Course Number & Title: PH1100L: General Physics Lab-1

L-T-P-C: 0-0-3-3

Course Content/ Syllabus:

List of Experiments: Determination of g by Compound pendulum, Surface tension of a liquid by Jaeger's Method, Magnetic field along the axis of a coil, Resonance and Q factor of a LCR circuit, Hall Effect in an extrinsic semiconductor, Newton's ring, Plane Transmission Grating, Linear Air track, Error analysis.

Books	
Texts:	
1.	
	Taylor, John R. "Error analysis." Univ. Science Books, Sausalito, California 20 (1997).
2.	
	Ghatak, Ajoy. Contemporary Optics. Springer Science & Business Media, 2012
3.	
	Mahajan, A. and Rangawala, A. <i>Electricity and Magnetism</i> . Mc. Gras Hill (2017).
4.	
	Mathur D.S. Elements of Properties of Matter. S. Chand (2010).

Course Number & Title: PH 1130: Classical Mechanics

L-T-P-C: 2-1-0-6

Course Content/ Syllabus:

Review of kinematics: Position, velocity, acceleration vectors in rectilinear, plane polar, cylindrical and spherical polar coordinate systems. Review of Newtonian mechanics in rectilinear coordinate system; Motion in plane polar coordinates; forces and equations of motion, simple harmonic motion. System of particles, center of mass, center of mass coordinates, conservation of momentum; Work-energy theorem, conservation laws; non-conservative forces. Rigid body dynamics: Angular momentum and fixed axis of rotation; dynamics of fixed axis rotation, work-energy theorem and rotational motion; Moment of Inertia tensor; Euler angles; Euler equations. Lagrangian and Hamiltonian mechanics: Degrees of freedom, Constraints and constraint forces, D'Alembert's principle, Generalized coordinates, Principle of least action; Lagrange's equations of motion, Generalized momentum, Ignorable coordinates; symmetry and conservation theorems; Concept of phase space, Hamilton's equations of motion and applications, Poisson Brackets. Central Force problem: Central force as a one-body problem; planetary motion; Equation of orbit. **Oscillations:** Small oscillations in a bound system, stability, normal modes, damped oscillations, driven damped oscillations, resonance. Special Theory of Relativity: Postulates of special theory of relativity; Lorentz transformation; Time dilation; Doppler effect; Length contraction; Twin paradox; Relativistic addition of velocities; Mass and energy; Energy Momentum relationships.

ylor, Classical mechanics (University Science Books, 2005)		
opner and R. Kolenkow, An Introduction to Mechanics, 2nd Ed. Cambride University		
014).		
References:		
t, Robert. Introduction to special relativity. John Wiley & Sons, 1991.		
ein H. Classical mechanics. Pearson Education India; 2011		
andau and E.M. Lifshitz, <i>Mechanics</i> , Elsevier (2005).		
e R and Puranik P, Introduction to Classical Mechanics, (McGraw Hill Education,		
, 2017).		

Sl. No.(or week No. or Module no.)	Topics: Subtopics	Tentative number of Lectures (in hours)
1	Review of kinematics : Position, velocity, acceleration vectors in rectilinear, plane polar, cylindrical and spherical polar coordinate systems. Review of Newtonian mechanics in rectilinear coordinate system; Motion in plane polar coordinates; forces and equations of motion, simple harmonic motion. System of particles, center of mass, center of mass coordinates, conservation of momentum; Work-energy theorem, conservation laws; non-conservative forces.	3
2	Rigid body dynamics : Angular momentum and fixed axis of rotation; dynamics of fixed axis rotation, work-energy theorem and rotational motion; Moment of Inertia tensor; Euler angles; Euler equations	3
3	Lagrangian and Hamiltonian mechanics: Degrees of freedom, Constraints and constraint forces, D'Alembert's principle, Generalized coordinates, Principle of least action; Lagrange's equations of motion, Generalized momentum, Ignorable coordinates; symmetry and conservation theorems; Concept of phase space, Hamilton's equations of motion and applications,	11

	Poisson Brackets.	
4	Central Force problem : Central force as a one-body problem; planetary motion; Equation of orbit.	3
5	Oscillations: Small oscillations in a bound system, stability, normal modes, damped oscillations, driven damped oscillations, resonance.	3
6	Special Theory of Relativity : Postulates of special theory of relativity; Lorentz transformation; Time dilation; Doppler effect; Length contraction; Twin paradox; Relativistic addition of velocities; Mass and energy; Energy Momentum relationships.	5
	Total Number of Lectures =	28

Course Number & Title: PH1230: Electrodynamics

L-T-P-C: 3-1-0-8

Course Content/ Syllabus:

Essential mathematical tools: Review of Stokes and Gauss' divergence theorem, Curvilinear coordinates, Gradient, divergence, and curl in curvilinear coordinates; Dirac Delta function. Electrostatics: Gauss law in integral and differential forms; Scalar potential, potential due to charge distributions, and Laplace/Poisson equation; Work and energy; Uniqueness theorem, Dirichlet and Neumann boundary conditions; Image charge problems, point charge in front of an infinite grounded conducting plane, point charge in front of a grounded conducting sphere and conducting infinite plane. Solutions of Laplace Equation: Separating variables in Cartesian, spherical, and cylindrical coordinates and general solution (Legendre polynomials, Bessel functions). Multipole expansion. **Dielectrics:** Polarization, Surface and volume-bound charges; Gauss' law in dielectrics, Displacement vector; Boundary value problem with linear dielectric; Image charge problem with dielectric; Forces on dielectrics; Magnetism: Review of Biot-Savart's law, Lorentz Force. vector potential, and forces on magnetic dipoles; Magnetic materials, Bound currents, Boundary value problems. Magnetic field in conductors. **Steady current and electromagnetic fields:** Review of Ohm's law, Faraday's law, Lenz's law, and Electromotive force; Ampere's law and Displacement current; Maxwell's equations in vacuum and media;

transformation and gauge conditions; Poynting vector and Poynting theorem; Plane waves, Polarization of EM field; Propagation in nonconducting and conducting media. Reflection and refraction with normal and oblique incidence, Fresnel relations, Brewster's angle. **Dipole radiation:** Radiation, dipole radiation from oscillating electric dipole, Retarded potential, Intensity distribution of radiating dipole.

Books	
Texts:	
1.	
	Griffiths, David J. <i>Introduction to electrodynamics</i> . Cambridge University Press, 2023.
2.	Sadiku MN, Kulkarni SV. Principles of electromagnetics. New Delhi, India: oxford university Press; 2015 Sep

Sl. No.(or week No. or Module no.)	Topics: Subtopics	Tentative number of Lectures (in hours)
1	Essential mathematical tools: Review of Stokes and Gauss' divergence theorem, Curvilinear coordinates, Gradient, divergence, and curl in curvilinear coordinates; Dirac Delta function.	3
2	Electrostatics: Gauss law in integral and differential forms; Scalar potential, potential due to charge distributions, and Laplace/Poisson equation; Work and energy; Uniqueness theorem, Dirichlet and Neumann boundary conditions; Image charge problems, point charge in front of an infinite grounded conducting plane, point charge in front of a grounded conducting sphere and conducting infinite plane	7
3	Solutions of Laplace Equation: Separating variables in Cartesian, spherical, and cylindrical coordinates and general solution (Legendre polynomials, Bessel functions). Multipole expansion.	5
4	Dielectrics: Polarization, Surface and volume-bound charges; Gauss' law in dielectrics, Displacement vector; Boundary value problem with linear dielectric; Image	11

	charge problem with dielectric; Forces on dielectrics;	
	Magnetism: Review of Biot-Savart's law, Lorentz Force.	
	vector potential, and forces on magnetic dipoles;	
	Magnetic materials, Bound currents, Boundary value	
	problems. Magnetic field in conductors.	
5	Steady current and electromagnetic fields: Review of	10
	Ohm's law, Faraday's law, Lenz's law, and Electromotive	
	force; Ampere's law and Displacement current;	
	Maxwell's equations in vacuum and media; Gauge	
	transformation and gauge conditions; Poynting vector and	
	Poynting theorem; Plane waves, Polarization of EM field;	
	Propagation in nonconducting and conducting media.	
6	Reflection and refraction with normal and oblique	4
	incidence, Fresnel relations, Brewster's angle.	
7	Dipole radiation: Radiation, dipole radiation	2
	from oscillating electric dipole, Retarded potential,	
	Intensity distribution of radiating dipole	
	Total Number of Lectures =	42