Nanophotonics: an overview

B R Boruah Department of Physics Gauhati University Email: brboruah@gauhati.ac.in

Contents

- Introduction to nanophotonics
 - Broad classification
- Nanoscale confinement of light
- Nanoscale confinement of photoprocesses
- Nanoscale confinement of matter
- Conclusion

Introduction

Nanophotonics :

- Nanoscale (of the order of 10⁻⁹ m) optical science and technology
- Properties of light at nanoscale
- Optical processes and interactions between light and matter at nanoscale

Broad areas of nanophotonics

Nanoscale confinement of light

• Far field optical microscopy:

- Focal volume is diffraction limited : not suitable for nanoscale imaging
- Resolution : minimum separation between two points in the sample that can be resolved in the image (>200nm)
- However stimulated emission depletion (STED) microscopy can break the diffraction barrier

Nanoscale confinement of light

• Near field optical microscopy:

- Illumination volume is not limited by diffraction effect, rather by the aperture diameter
- □ Resolution: ~ aperture diameter
- □ Transmitted light \propto (aperture area)⁻¹ : limit in maximum resolution

@Physics, Gauhati University

Field enhancement microscopy:

Electric field enhancement near the tip: ~ 1000 times
Light detected is mainly from a small region surrounding the metal tip
Metal tip diameter ~ 10 nm : available resolution

Second harmonic generation microscopy

Second harmonic generation

@Physics, Gauhati University

Photonic crystal

- Period arrangement of dielectric materials (say permittivity ε_0 and ε)
- For lattice constant = $\lambda/2$, light of wavelength λ is prohibited inside the crystal due to Bragg scattering
 - Photonic bandgap
- Bandgap in visible range (λ =400 nm to 700 nm)
 - Lattice constant between 200 nm to 350 nm)

Photon localisation in photonic crystals

- A gap (defect) in the photonic crystal traps light
- A line defect acts as a waveguide
 - Lossless bend around tight corners
- Towards all optical integrated circuits

Supercontinuum in photonic crystal fibre

- Properties of photonic crystal confines light to the narrow core
- high intensity of light in the core throughout the length
 - Nonlinear phenomena become prominent
 - Wavelength of an incident laser gets converted into infinite number of smaller components, effectively giving rise to a coherent white light beam (supercontinuum)

Nanoscale confinement of photoprocesses

- D : donor fluorescent molecule
- A : acceptor fluorescent molecule
- → : fluorescence resonance energy transfer (FRET)
- Energy transfer from D to A when they are close by
 - Fluorescence from A
- No energy transfer from D to A when they are far apart
 - No fluorescence from A

Single virus detection

- Particle size dependent pico newton order attractive force towards the focal point
- For smaller particles no attractive force : detector signal vs time is symmetric
- For larger particles strong attractive force : detector signal vs time is asymmetric

Single virus detection

- Torque on ellipsoidal particle near focus : aligning it parallel to the optic axis
 - Change in scattering
 - Modulation in differential signal from the quadrant detector
- No torque on spherical particles

Nanoscale confinement of matter

Qdots of the same material but of different sizes (source: www.lbl.gov/Science)

- 3D confinement of coulomb-correlated electron-hole pairs
- Properties between semiconductors and discrete molecules
- Size dependent emission wavelength
 - Smaller Qdot emits towards blue
 - Larger Qdot emits towards red
- Application
 - As a fluorescent probe
 - In quantum computers

Nanostructured doping

- Er³⁺ doped glass: used as lasing and amplifying medium
- Nanostructured Er³⁺ doped glass: Er³⁺ ion is surrounded by low frequency phonon lattice
 - Reduction in nonradiative processes
 - Longer lifetime of the 1550 nm transition

Nanocomposites

- N-methylpyridinium (ASPI) : interface phase
 - Lasing tunability : ~590-610 nm
- Rhodamine 6G : polymer phase
 - Lasing tunability : ~560-572 nm
- Nanocomposite
 - Lasing tunability : 560-610 nm

Conclusion

- Nanophotonics is introduced as the optical science and technology at nanoscale
- Three broad categories of nanophotonics
 - Nanoscale confinement of light, matter and photoprocesses
- A few examples of each category are discussed
- There are ample scopes for further theoretical and experimental works in this area