More general families of infinite graphs Antoine Meyer

Formal Methods Update 2006 IIT Guwahati

Prefix-recognizable graphs

Theorem

Let G be a graph, the following statements are equivalent:

- G is defined by relations of the form $(U \xrightarrow{a} V) \cdot \operatorname{Id}_W$
- *G* is the prefix rewriting graph of a recognizable rewriting system (+ regular restriction)
- *G* is the transition graph of a pushdown automaton with ε -transitions
- *G* is the result of unfolding a finite graph and applying a regular substitution

Prefix-recognizable graphs (2)

Properties

- Reachability relations and sets of reachable vertices are effectively computable
- The languages of prefix recognizable graphs are the context-free languages
- The monadic second order theory of any prefix-recognizable graph is decidable

Extensions and variants

- More general rewriting systems (term rewriting systems)
- More general computation models (higher-order pushdown automata)
- More powerful or iterated transformations
- More general finitely presented binary relations (automatic or rational relations)

Extensions and variants

- More general rewriting systems (term rewriting systems)
- More general computation models (higher-order pushdown automata)
- More powerful or iterated transformations
- More general finitely presented binary relations (automatic or rational relations)

Term rewriting

• Term: expression over function symbols and variables

$$f(g(x), f(k, y)) \qquad \begin{array}{ccc} f & & | \\ / \setminus & & b \\ g & f & | \\ | & / \setminus & c \\ x & k & y & | \\ \end{array} \qquad a(b(c(x))))$$

- Term rewriting system: set R of pairs of terms (I, r)
- Ground rewriting:

$$for all (l, r) \in R$$

Ground term rewriting graphs

Definition

A graph G is a (recognizable) ground rewriting graph if each of its set of edges is the ground rewriting relation of a (recognizable) ground term rewriting system R.

Example

The two-dimensional grid

Properties

- Reachability relations and sets of reachable vertices are effectively computable
- The first order theory with reachability of any ground rewriting graph is decidable
- The languages of ground rewriting graphs are ...?

Extensions and variants

- More general rewriting systems (term rewriting systems)
- More general computation models (higher-order pushdown automata)
- More powerful or iterated transformations
- More general finitely presented binary relations (automatic or rational relations)

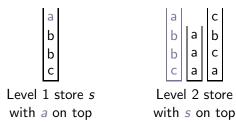
Higher-order pushdown stacks

Definition

Higher-order stack:

- level 1: sequence of stack symbols (ordinary stack)
- level *n*: (non-empty) sequence of level n-1 stacks

Example



Higher-order pushdown automata

Definition

Higher-order (level n) pushdown automaton: pushdown automaton + higher order operations

- push_k: duplicate top-most level k stack
- pop_k: destroy top-most level k stack

Example

Automaton accepting the language $\{ww \mid w \in N^*\}$

Interesting abstract model for higher-order recursive sequential programs (e.g. ML, Scheme, \dots)

Higher-order prefix-recognizable graphs

Theorem

Let G be a graph, the following statements are equivalent:

- G is the transition graph of a level n pushdown automaton
- *G* is the result of applying (unfolding + substitution) n times to a finite graph

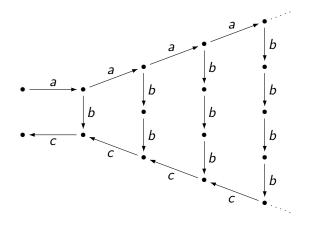
Properties

- Reachability relations and sets of reachable vertices are effectively computable
- The languages of these graphs are the IO languages
- The monadic second order theory of any such graph is decidable

Extensions and variants

- More general rewriting systems (term rewriting systems)
- More general computation models (higher-order pushdown automata)
- More powerful or iterated transformations
- More general finitely presented binary relations (automatic or rational relations)

A graph

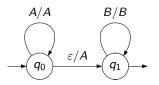


Rational relations

Definition

A binary relation over words is called rational if it is the set of pairs accepted by a finite transducer

Example



accepts the relation $\{(A^n B^m, A^{n+1} B^m) \mid m, n \ge 0\}$

Rational graphs

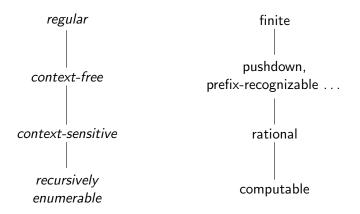
Definition

A rational graph is a graph whose edge relations are rational

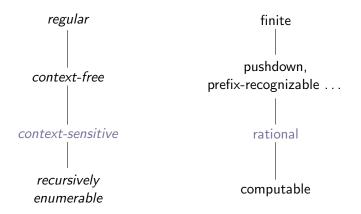
Properties

- Reachability relations and sets of reachable vertices are non-recursive
- The languages of rational graphs are the context-sensitive languages
- There exist some rational graphs whose first order theory is *un*decidable

A hierarchy of infinite automata



A hierarchy of infinite automata



Appendix: languages of rational graphs (proof)

Subfamilies of rational graphs

Synchronized transducer: all runs of the form

- Automatic graphs: rational graphs defined by synchronized transducers
- Synchronous transducer: no ε appearing on any transition
- Synchronous graphs: rational graphs defined by letter-to-letter transducers

Languages of rational graphs

- Existing proof uses the Penttonen normal form for context-sensitive grammars
 - Technically non-trivial
 - No link to complexity
 - No notion of determinism
- Our contributions:
 - New syntactical proof using tiling systems
 - Characterization of languages for sub-families of graphs
 - Characterization of graphs for sub-families of languages

Tiling systems

Definition

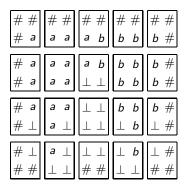
A framed tiling system Δ is a finite set of 2 \times 2 pictures (tiles) with a border symbol #

- Picture: rectangular array of symbols
- Picture language of $\Delta:$ set of all framed pictures with only tiles in Δ
- Word language of Δ: set of all *first row contents* in the picture language of Δ

Proposition [Latteux&Simplot97]

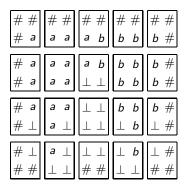
The languages of tiling systems are precisely the context-sensitive languages

A tiling system



############	ŧ
<i># a a a a a b b b b #</i>	ŧ
$\# a a a a \perp \perp b b b b \#$	ŧ
$\# a a a \perp \perp \perp \perp b b b \#$	ŧ
$\# a a \perp \perp \perp \perp \perp \perp b b \#$	ŧ
$\# a \bot \bot \bot \bot \bot \bot \bot \bot b \#$	ŧ
$\# \bot +$	ŧ
############	ŧ

A tiling system



#	#	#	#	#	#	#	#	#	#	#	#
#	а	а	а	а	а	b	b	b	b	b	#
#	а	а	а	а	\bot	\bot	b	b	b	b	#
#	а	а	а	\bot	\perp	\perp	\perp	b	b	b	#
#	а	а	\bot	\bot	\bot		\bot	\bot	Ь	b	#
#	а	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	b	#
#		\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	\bot	#
#	#	#	#	#	#	#	#	#	#	#	#

Proof technique

Proof in three steps:

- 1 Trace-equivalence of rational and synchronous graphs
- 2 Simulation of a synchronous graph by a tiling systems
- **8** Simulation of a tiling system by a synchronous graph

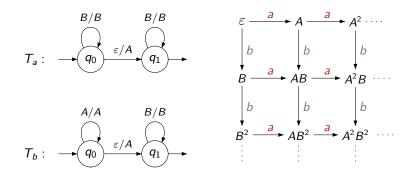


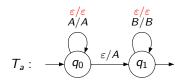
(1) relies on elimination of ε in transducers

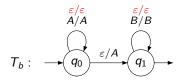
2 and 3 rely on identifying sequences of vertices with pictures

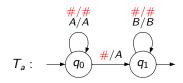
Proof idea

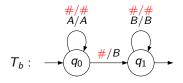
- Allow all transducers states to idle (ε/ε loops)
- Materialize ε as a fresh symbol # (\rightarrow synchronous graph)
- Define I' and F' as the shuffle of i and F by $\#^*$

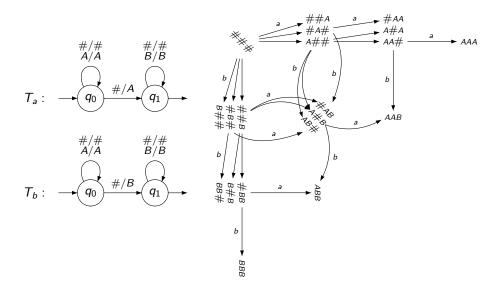












Synchronous graph \leftrightarrow tiling system

Proof idea

- Identify graph vertices and picture columns
- Establish a bijection between accepting paths and pictures
- Deduce a bijection between synchronous graphs and tiling systems

