),

I

∣∣∣r − r
′
(t)
∣∣∣ =
√
t2 + z2

I λ(r
′
(t)) = λ0

I dl ′ = dt

Then,

E(r) =
λ0
4πε0

ˆ L

0

(−tx̂ + z ẑ)

(t2 + z2)3/2
dt

=
λ0

4πε0z

[(
−1 +

z√
z2 + L2

)
x̂ +

(
L√

z2 + L2

)
ẑ

]
≈ λ0

4πε0z

[
− L2

2z2
x̂ +

L

z
ẑ

]
z � L
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ẑ

]
z � L



Electric Field

Example

I r = (0, 0, z), r
′

= (t, 0, 0)

I r − r
′
(t) = (−t, 0, z),

I

∣∣∣r − r
′
(t)
∣∣∣ =
√
t2 + z2

I λ(r
′
(t)) = λ0

I dl ′ = dt

Then,

E(r) =
λ0
4πε0

ˆ L

0

(−tx̂ + z ẑ)
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Electric Field

Example

[G2.7] Spherical surface of Radius R with uniform charge density σ0 = q/4πR2.
Calculate Electric �eld at r = (0, 0, z).



Electric Field

I Target Point r = (0, 0, z) , Source Point coordinates (R, θ
′
, φ

′
).

I Vector r
′

= R r̂
′

= R sin θ
′
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′
x̂ + R sin θ

′
sinφ

′
ŷ + R cos θ

′
ẑ

I r − r
′
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′
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′
x̂− R sin θ

′
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′
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(
z − R cos θ

′
)
ẑ

I

∣∣∣r − r
′
∣∣∣ =
√
R2 + z2 − 2Rz cos θ′

I Elementary area (at r
′
) dS

′
= R2 sin θ

′
dθ

′
dφ

′

E(r) =
1

4πε0

ˆ
S

σ(r
′
)
(
r − r

′
)

|r − r
′ |3

dS
′

=
σ0
4πε0

ˆ π

0

ˆ 2π

0

R2 sin θ
′
dθ

′
dφ

′

(R2 + z2 − 2Rz cos θ′)
3/2

×[−R sin θ
′
cosφ

′
x̂− R sin θ

′
sinφ

′
ŷ +

(
z − R cos θ

′)
ẑ]

=
(4πR2)σ0
4πε0 z2

ẑ
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ŷ + R cos θ

′
ẑ
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ẑ

I r − r
′

= −R sin θ
′
cosφ

′
x̂− R sin θ

′
sinφ

′
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ŷ + R cos θ

′
ẑ
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Curl of Electric Field

Suppose a point charge of magnitude q is placed at origin. Electric �eld at a
point r is

E(r) =
q

4πε0

r̂

r2
.

Now curl of electric �eld will be

∇× E(r) =
q

4πε0

∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z(
x/r3

) (
y/r3

) (
z/r3

)
∣∣∣∣∣∣

[∇× E(r)]x =
q

4πε0

[
∂y
( z

r3

)
− ∂z

( y

r3

)]
=

q

4πε0

[(
−3yz

r5

)
− ∂z

(
−3zy
r5

)]
= 0

Thus
∇× E(r) = 0
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Curl of Electric Field

Now we extend the result to arbitrary charge distribution ρ. Electric �eld is
given by

E(r) =
1

4πε0

ˆ ρ(r
′
)
(
r − r

′
)

|r − r
′ |3

dv
′
.

Then curl with respect to variable r

∇× E(r) =
1

4πε0
∇×

ˆ ρ(r
′
)
(
r − r

′
)

|r − r
′ |3

dv
′

=
1

4πε0

ˆ
ρ(r

′
)

∇×
(
r − r

′
)

|r − r
′ |3

 dv
′

= 0

Curl of electric �eld is always zero!∇×
(
r − r

′
)

|r − r
′ |3


x

=

(
−3(z − z ′)

(y − y ′)

|r − r
′ |3

+−3(y − y ′)
(z − z ′)

|r − r
′ |3

)
= 0
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Divergence of Electric Field

Suppose a point charge of magnitude q is placed at origin. Volume charge
density is ρ(r) = qδ3(r). Electric �eld at a point r is

E(r) =
q

4πε0

r̂

r2
.

Now divergence of electric �eld will be

∇ · E(r) =
q

4πε0
∇ ·
(

r̂

r2

)



Divergence of Electric Field

Remember from previous lecture:

∇ ·
(

r̂

r2

)
= 0 if r 6= 0.

And

ˆ
V

(
∇ ·
(

r̂

r2

))
dv = 4π

This just looks like de�nition of Dirac's Delta delta function! Clearly,

∇ ·
(

r̂

r2

)
= 4πδ(x)δ(y)δ(z)

Then,
ˆ
V

(4πδ(x)δ(y)δ(z)) dv = 4π

ˆ ∞
−∞

δ(x) dx

ˆ ∞
−∞

δ(y) dy

ˆ ∞
−∞

δ(z) dz

= 4π.

Remember: δ(x)δ(y)δ(z) = δ3(r) (3D Dirac delta function).



Divergence of Electric Field

Suppose a point charge of magnitude q is placed at origin. Electric �eld at a
point r is

E(r) =
q

4πε0

r̂

r2
.

Now divergence of electric �eld will be

∇ · E(r) =
q

4πε0
∇ ·
(

r̂

r2

)

=
q

4πε0

(
4πδ3(r)

)
=

qδ3(r)

ε0

=
ρ(r)

ε0
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Divergence of Electric Field

Now we extend the result to arbitrary charge distribution ρ. Electric �eld is
given by

E(r) =
1

4πε0

ˆ ρ(r
′
)
(
r − r

′
)

|r − r
′ |3

dv
′
.

Then divergence with respect to variable r

∇ · E(r) =
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4πε0
∇ ·
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′
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Gauss's Law

Gauss's Law

In the neighbourhood of a point r, the charge density is given by ρ(r) and the
electric �eld by E(r), then

∇ · E(r) =
ρ(r)

ε0

This is also called di�erential form of Gauss's Law.



Gauss's Law

Electric �eld in space is given by

E(r) = Ae−λr (1 + λr)
r̂

r2

ρ(r) = ε0∇ · E(r)

The divergence formula

∇ · E =
1

r2
∂

∂r

(
r2Er

)
+

1

r sin θ

∂

∂θ
(sin θEθ) +

1

r sin θ

∂

∂φ
(Eφ)

=
1

r2
∂

∂r

(
Ae−λr (1 + λr)

)
= −Aλ

2

r
e−λr

But there may be some point charge at origin since |E| ∼ 1/r2 near origin.
Integrate over a spherical surface of radius R

ˆ
E · dS = 4πAe−λR(1 + λR)

→ 4πA as R → 0

Then

ρ(r) = ε0A

(
4πδ3(r)− λ2

r
e−λr

)
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Electric Flux

De�nition

Let S be a simple surface. Electric �eld in the region containing S is given by a
vector �eld E. The �ux of E through surface S is de�ned as

φS =

ˆ
S

E · dS

Example

Suppose a point charge is kept at origin. Find the �ux through a hemisphere of
radius R centered at origin.

Consider elementary area dS at point r = R r̂. |r| = R and dS = R2 sin θdθdφ
and unit normal to dS is r̂. Flux is

φS =

ˆ
S

E · dS

=
q

4πε0

ˆ π/2

0

ˆ 2π

0

(
r̂

R2

)
· r̂R2 sin θdθdφ

=
q

2ε0



Gauss's Law

Gauss's Law

Let E be the electric �eld de�ned on a volume V bounded by a closed surface
S . Then the �ux of E through the closed surface S is equal to the total charge
in volume V .

The Gauss Law:

∇ · E(r) =
ρ(r)

ε0ˆ
V

∇ · E(r) dv =

ˆ
V

ρ(r)

ε0
dv

∴
˛
S

E(r) · dS =
Qenclosed

ε0

where, Qenclosed is the total charge in volume V .

This is known as integral form of Gauss's Law.



Gauss's Law

Integral form of Gauss Law can be interpreted in terms of �eld lines.

q1q2

Electric �eld lines are shown in red and equi-potential lines in gray. Field lines
are from q1 > 0 to q2 = −q1 . Flux through a surface is, then, number of lines
crossing the surface.



Di�erential Equations for Electric Field

Here are two di�erential equations for electric �eld:

∇ · E(r) =
ρ(r)

ε0
∇× E(r) = 0

If ρ is given, can we �nd a unique solution for E?

Theorem

(Helmholtz Theorem) If ρ is nonzero on bounded volume, then there is a
unique solution to the di� equations with E→ 0 as r→∞.

I Many problems are posed with di�erent boundaries and boundary
conditions

I However, this is rarely used to solve electrostatic problems.



Applications of Gauss's Law

Example

A uniformly charged sphere, with charge Q. Calculate Electric Field.

R

r

I A spherical surface of radius r (Guassian Surface).

I Magnitude of E on Gaussian surface is constant.

I Direction of E on Gaussian surface is known and is r̂.



Applications of Gauss's Law

˛
Gaussian Surface

E · dS = |E|
˛
Gaussian Surface

r̂ · r̂dS

= |E| 4πr2

And this must be equal to Q/ε0.

|E| 4πr2 =
Q

ε0

E =
Q

4πε0r2
r̂
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