Physics I

Lecture 14

Charudatt Kadolkar

IIT Guwahati

Simultaneity

Why did we think that the ordering of events was absolute? A 500 m train passing a station with speed 100 m/s (360 Km/hr). The driver honks twice in succession at the interval of 5 s. The station-master says the two honks were separated by 500 m. The driver and guard of signal the station-master at the same time by their watches. According to the station master, the guard signalled first by a time gap of

$$t_2 - t_1 = \gamma \frac{v}{c^2} (x'_2 - x'_1)$$

= $5.6 \times 10^{-13} s$

Time Dilation

Charged pions ($m_{\pi^+} = 273m_e$) decay into muons ($m_{\mu^+} = 273m_e$) and muon-neutrino.

$$\pi^+ \to \mu^+ + \nu_\mu$$

- Half life of pions is $\tau_0 = 1.77 \times 10^{-8}$ sec measured in lab when pions were at rest.
- **beam of pions with speed** v = 0.99c
- intensity falls to half at a distance of 39 m.
- **9** But $v\tau_0 = 5.3$ m!
- In the second secon
- $\textbf{ Sorrect distance } v\tau = 39 \text{ m}$

Time Dilation: Cosmic Rays

Addition of Velocities

Consider usual S and S' frames. A particle has a velocity u' in x' direction wrt S'. What is its velocity as seen by S? In S' frame u' = dx'/dt' and in S frame u = dx/dtBy Lorentz Transformation

$$x = \gamma(x' + vt')$$

$$t = \gamma(t' + (v/c^2)x')$$

Then,

$$dx = \gamma(dx' + vdt')$$

$$dt = \gamma(dt' + (v/c^2)dx')$$

and

$$u = \frac{dx}{dt} = \frac{(dx' + vdt')}{(dt' + (v/c^2)dx')}$$

Physics I – p. 5/

Addition of Velocities

$$u_x = \frac{u'_x + v}{1 + u'v/c^2}$$

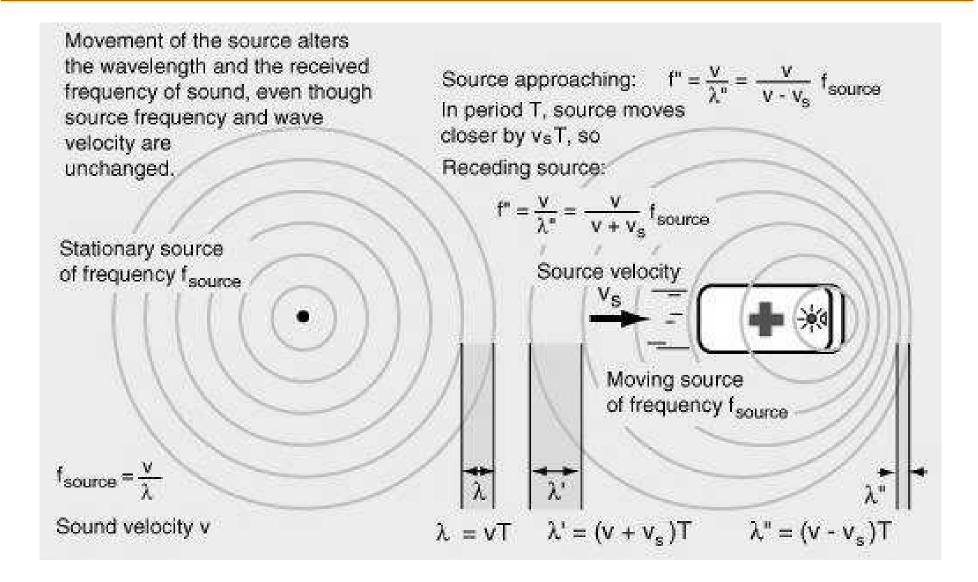
$$u' < c \text{ and } v < c \Rightarrow u < c.$$

$$u' = c \text{ or } v = c \Rightarrow u = c.$$

- consistent with constancy of speed of light.
- velocities in y direction are also affected

$$u_y = \frac{u_y'}{\gamma(1 + u'v/c^2)}$$

Doppler Effect



Doppler Effect

- A microphone is stationery in the air
- \checkmark A speaker is moving towards the microphone with speed v.
- The frequency of the speaker is ν . It emits wave-crests every $T = 1/\nu$ sec.
- First crest arrives at microphone $T_1 = L/c$, (c speed of sound).
- Second crest arrives at microphone $T_2 = T + (L vT)/c$
- Frequency of detection $\nu_d = 1/(T_2 T_1) = c\nu/(c v)$ and is greater than nu.

Doppler Effect

- A speaker is stationery in the air
- \checkmark A microphone is moving towards the speaker with speed v.
- The frequency of the speaker is ν . It emits wave-crests every $T = 1/\nu$ sec.
- First crest arrives at microphone $T_1 = L/c$, (c speed of sound).
- Second crest arrives at microphone $T_2 = T + (L vT_d)/c$
- Frequency of detection $\nu_d = 1/(T_2 T_1) = \nu(c+v)/c$ and is greater than nu.

Relativistic Doppler Effect

- \checkmark A observer sees a light source is moving towards him with speed v.
- The frequency of the light is ν_0 when stationery. It emits wave-crests every $T_0 = 1/\nu$ sec when stationery.
- Observer sees the wave-crests emitted ever γT_0 sec.
- First crest arrives at microphone $T_1 = L/c$, (c speed of light).
- Second crest arrives at microphone $T_2 = \gamma T + (L v\gamma T)/c$
- Frequency of detection

$$\nu_d = \nu \sqrt{\frac{c+v}{c-v}}$$

and is greater than nu.

Relativity and Newton's Laws

Classical dynamical laws are not invariant in relativity.

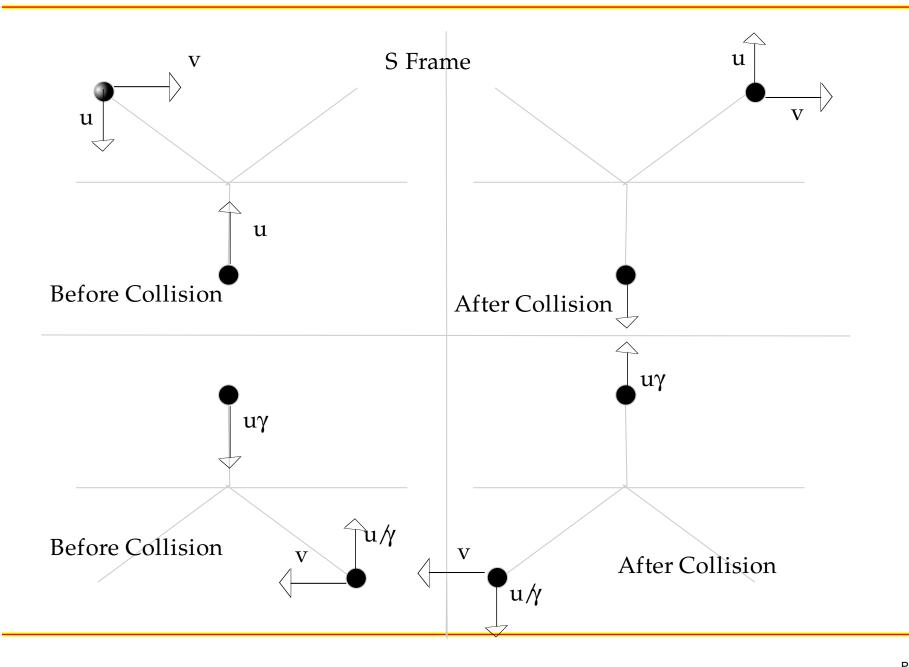
Momentum is defined as P = mv for a particle moving with speed v.

Momentum conservation law states that

If there is no net external force on a system, net momentum of the system is co

We can consider a collision problem for this.

Collision Problem



Collision Problem

S Frame

OTTAIL	l	I	
	Before	After	
u_{Ay}	-u	u	
u_{By}	u	-u	
Net Momentum	0	0	
S' Frame			
	Before		After
u_{Ay}	$-\gamma u$		γu
u_{By}	u/γ		$-u\gamma$
Net Momentum	$mu(-\gamma + 1/\gamma)$) $mu(\gamma - 1/\gamma)$

Relativistic Dynamics

- Why do we have to modify Newtonian Mechanics?
- Modify Newtonian Mechanics? Which Laws?
- F = dp/dt ?
- Conservation Laws! Momentum and Energy.

Momentum

Momentum is defined as

$$P = \frac{mu}{\sqrt{1 - u^2/c^2}}$$

- Momentum Conservation Law is valid in all inertial frames.(Verify in tutorial)
- If we interpret this as mass \times speed, then mass becomes

$$m = \frac{m_0}{\sqrt{1 - u^2/c^2}}$$

where m_0 is called rest mass.

In 1907, Bucherer confirmed the dependence of mass on speed of electron.

Kinetic Energy

A particle which was at rest is accelerated to a speed u. We will define the kinetic energy of the particle as

$$K = \int_{a}^{b} \frac{dp}{dt} \cdot dr$$
$$= \int_{a}^{b} \frac{d}{dt} \left(\frac{m_{0}u}{\sqrt{1 - u^{2}/c^{2}}} \right) \cdot u dt$$
$$= \frac{m_{0}c^{2}}{\sqrt{1 - u^{2}/c^{2}}} - m_{0}c^{2}$$
$$= mc^{2} - m_{0}c^{2}$$

Total Energy

Here Einstein boldly proposes that the total energy of a particle is kinetic energy + rest mass energy which is given by m_0c^2 and the famous formula

$$E = K + m_0 c^2 = mc^2$$