An introduction to infinite graphs Antoine Meyer

Formal Methods Update 2006 IIT Guwahati

- Foreword: approach and current issues
- 2 Pushdown graphs: characterizations
- 8 Reachability in pushdown graphs
- **4** Beyond pushdown graphs

An introduction to infinite graphs Antoine Meyer

Formal Methods Update 2006 IIT Guwahati

1 Foreword: approach and current issues

- 2 Pushdown graphs: characterizations
- 8 Reachability in pushdown graphs
- ④ Beyond pushdown graphs

A few current issues

- Successful technique: *finite* models (circuits, protocols)
 - Adopted by the industry (Intel, IBM, Motorola ...)
- New issues: *software* verification
 - Difficulties: data, dynamic evolution ...
 - Specific constraints: reliability, limited resources ...
 - Coexistence of several aspects ("complex" systems) *Ex: embedded systems*
- \Rightarrow Need for more elaborate models and algorithms

The modelling problem

- Wide range of models
 - Mostly from language, automata and rewriting theory
- Tradeoff btw. expressiveness and decidability/complexity

Finite automataTuring machinesmost restricted \longleftrightarrow most expressivemostly decidablemostly undecidable

- Abstraction/approximation usually required
 - Infinite domains, unbounded recursion, time, etc.

A few simple examples

Configuration: one (unbounded) integer counter Operations: increment (*i*)

$$0 \xrightarrow{i} 1 \xrightarrow{i} 2 \xrightarrow{i} 3 \xrightarrow{i} 4 \xrightarrow{i} 5 \xrightarrow{i} 6 \cdots$$

A few simple examples

Configuration: one (unbounded) integer counter Operations: increment (i) and reset (r)

A few simple examples

Configuration: two (unbounded) integer counters Operations: increments (i_1, i_2)

Structural study of infinite graphs

General objective

Systematic structural study of families of infinite graphs

- Infinite graphs induced by classical computation models
- Alternative characterizations of each family
- Focus on closure properties, logics, trace languages and structural and algorithmic properties
- Abstraction from concrete systems ensures reusability

This talk

Overview through the example of pushdown graphs (references: mostly Büchi, Caucal, Courcelle, Muller & Schupp)

An introduction to infinite graphs Antoine Meyer

Formal Methods Update 2006 IIT Guwahati

Foreword: approach and current issues
 Pushdown graphs: characterizations
 Reachability in pushdown graphs
 Beyond pushdown graphs

Characterization 1: A pushdown system transition graph

Pushdown systems

A pushdown system consists in

- Control states $p,q,\ldots\in Q$
- Stack symbols $A, B, C, \ldots \in \Gamma$
- Label alphabet $a, b, c, \ldots \in \Sigma$
- Transitions of the form

$$p, A \stackrel{a}{\rightarrow} q, \begin{cases} \mathsf{push}B\\\mathsf{pop} \end{cases}$$

Pushdown systems

A pushdown system consists in

- Control states $p, q, \ldots \in Q$
- Stack symbols $A, B, C, \ldots \in \Gamma$
- Label alphabet $a, b, c, \ldots \in \Sigma$
- Transitions of the form

(global variables, registers)

- (local vars., program counter)
- (program interactions)

$$p, A \stackrel{a}{\rightarrow} q, egin{cases} \mathsf{push}B & (\mathsf{procedure call}) \ \mathsf{pop} & (\mathsf{procedure return}) \end{cases}$$

Classical abstract model for recursive sequential programs

A configuration is a pair (p, s) with

- p a control state
- *s* a sequence of stack symbols (top first)

$$p, \emptyset \xrightarrow{a} p$$
, push A
 $p, A \xrightarrow{a} p$, push A
 $p, A \xrightarrow{b} q$, pop
 $q, A \xrightarrow{b} q$, pop

A configuration is a pair (p, s) with

- p a control state
- s a sequence of stack symbols (top first)

Example

p, ∅

 $p, \emptyset \xrightarrow{a} p, \text{push } A$ $p, A \xrightarrow{a} p, \text{push } A$ $p, A \xrightarrow{b} q, \text{pop}$ $q, A \xrightarrow{b} q, \text{pop}$

A configuration is a pair (p, s) with

- p a control state
- s a sequence of stack symbols (top first)

Example

$$p, \emptyset \xrightarrow{a} p, A$$

 $p, \emptyset \xrightarrow{a} p, \text{push } A$ $p, A \xrightarrow{a} p, \text{push } A$ $p, A \xrightarrow{b} q, \text{pop}$ $q, A \xrightarrow{b} q, \text{pop}$

A configuration is a pair (p, s) with

- p a control state
- s a sequence of stack symbols (top first)

Example $p, \emptyset \xrightarrow{a} p, push A$ $p, A \xrightarrow{a} p, push A$ $p, A \xrightarrow{b} q, pop$ $q, A \xrightarrow{b} q, pop$

A configuration is a pair (p, s) with

- p a control state
- s a sequence of stack symbols (top first)

A configuration is a pair (p, s) with

- p a control state
- s a sequence of stack symbols (top first)

A configuration is a pair (p, s) with

- p a control state
- s a sequence of stack symbols (top first)

Example $p, \emptyset \xrightarrow{a} p, p, q \xrightarrow{a} p, A \xrightarrow{a} p, AA$ $p, \emptyset \xrightarrow{a} p, push A$ $p, A \xrightarrow{a} p, push A$ $p, A \xrightarrow{b} q, pop$ $q, A \xrightarrow{b} q, pop$

A configuration is a pair (p, s) with

- p a control state
- s a sequence of stack symbols (top first)

Such graphs are called pushdown graphs

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

$$A \xrightarrow{a} AA$$
$$AA \xrightarrow{a} B$$
$$BA \xrightarrow{b} B$$

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

Example

 $A \xrightarrow{a} AA$ $AA \xrightarrow{a} B$ $BA \xrightarrow{b} B$

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

Example $A \xrightarrow{a} AA$ $A \xrightarrow{a} AA$

 $AA \xrightarrow{a} B$ $BA \xrightarrow{b} B$

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

- Rewriting system: set of rules $I \xrightarrow{a} r$
- Prefix rewriting: $Iu \xrightarrow{a} ru$ whenever $I \xrightarrow{a} r$

Note: not all vertices are considered, only vertices of the form $\{A, B\}A^*$ (regular restriction) Characterization 2: Building a graph with a grammar

• Consider the distance of any vertex to vertex r:

• Build a finite graph grammar using this decomposition

• Consider the distance of any vertex to vertex r:

• Build a finite graph grammar using this decomposition

$$1 \bullet A \Rightarrow 1 \bullet a \bullet B$$

• Consider the distance of any vertex to vertex r:

· Build a finite graph grammar using this decomposition

• Consider the distance of any vertex to vertex r:

· Build a finite graph grammar using this decomposition

• Consider the distance of any vertex to vertex r:

· Build a finite graph grammar using this decomposition

Characterization 3: Transforming a simpler graph

Idea

Starting from a family of generators, characterize new graphs by applying transformations

Present case

- Generator: a finite graph
- First transformation: unfold from a vertex,
- Second transformation: substitute paths with edges

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

$$\stackrel{y}{\leftarrow} \stackrel{x}{\leftarrow} \stackrel{y}{\rightarrow}$$
 becomes $\stackrel{b}{\rightarrow}$

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

$$\stackrel{y}{\leftarrow} \stackrel{x}{\leftarrow} \stackrel{y}{\rightarrow} \text{ becomes} \stackrel{b}{\rightarrow} \stackrel{x}{\rightarrow} \text{ becomes} \stackrel{a}{\rightarrow}$$

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

$$\begin{array}{ccc} \stackrel{y}{\leftarrow} \stackrel{x}{\leftarrow} \stackrel{y}{\rightarrow} & \text{becomes} \stackrel{b}{\rightarrow} \\ \stackrel{x}{\rightarrow} & \text{becomes} \stackrel{a}{\rightarrow} \\ \stackrel{y}{\rightarrow} & \text{becomes} \stackrel{b}{\rightarrow} \end{array}$$

- Start with a finite graph
- Unfold it from its root
- Substitute paths with edges

$$\begin{array}{ccc} \stackrel{y}{\leftarrow} \stackrel{x}{\leftarrow} \stackrel{y}{\rightarrow} & \text{becomes} \stackrel{b}{\rightarrow} \\ \stackrel{x}{\rightarrow} & \text{becomes} \stackrel{a}{\rightarrow} \\ \stackrel{y}{\rightarrow} & \text{becomes} \stackrel{b}{\rightarrow} \end{array}$$

Equivalence result

Theorem

Let G be a connected graph of finite degree, the following statements are equivalent (up to isomorphism):

- *G* is the transition graph of a pushdown automaton
- G is the prefix rewriting graph of a finite rewriting system
- G has a finite decomposition by distance from any vertex
- G is generated by a deterministic graph grammar
- *G* is the result of unfolding a finite graph and applying a finite substitution

An introduction to infinite graphs Antoine Meyer

Formal Methods Update 2006 IIT Guwahati

1 Foreword: approach and current issues

2 Pushdown graphs: characterizations

8 Reachability in pushdown graphs

④ Beyond pushdown graphs

Reachability analysis

- Fundamental questions for most applications
- Several variants:

- Examples :
 - "Is it possible to reach a deadlock state?"
 - "Is it always possible to reach a target state?"
 - "Is every request eventually answered?"
- Path languages of pushdown graphs: context-free languages

Reachability in pushdown graphs (1)

Notations

- For every symbol A, we write
 - \bar{A} the action of removing a prefix A ("pop" A)
 - A the action of adding a prefix A ("push" A) This notation is extended to words: $\overline{Au} = \overline{A}\overline{u}$ Example: $\overline{AB} = \overline{A}\overline{B}$
- The mirror of a word u is written \tilde{u} (with $Au = \tilde{u}A$ and $\tilde{\varepsilon} = \varepsilon$) Example: AB = BA = BA

Reachability in pushdown graphs (2)

Representation of rules

- The effect of rewrite rule $u \xrightarrow{a} v$ can be written $\overline{u}\widetilde{v}$
- The effect of any rewriting system R can be represented by the regular language { uv i u → v ∈ R}*
- Conversely, any word $ar{u}\widetilde{v}$ can be seen as a rewrite rule u
 ightarrow v
- Any regular language L ⊆ N
 ^{*}N^{*} can be seen as an infinite recognizable rewriting system R = {u → v | u

 v ∈ L}
- Alternative notation: If $L = \bigcup_i \overline{U}_i \widetilde{V}_i$, we write $R = \bigcup_i U_i \to V_i$

Reachability in pushdown graphs (3)

Observation: Sequences of the form $A\overline{A}$ can be discarded

Algorithm

- **1** Start with automaton accepting $L_R = {\overline{u}\widetilde{v} \mid u \xrightarrow{a} v \in R}^*$
- Aim: remove all "unnecessary steps" of the form AA
 → For all path p AA q in A, add ε-transition p → q
- 3 Iterate the previous step until saturation
- **4** Intersect the obtained language with \bar{N}^*N^*
- **5** Interpret as a union of relations $U \rightarrow V$

Reachability in pushdown graphs (4)

Theorem (Caucal, Dauchet&Tison)

The reachability relation in a prefix rewriting graph can always be written as a finite union of relations $(U \rightarrow V) \cdot Id$, with U, V regular

Note:

- When using regular restrictions, more general form needed: finite union of relations $(U \rightarrow V) \cdot Id_W$
- Such relations are called prefix-recognizable

Reachability in pushdown graphs (5)

Corollary The set of vertices F reachable from any regular set I in a pushdown graph is regular

Other possible interpretation:

Corollary (Büchi)

The set of stack contents reachable from the initial configuration in a pushdown automaton is a regular language

An introduction to infinite graphs Antoine Meyer

Formal Methods Update 2006 IIT Guwahati

- 1 Foreword: approach and current issues
- 2 Pushdown graphs: characterizations
- 8 Reachability in pushdown graphs
- 4 Beyond pushdown graphs

Prefix-recognizable graphs

Q: Prefix-recognizable relations express reachability in prefix rewriting graphs. What about graphs whose edges are P-R?

A: Extension of (nearly) all previous characterizations

Theorem

Let G be a graph, the following statements are equivalent:

- *G* is the transition graph of a pushdown automaton with ε -transitions
- *G* is the prefix rewriting graph of a recognizable rewriting system (+ regular restriction)
- *G* is the result of unfolding a finite graph and applying a regular substitution

Additionally, all previous reachability results remain true

A graph

Not a pushdown graph!

This graph "looks" regular though, how can we characterize it?

Extensions and variants

- More general computation models (e.g. linearly bounded machines, petri nets)
- Arbitrary finitely presented binary relations (e.g. automatic or rational relations)
- More powerful or iterated transformations
- New operators in graph equations (or grammars)
- Restrictions or specialization of existing families (e.g. degree, tree-width, connectedness)

Conclusion

- Open topic with numerous variants and extensions
- Links with other theoretical topics Language theory, automata, rewriting, logics
- (Prospective) applications in computer science Modeling (notion of structural richness) Verification (through logics and algorithms)