Course Number & Title: PH111xH: Introductory Classical Mechanics

L-T-P-C: 2-1-0-3

Course Content/ Syllabus:

Kinematics: Position, velocity, acceleration vectors in rectilinear, plane polar, cylindrical and spherical polar coordinate systems.

Laws of Mechanics: Newton's laws of motion, dynamics using polar coordinates; forces and equations of motion, simple harmonic motion.

Momentum and Energy: System of particles, center of mass, center of mass coordinates, conservation of momentum; Work-energy theorem, conservation laws; non-conservative forces.

Angular Momentum: Angular momentum about fixed axis of rotation, dynamics of fixed axis rotation, work-energy theorem and rotational motion.

Motion in non-inertial frame: Galileo-Newton law of inertia, motion of an object in a linearly accelerated frame of reference; motion of an object in a rotating frame of reference.

Oscillations: Small oscillations in a bound system, stability, normal modes, damped oscillations, driven damped oscillations, resonance.

Books	
Texts:	
1.	D. Kleppner and R. Kolenkow, An Introduction to Mechanics, 2 nd Ed.
	Cambridge University Press (2014).
2.	Charles Kittel, Walter D. Knight, Malvin A. Ruderman, A. Carl Helmholz,
	Burton J. Moyer, Mechanics (Berkeley Physics Course, Vol. 1), McGraw-
	Hill Book Company (1973)
3.	John Taylor, Classical mechanics, (University Science Books, 2005).

NB: x is digit between (0-9)

Week No	Topics: Subtopics	Tentative number of Lectures (in hours)
1	Kinematics : Position, velocity, acceleration vectors in rectilinear, plane polar, cylindrical and spherical polar coordinate systems.	3
2	Laws of Mechanics : Newton's laws of motion, dynamics using polar coordinates; forces and equations of motion, simple harmonic motion.	2
3	Momentum and Energy : System of particles, center of mass, center of mass coordinates, conservation of momentum; Work-	2

	energy theorem, conservation laws; non-conservative forces.	
4	Angular Momentum: Angular momentum about fixed axis of rotation, dynamics of fixed axis rotation, work-energy theorem and rotational motion.	3
5	Motion in non-inertial frame : Galileo-Newton law of inertia, motion of an object in a linearly accelerated frame of reference; motion of an object in a rotating frame of reference.	2
6	Oscillations: Small oscillations in a bound system, stability, normal modes, damped oscillations, driven damped oscillations, resonance	2
	Total Number of Lectures =	14

Course Number & Title: PH131xH: Modern Physics
L-T-P-C: 2-1-0-3

Course Content/ Syllabus:

Theory of Relativity: Postulates of special theory of relativity; The Michelson-Morley experiment; Time dilation; Doppler effect; Length contraction; Velocity addition; Mass and energy; Energy and Momentum;.

Particle properties of waves: Electromagnetic waves; Blackbody radiation; Photoelectric effect; X-rays; X-ray diffraction; Compton effect; Pair production;.

Wave properties of particles: De Broglie waves; Describing a matter wave; Phase and Group velocities; Particle diffraction; Particle in a box; Uncertainty principle; Concept of wave function. **Structure of Atom**: Rutherford scattering; Bohr's Atomic model; Energy levels and spectra; Correspondence principle; Nuclear mass effect on spectral lines; Sommerfeld's model, Atomic excitation; Basic mechanism of Laser.

Books	
Texts:	
1.	Arthur Beiser, Concepts of Modern Physics, McGraw Hill, Eigth Ed.
	(2024).
References:	
1	Robert Eisberg and Robert Resnick, Quantum Physics, Wiley India Private
	Ltd. (2006).
2	J.R. Taylor, C.D. Zafiratos and M.A. Dubson, Modern Physics: For
	Scientists and Engineers, PHI Learning Pvt. Ltd,2 nd Ed. (2009).
3	R. Resnick, Introduction to Special Relativity, John Wiley, Singapore
	(2000).

SI. No.(or week No. or Module no.)	Topics: Subtopics	Tentative number of Lectures (in hours)
1	Theory of Relativity: Postulates of special theory of relativity; The Michelson-Morley experiment; Time dilation; Doppler effect; Length contraction; Velocity addition; Mass and energy; Energy and Momentum	6
2	Particle properties of waves: Electromagnetic waves; Blackbody radiation; Photoelectric effect; X-rays; X-ray diffraction; Compton effect; Pair production	2
3	Wave properties of particles: De Broglie waves; Describing a matter wave; Phase and Group velocities; Particle diffraction; Particle in a box; Uncertainty principle; Concept of wave function.	3
4	Structure of Atom : Rutherford scattering; Bohr's Atomic model; Energy levels and spectra; Correspondence principle; Nuclear mass effect on spectral lines; Sommerfeld's model, Atomic excitation; Basic mechanism of Laser.	3
	Total Number of Lectures =	14

Course Number & Title: PH121xH Introductory electromagnetics

L-T-P-C: 2-1-0-3

Course Content/ Syllabus:

Electrostatics: Gradient, divergence, and curl in curvilinear coordinates; Gauss law in integral form (review) and differential form, calculation of Divergence of E; Curl of E, Scalar potential, potential due to charges and Laplace/Poisson equation; Statements of Uniqueness theorems, boundary value problems and method of images; Dielectrics, Polarization, bound charges (review) and boundary conditions.

Magnetism: Review of Biot-Savart's law, Lorentz Force. Divergence and curl of magnetic field, vector potential, and forces on magnetic dipoles; Magnetic materials and magnetic fields in the matter (magnetostatic case), bound currents

Steady currents and electromagnetic fields: Review of Ohm's law, Faraday's law, Lenz's law and Electromotive force; Ampere's law and Displacement current.; Maxwell's equations.

Books (In case of compulsory courses, please give it as "Text books" and "Reference books". Otherwise give it as "References" The books should be compatible to the syllabus.

Texts:

1.	Purcell, Edward M. Electricity and magnetism. Cambridge university press, 2013
2.	Griffiths, David J. <i>Introduction to electrodynamics</i> . Cambridge University Press, 2023.
Refere	ences:
1	Verma, H.C. Classical Electromagnetism, Bharati Bhawan, 2022.
2	Feynman, Richard P. <i>The Feynman Lectures on Physics</i> , Volume 2, Pearson, 2013.

SI. No.(or	Topics: Subtopics	Tentative
week No. or		number of
Module no.)		Lectures (in
		hours)
1	Electrostatics: , Gradient, divergence, and curl in curvilinear coordinates; Gauss law in integral form (review) and differential form, calculation of Divergence of E; Curl of E, Scalar potential, potential due to charges and Laplace/Poisson equation; Statements of Uniqueness theorems, boundary value problems and method of images; Dielectrics, Polarization, bound charges (review) and boundary conditions.	7
2	Magnetism: Review of Biot-Savart's law, Lorentz Force. Divergence and curl of magnetic field, vector potential, and forces on magnetic dipoles; Magnetic materials and magnetic fields in the matter (magnetostatic case), bound currents	4
3	Steady currents and electromagnetic fields: Review of Ohm's law, Faraday's law, Lenz's law and Electromotive force; Ampere's law and Displacement current.; Maxwell's equations	3
	Total Number of Lectures =	14

Course Number & Title: PH141xH: Introductory Quantum Mechanics

L-T-P-C: 2-1-0-3

Course Content/ Syllabus:

Experimental Basis of Quantum Mechanics: Double slit experiment and Stern-Gerlach experiment (basic ideas); De Broglie's hypothesis (matter wave dual nature); Wave-particle duality

Postulates of Quantum Mechanics: Wave function and wave packets; Position and momentum operators, Uncertainty principle, Commutators; Schrödinger equation, Probabilities, probability current densities, wave function normalization; Expectation values, eigenvalues and eigenfunctions.

Applications of Schrödinger Equation : Infinite potential well, energy quantization; Finite square well, potential step and potential barrier, quantum tunnelling; Harmonic			
Oscillator, energy eigenvalues and eigenfunctions.			
Books	S		
Texts	:		
1.			
	R. Eisberg and R. Resnick, <i>Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles</i> , 2 nd Ed. Wiley, 2006.		
2.	David J. Griffiths, Introduction to Quantum Mechanics, 3rd Edition, 2018.		
References:			
1	Ajit Kumar, Fundamentals of Quantum Mechanics, Cambridge university press, 2018.		

SI. No.(or week No. or Module no.)	Topics: Subtopics	Number of Lectures (in hours)
1	Experimental Basis of Quantum Mechanics: Double slit experiment and Stern-Gerlach experiment (basic ideas); De Broglie's hypothesis (matter wave dual nature); Wave-particle duality	2
2	Postulates of Quantum Mechanics: Wave function and wave packets; Position and momentum operators, Uncertainty principle, Commutators; Schrödinger equation, Probabilities, probability current densities, wave function normalization; Expectation values, eigenvalues and eigenfunctions.	7
3	Applications of Schrödinger Equation: Infinite potential well, energy quantization; Finite square well, potential step and potential barrier, quantum tunnelling; Harmonic Oscillator, energy eigenvalues and eigenfunctions	5
	Total Number of Lectures =	14

Course Number & Title: PH110xL/PH120xL: Physics Lab L-T-P-C: 0-0-3-3 Course Content/ Syllabus: List of Experiments: Determination of g by Compound pendulum, Surface tension of a liquid by Jaeger's Method, Magnetic field along the axis of a coil, Resonance and Q factor of a LCR circuit, Hall Effect in an extrinsic semiconductor, Newton's ring, Plane Transmission Grating, Linear Air track, Error analysis. **Books** Texts: 1. Taylor, John R. "Error analysis." Univ. Science Books, Sausalito, California 20 (1997).2. Ghatak, Ajoy. Contemporary Optics. Springer Science & Business Media, 2012 3. Mahajan, A. and Rangawala, A. Electricity and Magnetism. Mc. Gras Hill

Mathur D.S. Elements of Properties of Matter. S. Chand (2010).

(2017).

4