Physics II

Electromagnetism and Optics

Charudatt Kadolkar

Indian Institute of Technology Guwahati

Jan 2009

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Product Rules (Gradient)

If f and g are scalar fields, so is fg. And if **A** and **B** are vector fields then $\mathbf{A} \cdot \mathbf{B}$ is a scalar field.

Product Rules (Gradient)

If f and g are scalar fields, so is fg. And if **A** and **B** are vector fields then $\mathbf{A} \cdot \mathbf{B}$ is a scalar field.

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

$$\blacktriangleright \nabla (fg) = f \nabla g + g \nabla f$$

$$\blacktriangleright \nabla (\mathbf{A} \cdot \mathbf{B}) = (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} + \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{A} \times (\nabla \times \mathbf{B})$$

Product Rules (Gradient)

If f and g are scalar fields, so is fg. And if **A** and **B** are vector fields then $\mathbf{A} \cdot \mathbf{B}$ is a scalar field.

Proof of the second Identity:

$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \nabla (A_x B_x + A_y B_y + A_z B_z)$$

= $(A_x \nabla B_x + A_y \nabla B_y + A_z \nabla B_z) + (B_x \nabla A_x + \cdots)$

The x-component of the first bracket:

$$\begin{array}{c} +A_{x}\partial_{x}B_{x} & +A_{y}\partial_{x}B_{y} & +A_{z}\partial_{x}B_{z} \\ +A_{y}\partial_{y}B_{x} & -A_{y}\partial_{y}B_{x} \\ +A_{z}\partial_{z}B_{x} & -A_{z}\partial_{z}B_{x} \\ (\mathbf{A}\cdot\nabla)B_{x} & +A_{y}\left(\nabla\times\mathbf{B}\right)_{z} & -A_{z}\left(\nabla\times\mathbf{B}\right)_{y} \\ (\mathbf{A}\cdot\nabla)B_{x} + (\mathbf{A}\times(\nabla\times\mathbf{B}))_{x} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Product Rules (Divergence and Curl)

$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot \nabla f$$

$$\blacktriangleright \nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A} \cdot (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Higher order derivatives of fields can be written in terms of partial derivatives like

$$\frac{\partial^2}{\partial x^2} \quad \frac{\partial^2}{\partial y^2} \quad \frac{\partial^2}{\partial x \partial y} \quad \frac{\partial^2}{\partial y \partial x}$$

◆□ > < 個 > < E > < E > E の < @</p>

The last two terms are called mixed partial derivatives.

Higher order derivatives of fields can be written in terms of partial derivatives like

$$\frac{\partial^2}{\partial x^2} \quad \frac{\partial^2}{\partial y^2} \quad \frac{\partial^2}{\partial x \partial y} \quad \frac{\partial^2}{\partial y \partial x}$$

The last two terms are called mixed partial derivatives.

Theorem

If f has continuous second ordered partial derivatives, then the mixed partial derivatives are equal that is

$$\frac{\partial^2}{\partial x_j \partial x_k} f = \frac{\partial^2}{\partial x_k \partial x_j} f$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where x_j and x_k are either x, y or z

► Laplacian:

$$\nabla^2 f = \nabla \cdot (\nabla f) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$$

Laplacian:

$$\nabla^2 f = \nabla \cdot (\nabla f) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$$

If mixed partial derivatives are continuous,

 $\nabla \times \nabla f = 0$

Laplacian:

$$\nabla^2 f = \nabla \cdot (\nabla f) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$$

If mixed partial derivatives are continuous,

abla imes
abla f = 0

If mixed partial derivatives are continuous,

 $\nabla\cdot(\nabla\times \boldsymbol{\mathsf{F}})=0$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Laplacian:

$$\nabla^2 f = \nabla \cdot (\nabla f) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) f$$

If mixed partial derivatives are continuous,

 $\nabla \times \nabla f = 0$

If mixed partial derivatives are continuous,

 $\nabla\cdot(\nabla\times \bm{F})=0$

Curl of a curl

$$\nabla \times (\nabla \times \mathbf{F}) = -\nabla^2 \mathbf{F} + \nabla (\nabla \cdot \mathbf{F})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Line (or Path) Integrals

Integration of real valued function of one variable,

$$\int_{a}^{b} f(x) dx$$

is quite familiar.

We want to extend this defintion to integrating scalar and vector fields over arbitrary paths.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Let $[a, b] \in \mathbb{R}$ be a closed interval. A path in \mathbb{R}^m is a continuous function $\mathbf{r} : [a,b] \to \mathbb{R}^m$. The path is called smooth if the derivative \mathbf{r}' exists and is continuous.

When m = 2, the function $\mathbf{r}(t) = \hat{\mathbf{x}}x(t) + \hat{\mathbf{y}}y(t)$ can be split into two component functions.

Example

$$\left.\begin{array}{l} x(t) = t \\ y(t) = t \end{array}\right\} t \in [0,1]$$

This is directed path. Starting Point :(0,0) End Point: (1,1)



Definition

Let $[a, b] \in \mathbb{R}$ be a closed interval. A path in \mathbb{R}^m is a continuous function $\mathbf{r} : [a,b] \to \mathbb{R}^m$. The path is called smooth if the derivative \mathbf{r}' exists and is continuous.

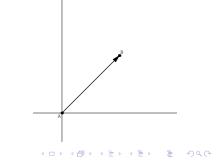
When m = 2, the function $\mathbf{r}(t) = \hat{\mathbf{x}}x(t) + \hat{\mathbf{y}}y(t)$ can be split into two component functions.

Example

$$\begin{cases} x(t) = t \\ y(t) = t \end{cases} \ t \in [0, 1]$$

This is directed path. Starting Point :(0,0) End Point: (1,1) Reversed path

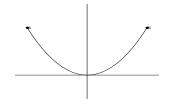
$$\left. \begin{array}{c} x(t) = 1 - t \\ y(t) = 1 - t \end{array} \right\} t \in [0, 1]$$



Example

Parabola

$$\left.\begin{array}{l} x(t)=t\\ y(t)=t^2 \end{array}\right\} t\in [-1,1]$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

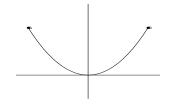
Example

Parabola

$$\left.\begin{array}{c} x(t)=t\\ y(t)=t^2 \end{array}\right\} t\in [-1,1]$$

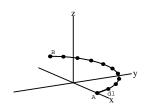
Helix

$$\begin{array}{c} x(t) = \cos t \\ y(t) = \sin t \\ z(t) = t/2\pi \end{array} \right\} t \in [0, 10\pi]$$

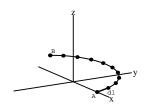


- Split path into small segments of length dr
- Line Integral is limiting value of $\sum f dr$ over the path.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで



- Split path into small segments of length dr
- Line Integral is limiting value of $\sum f dr$ over the path.



Definition

If $\mathbf{r}(t)$; $t \in [a, b]$ is a path in \mathbb{R}^m and f is scalar field over \mathbb{R}^m , then line integral of f over path \mathbf{r} is

$$\int f \, dr = \int_a^b f(\mathbf{r}(t)) \, |\mathbf{r}'(t)| \, dt.$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

For m = 2, $\mathbf{r}(t) = \hat{\mathbf{x}}\mathbf{x}(t) + \hat{\mathbf{y}}\mathbf{y}(t)$ and $|\mathbf{r}'(t)| = ((dx/dt)^2 + (dy/dt)^2)^{1/2}$.

Example

Length of a circular arc

Let $\mathbf{r}(t) = (R \cos t, R \sin t)$; $t \in [0, \alpha]$ then $\mathbf{r}'(t) = (-R \sin t, R \cos t)$ and $|\mathbf{r}'(t)| = R$

$$L = \int_{0}^{\alpha} |\mathbf{r}'(t)| dt$$
$$= \int_{0}^{\alpha} R dt = R \alpha$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Example

Centre of Mass

If $m(\mathbf{r})$ is linear mass density of a wire given by path $\mathbf{r}(t)$ $t \in [a, b]$. Let $\mathbf{R}_{cm} = (x_{cm}, y_{cm})$. Then

$$\begin{aligned} x_{cm} &= \frac{1}{M} \int x(t) m(\mathbf{r}(t)) |\mathbf{r}'(t)| dt \\ y_{cm} &= \frac{1}{M} \int y(t) m(\mathbf{r}(t)) |\mathbf{r}'(t)| dt \end{aligned}$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Example

Centre of Mass

If $m(\mathbf{r})$ is linear mass density of a wire given by path $\mathbf{r}(t) t \in [a, b]$. Let $\mathbf{R}_{cm} = (x_{cm}, y_{cm})$. Then

$$\begin{aligned} x_{cm} &= \frac{1}{M} \int x(t) m(\mathbf{r}(t)) |\mathbf{r}'(t)| dt \\ y_{cm} &= \frac{1}{M} \int y(t) m(\mathbf{r}(t)) |\mathbf{r}'(t)| dt \end{aligned}$$

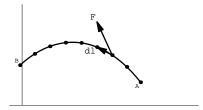
Or more compactly

$$\mathbf{R}_{cm} = \frac{1}{M} \int \mathbf{r}(t) m(\mathbf{r}(t)) \left| \mathbf{r}'(t) \right| dt$$

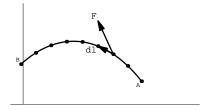
Thus line integral of a vector field can be defined in a straight-forward manner.

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

To compute the work done by a force along the particle trajectory, we need to sum terms like $\sum {\bf F} \cdot d{\bf r}$



To compute the work done by a force along the particle trajectory, we need to sum terms like $\sum {\bf F} \cdot d{\bf r}$



Definition

If $\mathbf{r}(t)$; $t \in [a, b]$ is a path in \mathbb{R}^m and \mathbf{F} is vector field over \mathbb{R}^m , then the line integral of \mathbf{F} over path \mathbf{r} is

$$\int \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt.$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Example

A force field is given by $\alpha \mathbf{r}/r^3$ where $\alpha > 0$ is constant and \mathbf{r} is position vector. Find the work done in moving a particle along a curve $\mathbf{r}(t) = (\cos t, \sin t); t \in [0, 2\pi].$

Given path is circular and closed (endpoint coincides with starting point). Along the path $r(t) = |\mathbf{r}(t)| = 1$.

$$\int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \alpha \int_{0}^{2\pi} \frac{(\cos t, \sin t) \cdot (-\sin t, \cos t)}{r(t)^3} dt = 0$$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

Example

A force field is given by $\alpha \mathbf{r}/r^3$ where $\alpha > 0$ is constant and \mathbf{r} is position vector. Find the work done in moving a particle along a curve $\mathbf{r}(t) = (\cos t, \sin t); t \in [0, 2\pi].$

Given path is circular and closed (endpoint coincides with starting point). Along the path $r(t) = |\mathbf{r}(t)| = 1$.

$$\int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \alpha \int_0^{2\pi} \frac{(\cos t, \sin t) \cdot (-\sin t, \cos t)}{r(t)^3} dt = 0$$

Example

Another field: $\alpha (-\hat{\mathbf{x}}y + \hat{\mathbf{y}}x)$. With the same path as above

$$\int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \alpha \int_0^{2\pi} (-\sin t, \cos t) \cdot (-\sin t, \cos t) dt = 2\pi\alpha$$

Surface Integrals

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Common Form: z = f(x, y) or x = f(y, z) etc.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

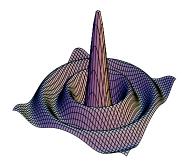
Examples

(a) z = c is a plane parallel to XY plane

Common Form: z = f(x, y) or x = f(y, z) etc.

Examples

(a)
$$z = c$$
 is a plane parallel to XY plane
(b) $z = \sin\left(\sqrt{x^2 + y^2}\right)/\sqrt{x^2 + y^2}$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

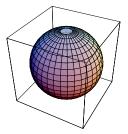
Another Form: f(x, y, z) = c

Examples

(a) Closed surfaces like sphere can be described by

$$z = \pm \sqrt{1 - x^2 - y^2}$$

and a more difficult boundary $x^2 + y^2 = 1$.



Alternatively one describe the entire sphere by

$$x^2 + y^2 + z^2 = 1$$

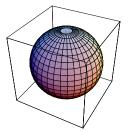
・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

A general form:
$$S = \{ \mathbf{S}(u, v) = (x(u, v), y(u, v), z(u, v)) | (u, v) \in D \subset \mathbb{R}^2 \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

 $\mathbf{S} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ where $\phi \in [0, 2\pi]$ and $\theta \in [0, \pi]$

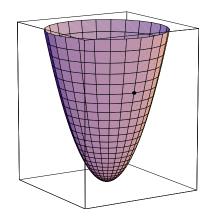


Parametric curves can be seen on the surface.

Elementary Area on a Surface

Consider a surface given by

 $\mathbf{S}(r,\phi) = (r\cos\phi, r\sin\phi, r^2)$ with $r \in [0,3]$ and $\phi \in [0,2\pi]$ Let $\mathbf{A} = \mathbf{S}(2,0) = (2,0,4)$



イロト イポト イヨト イヨト

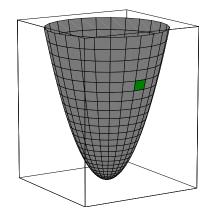
3

Elementary Area on a Surface

Consider a surface given by

 $\mathbf{S}(r,\phi) = \left(r\cos\phi, r\sin\phi, r^2\right)$

with $r \in [0,3]$ and $\phi \in [0,2\pi]$ Let $\mathbf{A} = \mathbf{S}(r = 2, \phi = 0) = (2,0,4)$ Elementary area is shown in green.



・ロト ・個ト ・モト ・モト

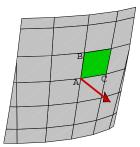
э

Elementary Area on a Surface

$$\mathbf{S}(r,\phi) = (r\cos\phi, r\sin\phi, r^2)$$

Let $\mathbf{A} = \mathbf{S}(2,0) = (2,0,4)$
Elementary area is shown in green.
 $\overrightarrow{AB} = (\partial \mathbf{S}/\partial r) dr$ and
 $\overrightarrow{AC} = (\partial \mathbf{S}/\partial \phi) d\phi$

Normal: $\mathbf{n} = (\partial \mathbf{S} / \partial r) \times (\partial \mathbf{S} / \partial \phi)$ Area: $dS = \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = |\mathbf{n}| dr d\phi$ Vector Area: $d\mathbf{S} = \hat{\mathbf{n}} dS$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Surface Integrals: Scalar Fields

Definition

Let S be a surface parametrized by S(u, v) with $(u, v) \in D$. Surface integral of a scalar field f is defined by

$$\int_{S} f \, dS = \int_{D} f \left(\mathbf{S}(u, v) \right) \, dS = \int_{D} f \left(\mathbf{S}(u, v) \right) \left| \frac{\partial \mathbf{S}}{\partial u} \times \frac{\partial \mathbf{S}}{\partial v} \right| \, du \, dv$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Surface Integrals: Scalar Fields

Example

Area of a hemisphere:

- ► $\mathbf{S} = (R \sin \theta \cos \phi, R \sin \theta \sin \phi, R \cos \theta)$ with $\theta \in [0, \pi/2]$ and $\phi \in [0, 2\pi]$
- $\partial \mathbf{S}/\partial \theta = (R \cos \theta \cos \phi, R \cos \theta \sin \phi, -R \sin \theta)$
- $\partial \mathbf{S}/\partial \phi = (-R \sin \theta \sin \phi, R \sin \theta \cos \phi, 0)$
- $\bullet \ \partial \mathbf{S}/\partial \theta \times \partial \mathbf{S}/\partial \phi = R^2 \left(\sin^2 \theta \cos \phi, \sin^2 \theta \sin \phi, \sin \theta \cos \theta \right)$

$$\bullet \ |\partial \mathbf{S}/\partial \theta \times \partial \mathbf{S}/\partial \phi| = R^2 \sin \theta$$

► The area of hemisphere

$$\int_{S} dS = \int_{0}^{\pi/2} \int_{0}^{2\pi} R^{2} \sin \theta \, d\theta \, d\phi$$
$$= 2\pi R^{2}$$

► How about $\mathbf{S} = (x, y, \sqrt{R^2 - x^2 - y^2})$ with $x^2 + y^2 \le R^2$? Complete at home.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Surface Integrals: Vector Fields

Consider a steady state flow of incompressible fluid, which can be described by a velocity field $\mathbf{v}(\mathbf{r})$. Amount of fluid passing through a surface of area dS is given by $\mathbf{v} \cdot \hat{\mathbf{n}} dS$. This motivates the definition of surface integrals of vector fields

Definition

Let S be a surface parametrized by S(u, v) with $(u, v) \in D$. Surface integral of a vector field F is defined by

$$\int_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{D} \mathbf{F} \left(\mathbf{S}(u, v) \right) \cdot \hat{\mathbf{n}} \, dS = \int_{D} f \left(\mathbf{S}(u, v) \right) \, \mathbf{n} \, du \, dv$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where $\mathbf{n} = \frac{\partial \mathbf{S}}{\partial u} \times \frac{\partial \mathbf{S}}{\partial v}$

Surface Integrals: Vector Fields

Example

Let $\mathbf{F}(\mathbf{r}) = \hat{\mathbf{r}}/r^2 = (x, y, z)/(x^2 + y^2 + z^2)^{3/2}$

- ▶ $\mathbf{S} = (R \sin \theta \cos \phi, R \sin \theta \sin \phi, R \cos \theta)$ with $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$
- $\partial \mathbf{S}/\partial \theta = (R \cos \theta \cos \phi, R \cos \theta \sin \phi, -R \sin \theta)$
- $\partial \mathbf{S} / \partial \phi = (-R \sin \theta \sin \phi, R \sin \theta \cos \phi, 0)$
- $\bullet \ \partial \mathbf{S}/\partial \theta \times \partial \mathbf{S}/\partial \phi = R^2 \left(\sin^2 \theta \cos \phi, \sin^2 \theta \sin \phi, \sin \theta \cos \theta \right) = R^2 \sin \theta \hat{\mathbf{n}} = R^2 \sin \theta \hat{\mathbf{S}}$

•
$$|\partial \mathbf{S}/\partial \theta \times \partial \mathbf{S}/\partial \phi| = R^2 \sin \theta$$

Surface integral is

$$\int_{S} \mathbf{F} \cdot \hat{\mathbf{n}} dS = \int_{0}^{\pi/2} \int_{0}^{2\pi} \left(\frac{\hat{\mathbf{S}}}{|\mathbf{S}|^{2}} \right) \cdot \left(\hat{\mathbf{S}} R^{2} \sin \theta \right) \, d\theta \, d\phi$$
$$= \int_{0}^{\pi/2} \int_{0}^{2\pi} \sin \theta \, d\theta \, d\phi = 4\pi.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Volume Integrals

A volume in 3D is simply a region in \mathbb{R}^3 . Thus volume integral of a scalar field f over a volume V is defined as

$$\int_V f(x, y, z) \, dx \, dy \, dz$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

In some sense, this theorem says, integration is an inverse of differentiation.

Theorem

If ϕ is a differentiable scalar field with continuous gradient $\nabla \phi$ on open connected set S in \mathbb{R}^3 and a, $b \in S$, then

$$\int_{a}^{b} \nabla \phi \cdot d\mathbf{r} = \phi(b) - \phi(a)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

over any smooth path joining a and b.

In some sense, this theorem says, integration is an inverse of differentiation.

Theorem

If ϕ is a differentiable scalar field with continuous gradient $\nabla \phi$ on open connected set S in \mathbb{R}^3 and a, $b \in S$, then

$$\int_{a}^{b} \nabla \phi \cdot d\mathbf{r} = \phi(b) - \phi(a)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

over any smooth path joining a and b.

• $\int_{a}^{b} \nabla \phi \cdot d\mathbf{r}$ is independent of path, which is not the case ordinarily • $\oint \nabla \phi \cdot d\mathbf{r} = 0$

Another fundamental theorem:

Theorem

Let **F** be a vector field over \mathbb{R}^3 such that its path integral between two points is independent of path. Define a scalar field ϕ such that

$$\phi(\mathbf{r}) = \int_{\mathbf{a}}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where **a** is some fixed point. Then $\nabla \phi = \mathbf{F}$.

• True if $\oint \mathbf{F} \cdot d\mathbf{r} = 0$ for all closed paths (loops)

Another fundamental theorem:

Theorem

Let **F** be a vector field over \mathbb{R}^3 such that its path integral between two points is independent of path. Define a scalar field ϕ such that

$$\phi(\mathbf{r}) = \int_{\mathbf{a}}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r}$$

where **a** is some fixed point. Then $\nabla \phi = \mathbf{F}$.

• True if $\oint \mathbf{F} \cdot d\mathbf{r} = 0$ for all closed paths (loops)

Since $\nabla \times (\nabla \phi) = 0$, for **F** to be equal to gradient of some potential field, atlest $\nabla \times \mathbf{F} = 0$. Is this condition sufficient? Yes if it is true over convex sets.

Check if $\mathbf{F} = yz\hat{\mathbf{x}} + xz\hat{\mathbf{y}} + xy\hat{\mathbf{z}}$ can be written as a gradient of a potential?

Check if $\mathbf{F} = yz\hat{\mathbf{x}} + xz\hat{\mathbf{y}} + xy\hat{\mathbf{z}}$ can be written as a gradient of a potential? if $\phi(x, y, z) = xyz + c$ then $\nabla \phi = \mathbf{F}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Fundamental Theorem For Divergence

This is simillar to the previous theorem.

Theorem

(Gauss Theorem) Let V be a solid region in \mathbb{R}^3 bounded by closed surface S. If F is continuously differentiable on V then

$$\int_{V} (\nabla \cdot \mathbf{F}) \, dv = \oint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

with $\hat{\mathbf{n}}$ is outer normal to S.

Inverse Square Field

Example

Let $\mathbf{F} = \hat{\mathbf{r}}/r^2$.

- ► $\nabla \cdot \mathbf{F}(\mathbf{r}) = 0$ if $\mathbf{r} \neq 0$.
- $\oint_S \mathbf{F} \cdot \hat{\mathbf{n}} dS = 4\pi$ if S is spherical surface centered at $\mathbf{r} = 0$.
- ► by Gauss theorem

$$\int_{V} \left(\nabla \cdot \mathbf{F} \right) dv = 4\pi$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 \blacktriangleright Contribution to right hand side integral is only at origin. Then $\nabla\cdot {\bf F}(0)=\infty$

Fundamental Theorem For Curl

Theorem

(Gauss Theorem) Let S be a smooth surface in \mathbb{R}^3 bounded by closed curve Γ . If **F** is continuously differentiable vector field, then

$$\int_{\mathcal{S}} \left(
abla imes \mathsf{F}
ight) \cdot d\mathsf{S} = \oint_{\mathsf{F}} \mathsf{F} \cdot d\mathsf{r}$$

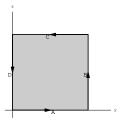
where direction of dS vector is determined by the right hand rule.

• $\int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ does not depend on the surface but only the boundary. • $\oint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0$

Fundamental Theorem For Curl

Example

Let $\mathbf{F} = (2xz + 3y^2)\hat{\mathbf{y}} + 4yz^2\hat{\mathbf{z}}$ and surface S be square plane in yz plane given by $\mathbf{S} = (0, y, z)$ with $0 \le y, z \le 1$.

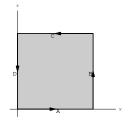


Fundamental Theorem For Curl

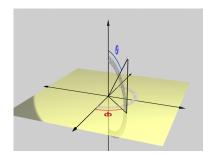
Example

Let $\mathbf{F} = (2xz + 3y^2)\hat{\mathbf{y}} + 4yz^2\hat{\mathbf{z}}$ and surface S be square plane in yz plane given by $\mathbf{S} = (0, y, z)$ with $0 \le y, z \le 1$.

- ► In Figure: $d\mathbf{S} = dydz\hat{\mathbf{x}}$ ► $\nabla \times \mathbf{F} = (4z^2 - 2x)\hat{\mathbf{x}} + 2z\hat{\mathbf{z}}$ ► $\int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 4/3$ ► $\int_{A} \mathbf{F} \cdot d\mathbf{r} = 1, \int_{B} \mathbf{F} \cdot d\mathbf{r} = 4/3, \int_{C} \mathbf{F} \cdot d\mathbf{r} = -1, \int_{D} \mathbf{F} \cdot d\mathbf{r} = 0$
- Stokes Theorem verified.



- position vector of P: r
- Cartesian coordinates: (x, y, z).
- length of \mathbf{r} : $r = |\mathbf{r}|$
- projection of r onto XY plane:
 OQ
- angle between z-axis and r: θ
- \blacktriangleright angle between x-axis and OQ: ϕ
- θ: zenith angle
- ϕ : azimuthal angle.
- spherical polar coordinates:
 ordered triplet (r, θ, φ)

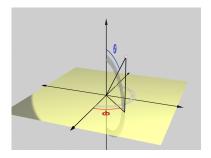


◆□▶
◆□▶
●●

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$$

$$\phi = \tan^{-1}\left(\frac{y}{x}\right).$$



$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$$

$$\phi = \tan^{-1}\left(\frac{y}{x}\right).$$

(ロ)、(型)、(E)、(E)、 E) のQで

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

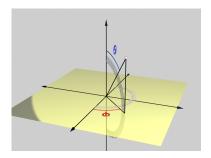
$$z = r \cos \theta$$

Ranges of Spherical polar coordinates:

- Clearly, $x, y, z \in (-\infty, \infty)$. $ightarrow r \in [0, \infty)$,
 - $\blacktriangleright \ \theta \in [0,\pi]$
 - φ ∈ [0, 2π).

Note:

- ▶ φ is undefined for points on z-axis
- both θ and ϕ are undefined for the origin.

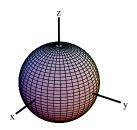


Coordinate Surfaces can be obtained by keeping one of the coordinates constant.

r = constant gives a sphericalsurface. Let c > 0.

 $S = \{(c, \theta, \phi) | \theta \in [0, \pi], \phi \in [0, 2\pi)\}$

is a sphere of radius c.

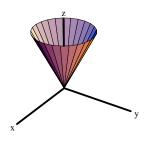


Coordinate Surfaces can be Obtained by keeping one of the coordinates constant.

 $\theta = \text{constant}$ gives a conical surface. Let c > 0.

 $S = \{(r, c, \phi) | r \in [0, \infty], \phi \in [0, 2\pi)\}$

is a cone of angle c.

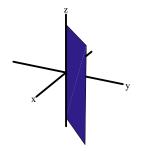


Coordinate Surfaces can be Obtained by keeping one of the coordinates constant.

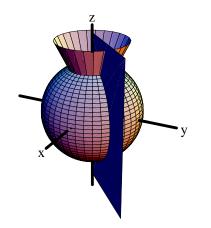
 $\phi = {
m constant}$ gives a planar surface. Let c > 0.

 $S = \{(r, \theta, c) \mid \theta \in [0, \pi], r \in [0, \infty)\}$

is a half plane.

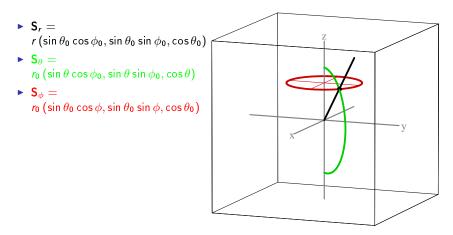


All surfaces:

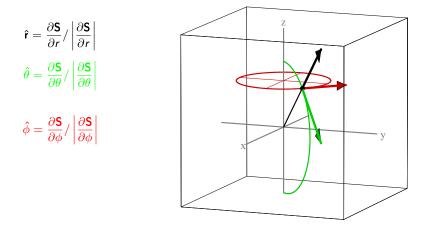


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Coordinate Curves: Keeping two coordinates fixed, we get a path. Let $P = (r_0, \theta_0, \phi_0)$



Coordinate unit vectors are unit tangent vectors to coordinate curves at a given point. Let $P = (r_0, \theta_0, \phi_0)$. If $\mathbf{S} = r(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Given, $\mathbf{S} = r \sin \theta \cos \phi \hat{\mathbf{x}} + r \sin \theta \sin \phi \hat{\mathbf{y}} + r \cos \theta \hat{\mathbf{z}}$, the Unit Vectors.

$$\hat{\mathbf{r}}(\theta,\phi) = \frac{\partial \mathbf{S}}{\partial r} / \left| \frac{\partial \mathbf{S}}{\partial r} \right| = \sin\theta \cos\phi \hat{\mathbf{x}} + \sin\theta \sin\phi \hat{\mathbf{y}} + \cos\theta \hat{\mathbf{z}}$$

$$\hat{\theta}(\theta,\phi) = \frac{\partial \mathbf{S}}{\partial \theta} / \left| \frac{\partial \mathbf{S}}{\partial \theta} \right| = \cos\theta \cos\phi \hat{\mathbf{x}} + \cos\theta \sin\phi \hat{\mathbf{y}} - \sin\theta \hat{\mathbf{z}}$$

$$\hat{\phi}(\theta,\phi) = \frac{\partial \mathbf{S}}{\partial \phi} / \left| \frac{\partial \mathbf{S}}{\partial \phi} \right| = -\sin\phi \hat{\mathbf{x}} + \cos\phi \hat{\mathbf{y}}$$

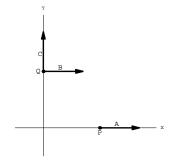
Unit Vectors depend on the location on θ and ϕ . Inverse Transformations are

$$\hat{\mathbf{x}} = \sin \theta \cos \phi \hat{\mathbf{r}} + \cos \theta \cos \phi \hat{\theta} - \sin \phi \hat{\phi} \hat{\mathbf{y}} = \sin \theta \sin \phi \hat{\mathbf{r}} + \cos \theta \sin \phi \hat{\theta} + \cos \phi \hat{\phi} \hat{\mathbf{z}} = \cos \theta \hat{\mathbf{r}} - \sin \theta \hat{\theta}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Usually, the unit vectors are written without reference to the location, but it is understood by context.

Point	Cartesian	Spherica			
Р	(1,0,0)	$(1, \pi/2, 0)$			
Q	(0,1,0)	$(1, \pi/2, \pi/2)$			
Now,					
$\hat{\mathbf{r}}(P)=\hat{\mathbf{r}}(heta=\pi/2,\phi=0)=\hat{\mathbf{x}}$ and					
$\hat{\phi}(P) = \hat{\phi}(\theta = \pi/2, \phi = 0) = \hat{\mathbf{y}}$					
But					
$\hat{\mathbf{r}}(Q) = \hat{\mathbf{r}}(heta = \pi/2, \phi = \pi/2) = \hat{\mathbf{y}}$ and					
$\hat{\phi}(Q) = \hat{\phi}(\theta = \pi/2, \phi = \pi/2) = -\hat{\mathbf{x}}$					
Vector	Cartesian	Spherical			
A	Ŷ	ŕ			
В	Ŷ	$-\hat{\phi}$			
С	ŷ	r			



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Cartesian unit vectors are constants and do not depend on position, but spherical unit vectors do!

$$\begin{aligned} \frac{\partial}{\partial \theta} \hat{\mathbf{r}} &= \hat{\theta} \quad \frac{\partial}{\partial \phi} \hat{\mathbf{r}} = \sin \theta \hat{\phi} \\ \frac{\partial}{\partial \theta} \hat{\theta} &= -\hat{\mathbf{r}} \quad \frac{\partial}{\partial \phi} \hat{\theta} = \cos \theta \hat{\phi} \\ \frac{\partial}{\partial \theta} \hat{\phi} &= 0 \quad \frac{\partial}{\partial \phi} \hat{\phi} = -\sin \theta \hat{\mathbf{r}} - \cos \theta \hat{\theta} \end{aligned}$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Position vector to any point $P = (r, \theta, \phi)$ is

$$\overrightarrow{OP} = \mathbf{r} = r\hat{\mathbf{r}}(\theta, \phi) = r\hat{\mathbf{r}}$$

Line Element:

$$d\mathbf{r} = dr \frac{\partial \mathbf{r}}{\partial r} + d\theta \frac{\partial \mathbf{r}}{\partial \theta} + d\phi \frac{\partial \mathbf{r}}{\partial \phi}$$
$$= dr \hat{\mathbf{r}} + d\theta r \frac{\partial \hat{\mathbf{f}}}{\partial \theta} + d\phi r \frac{\partial \hat{\mathbf{f}}}{\partial \phi}$$
$$= dr \hat{\mathbf{r}} + r d\theta \hat{\theta} + r \sin \theta d\phi \hat{\phi}$$

Surface Elements:

Surface	Shape	Normal	Elementary Area
r = const	Sphere	ŕ	$r^2 \sin heta d heta d\phi$
$\theta = {\sf const}$	Cone	$\hat{ heta}$	$r\sin hetadrd\phi$
$\phi = {\rm const}$	Half Plane	$\hat{\phi}$	r dr d heta

Volume Element: $r^2 \sin \theta \, dr \, d\theta \, d\phi$

Gradient:

$$\nabla f(P) = \hat{\mathbf{x}} \frac{\partial f}{\partial x} + \hat{\mathbf{y}} \frac{\partial f}{\partial y} + \hat{\mathbf{z}} \frac{\partial f}{\partial z}$$
$$= \hat{\mathbf{r}} \frac{\partial f}{\partial r} + \hat{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta} + \hat{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}$$

Divergence:

$$\nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 F_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta F_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(F_\phi \right)$$

...

Curl:

Laplacian:

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \left(F_{\phi} \right)$$