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Prefix-recognizable graphs

Theorem
Let G be a graph, the following statements are equivalent:

• G is defined by relations of the form (U
a
→ V ) · IdW

• G is the prefix rewriting graph of a recognizable rewriting
system (+ regular restriction)

• G is the transition graph of a pushdown automaton with
ε-transitions

• G is the result of unfolding a finite graph and applying a
regular substitution



Prefix-recognizable graphs (2)

Properties

• Reachability relations and sets of reachable vertices are
effectively computable

• The languages of prefix recognizable graphs are the
context-free languages

• The monadic second order theory of any prefix-recognizable
graph is decidable



Extensions and variants

• More general rewriting systems
(term rewriting systems)

• More general computation models
(higher-order pushdown automata)

• More powerful or iterated transformations

• More general finitely presented binary relations
(automatic or rational relations)
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Term rewriting

• Term: expression over function symbols and variables

f (g(x), f (k, y))
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fg

x yk

a(b(c(x))))
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• Term rewriting system: set R of pairs of terms (l , r)

• Ground rewriting:

l → r for all (l , r) ∈ R



Ground term rewriting graphs

Definition
A graph G is a (recognizable) ground rewriting graph if each of its
set of edges is the ground rewriting relation of a (recognizable)
ground term rewriting system R .

Example

The two-dimensional grid

Properties

• Reachability relations and sets of reachable vertices are
effectively computable

• The first order theory with reachability of any ground
rewriting graph is decidable

• The languages of ground rewriting graphs are . . . ?



Extensions and variants

• More general rewriting systems
(term rewriting systems)

• More general computation models
(higher-order pushdown automata)

• More powerful or iterated transformations

• More general finitely presented binary relations
(automatic or rational relations)



Higher-order pushdown stacks

Definition
Higher-order stack:

• level 1: sequence of stack symbols (ordinary stack)

• level n: (non-empty) sequence of level n − 1 stacks

Example
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Level 1 store s Level 2 store
with a on top with s on top



Higher-order pushdown automata

Definition
Higher-order (level n) pushdown automaton:
pushdown automaton + higher order operations

• pushk : duplicate top-most level k stack

• popk : destroy top-most level k stack

Example

Automaton accepting the language {ww | w ∈ N∗}

Interesting abstract model for higher-order recursive sequential
programs (e.g. ML, Scheme, . . . )



Higher-order prefix-recognizable graphs

Theorem
Let G be a graph, the following statements are equivalent:

• G is the transition graph of a level n pushdown automaton

• G is the result of applying (unfolding + substitution) n times
to a finite graph

Properties

• Reachability relations and sets of reachable vertices are
effectively computable

• The languages of these graphs are the IO languages

• The monadic second order theory of any such graph is
decidable



Extensions and variants

• More general rewriting systems
(term rewriting systems)

• More general computation models
(higher-order pushdown automata)

• More powerful or iterated transformations

• More general finitely presented binary relations
(automatic or rational relations)



A graph

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a

b

c

a

b

b
c

a

b

b

b
c

a

b

b

b

b
c



Rational relations

Definition
A binary relation over words is called rational if it is the set of pairs
accepted by a finite transducer

Example

q0 q1

A/A

ε/A

B/B

accepts the relation {(AnBm,An+1Bm) | m, n ≥ 0}



Rational graphs

Definition
A rational graph is a graph whose edge relations are rational

Properties

• Reachability relations and sets of reachable vertices are
non-recursive

• The languages of rational graphs are the context-sensitive
languages

• There exist some rational graphs whose first order theory is
undecidable



A hierarchy of infinite automata
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Appendix:
languages of rational graphs (proof)



Subfamilies of rational graphs

• Synchronized transducer: all runs of the form

q0

a1/b1
→ . . .

an/bn

→
ε/bn+1
→ . . .

ε/bn+k

→ qf

or q0

a1/b1
→ . . .

an/bn

→
an+1/ε
→ . . .

an+k/ε
→ qf

• Automatic graphs: rational graphs defined by synchronized
transducers

• Synchronous transducer: no ε appearing on any transition

• Synchronous graphs: rational graphs defined by letter-to-letter
transducers



Languages of rational graphs

• Existing proof uses the Penttonen normal form for
context-sensitive grammars

• Technically non-trivial
• No link to complexity
• No notion of determinism

• Our contributions:
• New syntactical proof using tiling systems
• Characterization of languages for sub-families of graphs
• Characterization of graphs for sub-families of languages



Tiling systems

Definition
A framed tiling system ∆ is a finite set of 2× 2 pictures (tiles)
with a border symbol #

• Picture: rectangular array of symbols

• Picture language of ∆: set of all framed pictures with only
tiles in ∆

• Word language of ∆: set of all first row contents in the
picture language of ∆

Proposition [Latteux&Simplot97]

The languages of tiling systems are precisely the context-sensitive
languages



A tiling system
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Proof technique

Proof in three steps:

1 Trace-equivalence of rational and synchronous graphs

2 Simulation of a synchronous graph by a tiling systems

3 Simulation of a tiling system by a synchronous graph

Rational Synchronous Tiling system
1

2

3

1 relies on elimination of ε in transducers
2 and 3 rely on identifying sequences of vertices with pictures



Rational → synchronous graph

Proof idea

• Allow all transducers states to idle (ε/ε loops)

• Materialize ε as a fresh symbol # (→ synchronous graph)

• Define I ′ and F ′ as the shuffle of i and F by #∗



Rational → synchronous graph
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Rational → synchronous graph
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Rational → synchronous graph
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Synchronous graph ↔ tiling system

Proof idea

• Identify graph vertices and picture columns

• Establish a bijection between accepting paths and pictures

• Deduce a bijection between synchronous graphs and tiling
systems

v0
a1→ v1

a2→ · · ·
an→ vn ←→

a1 · · · an

v0 v1 · · · vn


