Physics I Lecture 4

Charudatt Kadolkar

IIT Guwahati

Kinetic Energy

Kinetic Energy of a particle in motion is defined as

$$KE = \frac{1}{2}mv^2$$

where \boldsymbol{v} is the instantaneous velocity of the particle. In 2D, clearly

$$\frac{1}{2}mv^2 = \frac{1}{2}m\mathbf{v}\cdot\mathbf{v}$$
$$= \frac{1}{2}m(v_x^2 + v_y^2)$$

Kinetic Energy changes as particle moves.

Example

A particle is moving on a circular path in horizontal plane. R = 1 m, m = 1 kg. $\mu = 0.3$. At t = 0, $\theta_0 = 0$, $\omega_0 = 9$ rad/sec. The retarding acceleration $\alpha = \mu g = 3$ rad/sec². Velocity is given by $R(\omega_0 - \alpha t) = (9 - 3t)$ m/s. Kinetic Energy is then

$$KE(t) = \frac{1}{2}m(v(t))^{2}$$
$$= \frac{1}{2}(9-3t)^{2} J$$

Kinetic energy diminishes.

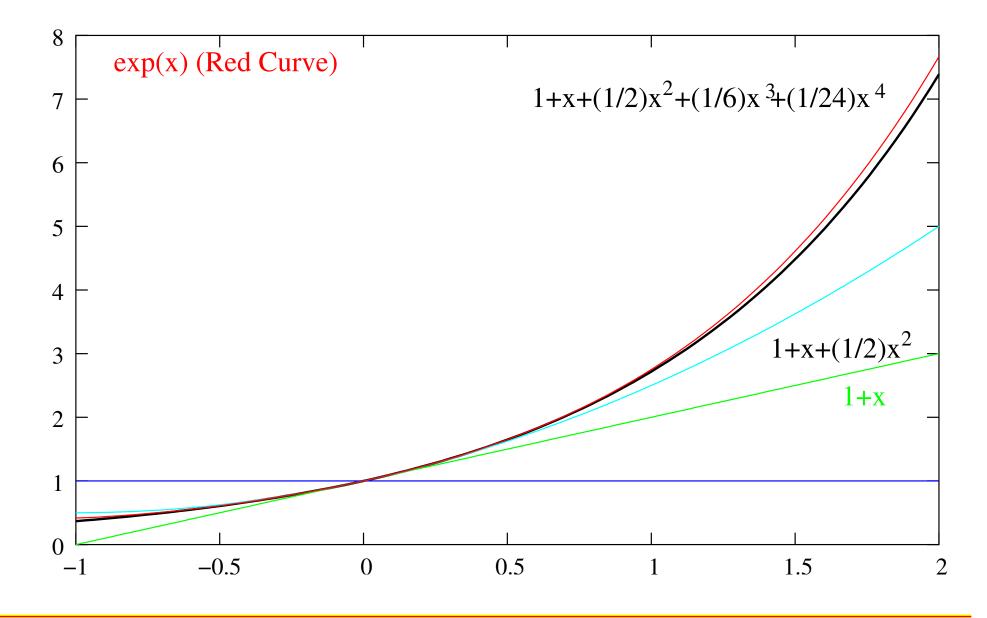
Taylor Series

Let f(x) be differentiable to any order. The Taylor theorem is

$$f(x + \delta x) = f(x) + f'(x)\delta x + \frac{1}{2!}f''(x)(\delta x)^2 + \dots + R_n(x)$$

- If the series is convergent, the remainder $R_n(x)$ vanishes as $n o \infty$
- The function f can be approximated in the vicinity of x by polynomial in δx if δx is sufficiently small.

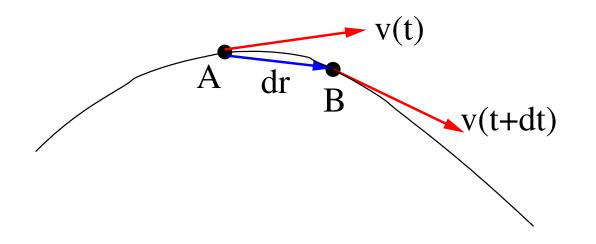
Taylor Series



Work

A particle moves a little distance $\Delta \mathbf{r}$ in time Δt under influence of force \mathbf{F} . Say its velocity changes from $\mathbf{v}(t)$ to $\mathbf{v}(t + \Delta t)$. Since

$$\mathbf{v}\left(t + \Delta t\right) = \mathbf{v}\left(t\right) + \frac{d\mathbf{v}}{dt}\Delta t + O\left(2\right)$$



Work

Then, the change in the kinetic energy is

$$\frac{1}{2}m\mathbf{v} (t + \Delta t) \cdot \mathbf{v} (t + \Delta t) - \frac{1}{2}m\mathbf{v} (t) \cdot \mathbf{v} (t)$$

$$= \frac{1}{2}m\frac{d\mathbf{v}}{dt} \cdot \mathbf{v} \Delta t + \frac{1}{2}m\mathbf{v} \cdot \frac{d\mathbf{v}}{dt} \Delta t + O(2)$$

$$= \mathbf{F} \cdot \Delta \mathbf{r}$$

The quantity $\mathbf{F}\cdot\Delta\mathbf{r}$ is called the work done by force \mathbf{F} on the particle.

Work

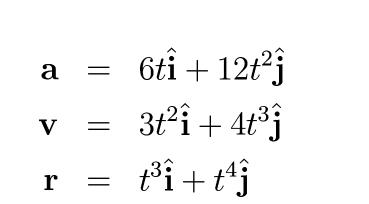
A

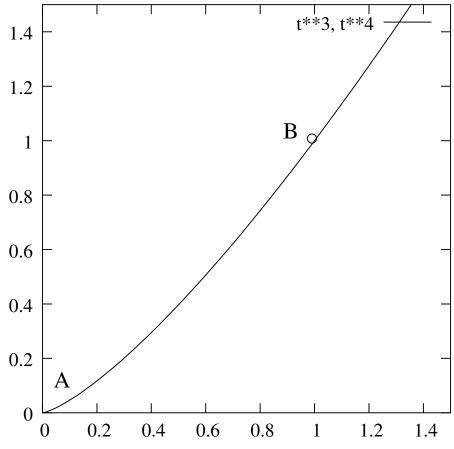
Work done by the force F in moving the particle from position A to position B along a given path is given by

$$W_{AB} = \sum_{A} \mathbf{F}_{i} \cdot \Delta \mathbf{r}_{i}$$
$$= \int_{A}^{B} \mathbf{F} \cdot d\mathbf{r}$$
$$\frac{dr_{A}}{dr_{A}} = \frac{dr_{A}}{dr_{A}} \mathbf{F}_{A}$$

Example

A particle (1 kg) starts from origin with zero velocity under the influence of force $\mathbf{F} = 6t\hat{\mathbf{i}} + 12t^2\hat{\mathbf{j}}$. (SI units.) Then acceleration, velocity and position are





Example Continued...

At time t, In time dt, suppose that the particle moves by $d\mathbf{r} = dx\hat{\mathbf{i}} + dy\hat{\mathbf{j}}$. Since $x = t^3$, clearly $dx = 3t^2dt$ and similarly $dy = 4t^3dt$.

$$d\mathbf{r} = \left(3t^2\hat{\mathbf{i}} + 4t^3\hat{\mathbf{j}}\right)dt$$

Then the work done by the force

$$W_{AB} = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{r}$$
$$= \int_{0}^{1} \left(18t^{3} + 48t^{5}\right) dt$$
$$= \frac{25}{2}$$

Properties of Work

If there are two forces, say F_1 and F_2 acting on a particle, net work done on a particle is, sum of work done by individual forces.

$$W_{AB} = \int_{A}^{B} (\mathbf{F}_{1} + \mathbf{F}_{2}) \cdot d\mathbf{r}$$
$$= \int_{A}^{B} \mathbf{F}_{1} \cdot d\mathbf{r} + \int_{A}^{B} \mathbf{F}_{2} \cdot d\mathbf{r}$$
$$= W_{AB}^{1} + W_{AB}^{2}$$

Properties of Work

If a particle is moved from A to B and then B to C. Then

$$W_{AC} = \int_{A}^{C} \mathbf{F} \cdot d\mathbf{r}$$
$$= \int_{A}^{B} \mathbf{F} \cdot d\mathbf{r} + \int_{B}^{C} \mathbf{F} \cdot d\mathbf{r}$$
$$= W_{AB} + W_{BC}$$

Work-Energy Theorem

In each time period Δt , the particle moves a distance $\Delta \mathbf{r}$. Then the change in Kinetic Energy ΔK is related to

$$\Delta K = \mathbf{F} \cdot \Delta \mathbf{r}$$

When particle moves from position A to B, all small contributions add to give

$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = \int_A^B \mathbf{F} \cdot d\mathbf{r}$$
$$= W_{AB}$$

Work-Energy Theorem

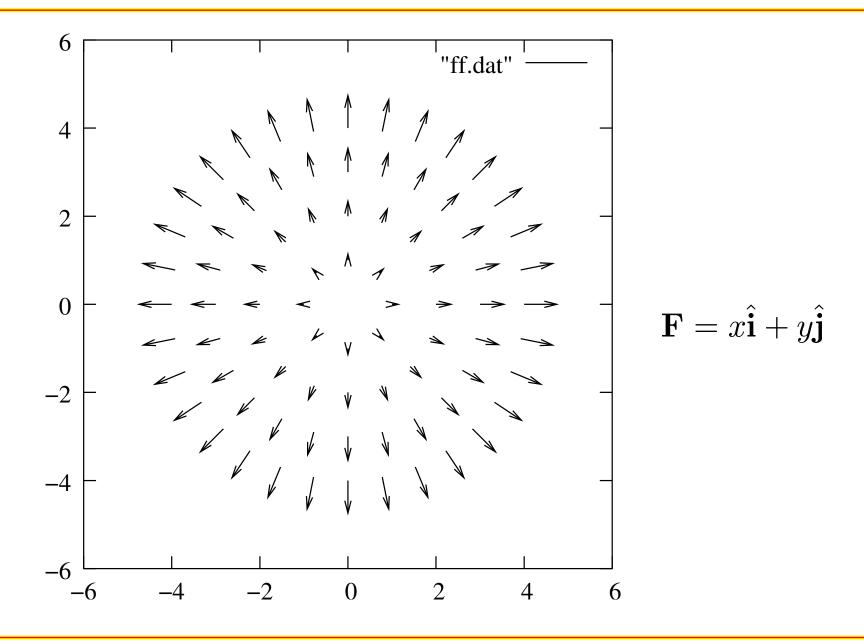
In case, there are several forces acting on the particle,

$$\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2 = \sum_i \int_A^B \mathbf{F}_i \cdot d\mathbf{r}$$
$$= \sum_i W_{AB}^i$$

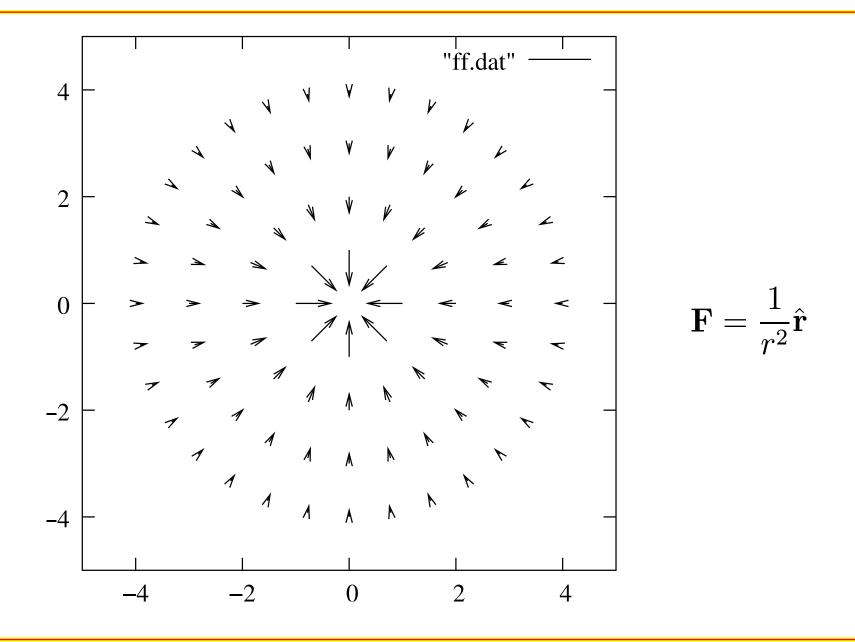
Force Fields

- If a force is a function of position vector only and is defined at all points of the space, then such forces will be called force fields.
- The force fields do not explicitly depend on time.
- The value of the force on a particle at a point doesnot depend on the history of the particle.

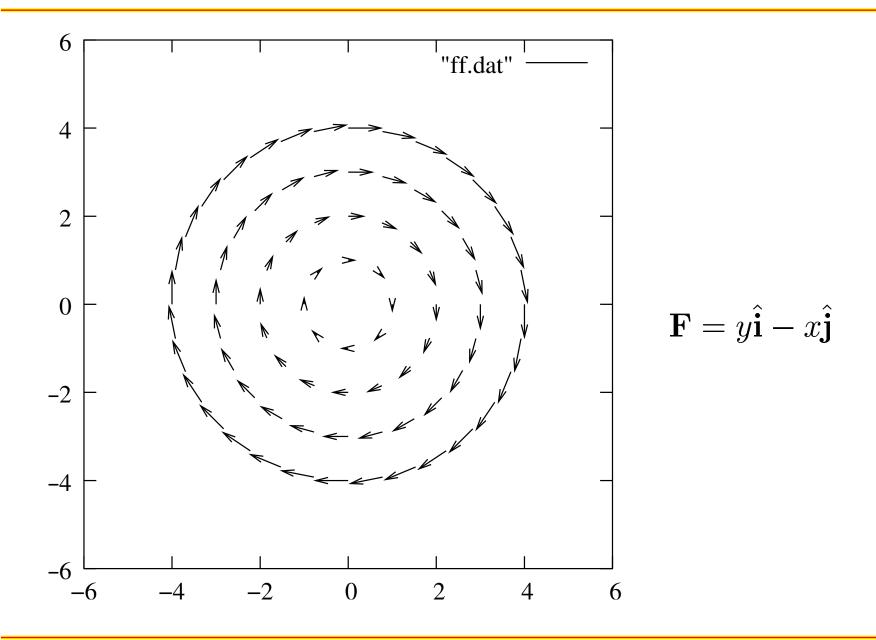
Force Fields: Examples



Force Fields: Examples



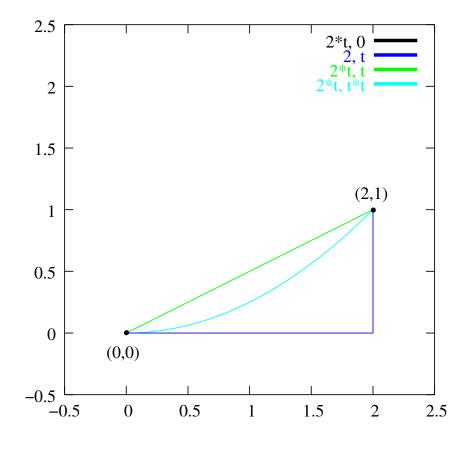
Force Fields: Examples



Work Done by Force Fields

Let $\mathbf{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$.

A particle moves from origin to (2,1). Some possible paths are shown in the figure.



Examples Continued...

Given
$$\mathbf{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$$
.
Path 1: $(0,0) \longrightarrow (2,0) \longrightarrow (2,1)$
Along $(0,0) \longrightarrow (2,0)$, $d\mathbf{r} = dx\hat{\mathbf{i}}$

$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^2 F_x dx = 2$$

Along $(2,0) \longrightarrow (2,1)$, $d\mathbf{r} = dy\hat{\mathbf{j}}$

$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^1 F_y dy = 1/2$$

Hence work done by ${f F}$ along path 1 is

$$W_{AB} = 2 + 1/2 = 2.5$$

Examples Continued...

Given $\mathbf{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$. Path 2: $y = \frac{1}{2}x$ Along path 2, dy = 1/2dx and $d\mathbf{r} = dx\hat{\mathbf{i}} + dy\hat{\mathbf{j}} = (\hat{\mathbf{i}} + 1/2\hat{\mathbf{j}})dx$

$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^2 \mathbf{F} \cdot (\hat{\mathbf{i}} + 1/2\hat{\mathbf{j}}) dx$$
$$= \int_0^2 (x + (x/2)(1/2)) dx$$
$$= 2.5$$

Hence work done by ${f F}$ along path 2 is

$$W_{AB} = 2.5$$

Examples Continued...

Given $\mathbf{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$. Path 3: $y = \frac{1}{4}x^2$ Along path 3, $dy = \frac{1}{2}xdx$ and $d\mathbf{r} = dx\hat{\mathbf{i}} + dy\hat{\mathbf{j}} = (\hat{\mathbf{i}} + (x/2)\hat{\mathbf{j}})dx$

$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^2 \mathbf{F} \cdot (\hat{\mathbf{i}} + (x/2)\hat{\mathbf{j}})dx$$
$$= \int_0^2 (x + (x^2/4)(x/2))dx$$
$$= 2.5$$

Hence work done by ${f F}$ along path 3 is

$$W_{AB} = 2.5$$

Another Example

Given
$$\mathbf{F} = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$$
.
Path 1: $(0,0) \longrightarrow (1,0) \longrightarrow (1,1)$
Along $(0,0) \longrightarrow (1,0)$, $d\mathbf{r} = dx\hat{\mathbf{i}}$ and $\mathbf{F} = -x\hat{\mathbf{j}}$

$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^1 F_x dx = 0$$

Along
$$(1,0) \longrightarrow (1,1)$$
, $d\mathbf{r} = dy\hat{\mathbf{j}}$ and $\mathbf{F} = y\hat{\mathbf{i}} - \hat{\mathbf{j}}$
$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^1 F_y dy = -1$$

Hence work done by ${\bf F}$ along path 1 is

$$W_{AB} = 0 - 1 = -1$$

Another Example

Given
$$\mathbf{F} = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$$
.
Path 2: $(0,0) \longrightarrow (0,1) \longrightarrow (1,1)$
Along $(0,0) \longrightarrow (0,1)$, $d\mathbf{r} = dy\hat{\mathbf{j}}$ and $\mathbf{F} = y\hat{\mathbf{i}}$
 $\int \mathbf{F} \cdot d\mathbf{r} = \int_0^1 F_y dy = 0$

Along
$$(0, 1) \longrightarrow (1, 1)$$
, $d\mathbf{r} = dx\hat{\mathbf{i}}$ and $\mathbf{F} = \hat{\mathbf{i}} - x\hat{\mathbf{j}}$
$$\int \mathbf{F} \cdot d\mathbf{r} = \int_0^1 F_x dx = 1$$

Hence work done by ${\bf F}$ along path 1 is

$$W_{AB} = 0 + 1 = 1$$

Work done along path 1 and path 2 are different!