Solving parity games

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Formal Methods Update 2006, IIT Guwahati 4 July 2006

Madhavan Mukund Solving parity games

Outline

- Parity games
- An efficient algorithm for solving parity games [Jurdziński]
- Solving parity games through strategy improvement [Jurdziński and Vöge]

• Two players, 0 and 1

< 🗆

🗗 🕨 🔫 🖹

1

€

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$

5990

€

=

A.

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$
 - Player 0 plays from V_0 , player 1 from V_1

5990

∍

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$
 - Player 0 plays from V_0 , player 1 from V_1
 - From every position, at least one move is possible

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$
 - Player 0 plays from V_0 , player 1 from V_1
 - From every position, at least one move is possible
- $\bullet\ c:V\to\mathbb{N}$ assigns a colour to each position

AQ (A

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$
 - Player 0 plays from V_0 , player 1 from V_1
 - From every position, at least one move is possible
- $\bullet\ c:V\to\mathbb{N}$ assigns a colour to each position
- Player 0 wins an infinite play if it satifies the parity winning condition

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$
 - Player 0 plays from V_0 , player 1 from V_1
 - From every position, at least one move is possible
- $\bullet\ c:V\to\mathbb{N}$ assigns a colour to each position
- Player 0 wins an infinite play if it satifies the parity winning condition
 - Max-parity: largest colour that occurs infinitely often in the play is even

AQ (A

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$
 - Player 0 plays from V_0 , player 1 from V_1
 - From every position, at least one move is possible
- $\mathbf{c}: \mathbf{V} \to \mathbb{N}$ assigns a colour to each position
- Player 0 wins an infinite play if it satifies the parity winning condition
 - Max-parity: largest colour that occurs infinitely often in the play is even
 - Min-parity: smallest colour that occurs infinitely often in the play is even

AQ (A

The set of positions of a parity game can be partitioned as W_0 , from where player 0 wins with a memoryless strategy, and W_1 , from where player 1 wins with a memoryless strategy.

 $\bullet\,$ Can identify W_0 and W_1 recursively, using 0-paradises and 1-paradises

The set of positions of a parity game can be partitioned as W_0 , from where player 0 wins with a memoryless strategy, and W_1 , from where player 1 wins with a memoryless strategy.

- $\bullet\,$ Can identify W_0 and W_1 recursively, using 0-paradises and 1-paradises
- Complexity is O(mn^d)

The set of positions of a parity game can be partitioned as W_0 , from where player 0 wins with a memoryless strategy, and W_1 , from where player 1 wins with a memoryless strategy.

- $\bullet\,$ Can identify W_0 and W_1 recursively, using 0-paradises and 1-paradises
- Complexity is O(mn^d)
 - m edges, n states, largest colour d

The set of positions of a parity game can be partitioned as W_0 , from where player 0 wins with a memoryless strategy, and W_1 , from where player 1 wins with a memoryless strategy.

- $\bullet\,$ Can identify W_0 and W_1 recursively, using 0-paradises and 1-paradises
- Complexity is O(mn^d)
 - m edges, n states, largest colour d
- Can we identify W₀ and W₁ more efficiently?

୶ୡୖ

• Observation If both players play by memoryless strategy, each infinite play is a finite prefix followed by a simple loop

• Observation If both players play by memoryless strategy, each infinite play is a finite prefix followed by a simple loop

• Let f_0 be a strategy for Player 0

• Observation If both players play by memoryless strategy, each infinite play is a finite prefix followed by a simple loop

• Let f₀ be a strategy for Player 0

 f₀ is closed for a set of positions X if all plays that start in X that are consistent with f₀ stay in X

• Observation If both players play by memoryless strategy, each infinite play is a finite prefix followed by a simple loop

• Let f₀ be a strategy for Player 0

- f₀ is closed for a set of positions X if all plays that start in X that are consistent with f₀ stay in X
- \bullet Remove all moves not consistent with f_0 to get a solitaire game for Player 1

SQ C

• Observation If both players play by memoryless strategy, each infinite play is a finite prefix followed by a simple loop

- Let f₀ be a strategy for Player 0
- f₀ is closed for a set of positions X if all plays that start in X that are consistent with f₀ stay in X
- \bullet Remove all moves not consistent with f_0 to get a solitaire game for Player 1
- Odd/even cycle—simple cycle in solitaire game with minimum colour odd/even

• Observation If both players play by memoryless strategy, each infinite play is a finite prefix followed by a simple loop

• Let f₀ be a strategy for Player 0

- f₀ is closed for a set of positions X if all plays that start in X that are consistent with f₀ stay in X
- \bullet Remove all moves not consistent with f_0 to get a solitaire game for Player 1
- Odd/even cycle—simple cycle in solitaire game with minimum colour odd/even

Lemma f_0 closed on X wins from all states in X iff all simple cycles in the game restricted to X are even.

• For a game with d colours, assign a d+1-tuple $\rho(\mathbf{v}) = (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ to each position

- For a game with d colours, assign a d+1-tuple $\rho(\mathbf{v}) = (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ to each position
 - Compare d-tuples lexicographically
 - $(x_0, \ldots, x_d) \ge_i (y_0, \ldots, y_d)$: lexicographic comparison using first i components

SQ C

- For a game with d colours, assign a d+1-tuple $\rho(\mathbf{v}) = (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ to each position
 - Compare d-tuples lexicographically
 - $(x_0, \dots, x_d) \ge_i (y_0, \dots, y_d)$: lexicographic comparison using first i components
- Parity progress measure
 For each edge v → w
 - c(v) even $\Rightarrow \rho(v) \ge_{c(v)} \rho(w)$
 - $c(v) \text{ odd} \Rightarrow \rho(v) >_{c(v)} \rho(w)$

- For a game with d colours, assign a d+1-tuple $\rho(\mathbf{v}) = (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ to each position
 - Compare d-tuples lexicographically
 - $(x_0, \dots, x_d) \ge_i (y_0, \dots, y_d)$: lexicographic comparison using first i components
- Parity progress measure
 For each edge v → w
 - c(v) even $\Rightarrow \rho(v) \ge_{c(v)} \rho(w)$
 - $c(v) \text{ odd} \Rightarrow \rho(v) >_{c(v)} \rho(w)$

Lemma

If a solitaire game admits a parity progress measure, then every simple cycle in the game is even.

୶ୡୖ

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

• Construct $\rho : \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that d is odd)

SQ C

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- Construct $\rho : \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that d is odd)
 - For each even i, $n_i = 0$

SQ C

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- Construct $\rho : \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that d is odd)
 - For each even i, $n_i = 0$
 - For each odd i, define n_i as follows:

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- Construct $\rho: \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that d is odd)
 - For each even i, $n_i = 0$
 - For each odd i, define n_i as follows:

Consider all infinite paths from ${\bf v}$ with minimum colour ${\bf i}.$ Set ${\bf n}_{\bf i}$ to maximum number of times ${\bf i}$ appears along all such paths.

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- Construct $\rho: \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that d is odd)
 - For each even i, $n_i = 0$
 - For each odd i, define n_i as follows:

Consider all infinite paths from ${\bf v}$ with minimum colour ${\bf i}.$ Set ${\bf n}_{\bf i}$ to maximum number of times ${\bf i}$ appears along all such paths.

 n_i may be set to 0 or ∞ !

AQA

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- Construct $\rho: \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that d is odd)
 - For each even i, $n_i = 0$
 - For each odd i, define n_i as follows:

Consider all infinite paths from **v** with minimum colour **i**. Set \mathbf{n}_i to maximum number of times **i** appears along all such paths.

 $\mathbf{n}_{\mathbf{i}}$ may be set to 0 or ∞ !

• Let V_i be set of positions coloured i

Claim 1 Let $\rho(\mathbf{v}) = (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$. For odd i, $\mathbf{n}_i \leq |\mathbf{V}_i + 1|$.

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- Construct $\rho: \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that d is odd)
 - For each even i, $n_i = 0$
 - For each odd i, define n_i as follows:

Consider all infinite paths from ${\bf v}$ with minimum colour ${\bf i}.$ Set ${\bf n}_{\bf i}$ to maximum number of times ${\bf i}$ appears along all such paths.

୶ୡୖ

 n_i may be set to 0 or ∞ !

- Let V_i be set of positions coloured i
 - Claim 1 Let $\rho(\mathbf{v}) = (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$. For odd i, $\mathbf{n}_i \leq |\mathbf{V}_i + \mathbf{1}|$.
- Claim 2 $\rho(v)$ is a parity progress measure.

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

• We have $\rho : \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ such that $\mathbf{n}_0 = \mathbf{n}_2 = \dots = \mathbf{n}_{d-1} = \mathbf{0}$ and, for odd i, $\mathbf{n}_i \leq |\mathbf{V}_i|$ (recall that we assume **d** is odd)

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- We have $\rho : \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ such that $\mathbf{n}_0 = \mathbf{n}_2 = \dots = \mathbf{n}_{d-1} = \mathbf{0}$ and, for odd i, $\mathbf{n}_i \leq |\mathbf{V}_i|$ (recall that we assume **d** is odd)
- Range of ρ is M where $M = \{0\} \times \{0, \dots, |V_1|\} \times \{0\} \times \dots \times \{0, \dots, |V_d|\}$

୶ୡୖ

Game progress measures

• From parity progress measures on solitaire games to game progress measures on full game graph

- From parity progress measures on solitaire games to game progress measures on full game graph
- Extend

$$\begin{split} \mathsf{M} &= \{\mathbf{0}\} \times \{\mathbf{0}, \dots, |\mathsf{V}_1|\} \times \{\mathbf{0}\} \times \dots \times \{\mathbf{0}, \dots, |\mathsf{V}_d|\} \\ \text{by adding a new element } \top \text{ bigger than all elements in } \mathsf{M} \end{split}$$

- From parity progress measures on solitaire games to game progress measures on full game graph
- Extend

$$\begin{split} \mathsf{M} &= \{\mathbf{0}\} \times \{\mathbf{0}, \dots, |\mathsf{V}_1|\} \times \{\mathbf{0}\} \times \dots \times \{\mathbf{0}, \dots, |\mathsf{V}_d|\} \\ \text{by adding a new element } \top \text{ bigger than all elements in } \mathsf{M} \end{split}$$

• Construct $\rho : \mathbf{v} \mapsto \mathbf{M}_{\top}$ so that

- From parity progress measures on solitaire games to game progress measures on full game graph
- Extend

$$\begin{split} \mathsf{M} &= \{\mathbf{0}\} \times \{\mathbf{0}, \dots, |\mathsf{V}_1|\} \times \{\mathbf{0}\} \times \dots \times \{\mathbf{0}, \dots, |\mathsf{V}_d|\} \\ \text{by adding a new element } \top \text{ bigger than all elements in } \mathsf{M} \end{split}$$

• Construct $\rho: \mathbf{v} \mapsto \mathbf{M}_{\top}$ so that

• If $v \in V_0$, for some $v \to w$, $\rho(v) \ge_{c(v)} \rho(w)$

- From parity progress measures on solitaire games to game progress measures on full game graph
- Extend

$$\begin{split} \mathsf{M} &= \{\mathbf{0}\} \times \{\mathbf{0}, \dots, |\mathsf{V}_1|\} \times \{\mathbf{0}\} \times \dots \times \{\mathbf{0}, \dots, |\mathsf{V}_d|\} \\ \text{by adding a new element } \top \text{ bigger than all elements in } \mathsf{M} \end{split}$$

- Construct $\rho: \mathbf{v} \mapsto \mathbf{M}_{\top}$ so that
 - If $v \in V_0$, for some $v \to w$, $\rho(v) \ge_{c(v)} \rho(w)$
 - If $\mathbf{v} \in \mathbf{V}_1$, for every $\mathbf{v} \to \mathbf{w}$, $\rho(\mathbf{v}) >_{c(\mathbf{v})} \rho(\mathbf{w})$, unless $\rho(\mathbf{v}) = \rho(\mathbf{w}) = \top$

- From parity progress measures on solitaire games to game progress measures on full game graph
- Extend

$$\begin{split} \mathsf{M} &= \{\mathbf{0}\} \times \{\mathbf{0}, \dots, |\mathsf{V}_1|\} \times \{\mathbf{0}\} \times \dots \times \{\mathbf{0}, \dots, |\mathsf{V}_d|\} \\ \text{by adding a new element } \top \text{ bigger than all elements in } \mathsf{M} \end{split}$$

- Construct $\rho: \mathbf{v} \mapsto \mathbf{M}_{\top}$ so that
 - If $v \in V_0$, for some $v \to w$, $ho(v) \geq_{c(v)}
 ho(w)$
 - If $\mathbf{v} \in \mathbf{V}_1$, for every $\mathbf{v} \to \mathbf{w}$, $\rho(\mathbf{v}) >_{c(\mathbf{v})} \rho(\mathbf{w})$, unless $\rho(\mathbf{v}) = \rho(\mathbf{w}) = \top$
- A trivial game progress measure assigns \top everywhere.

- From parity progress measures on solitaire games to game progress measures on full game graph
- Extend

$$\begin{split} \mathsf{M} &= \{\mathbf{0}\} \times \{\mathbf{0}, \dots, |\mathsf{V}_1|\} \times \{\mathbf{0}\} \times \dots \times \{\mathbf{0}, \dots, |\mathsf{V}_d|\} \\ \text{by adding a new element } \top \text{ bigger than all elements in } \mathsf{M} \end{split}$$

- Construct $\rho : \mathbf{v} \mapsto \mathbf{M}_{\top}$ so that
 - If $v \in V_0$, for some $v \to w$, $\rho(v) \geq_{c(v)} \rho(w)$
 - If $\mathbf{v} \in \mathbf{V}_1$, for every $\mathbf{v} \to \mathbf{w}$, $\rho(\mathbf{v}) >_{c(\mathbf{v})} \rho(\mathbf{w})$, unless $\rho(\mathbf{v}) = \rho(\mathbf{w}) = \top$
- A trivial game progress measure assigns T everywhere.
- Let $\|\rho\| = \{\mathbf{v} \mid \rho(\mathbf{v}) \neq \top\}$

AQ (A

- From parity progress measures on solitaire games to game progress measures on full game graph
- Extend

$$\begin{split} \mathsf{M} &= \{\mathbf{0}\} \times \{\mathbf{0}, \dots, |\mathsf{V}_1|\} \times \{\mathbf{0}\} \times \dots \times \{\mathbf{0}, \dots, |\mathsf{V}_d|\} \\ \text{by adding a new element } \top \text{ bigger than all elements in } \mathsf{M} \end{split}$$

- Construct $\rho: \mathbf{v} \mapsto \mathbf{M}_{\top}$ so that
 - If $v \in V_0$, for some $v \to w$, $\rho(v) \ge_{c(v)} \rho(w)$
 - If $\mathbf{v} \in \mathbf{V}_1$, for every $\mathbf{v} \to \mathbf{w}$, $\rho(\mathbf{v}) >_{c(\mathbf{v})} \rho(\mathbf{w})$, unless $\rho(\mathbf{v}) = \rho(\mathbf{w}) = \top$
- A trivial game progress measure assigns T everywhere.
- Let $\|\rho\| = \{\mathbf{v} \mid \rho(\mathbf{v}) \neq \top\}$
- Our aim is to find ρ such that $\|\rho\|$ is maximized.

୶ୡୖ

• Given ρ , define the strategy f_0^{ρ} that chooses for each position v the successor w with minimum $\rho(w)$

• Given ρ , define the strategy f_0^{ρ} that chooses for each position v the successor w with minimum $\rho(w)$

Lemma

 f_0^{ρ} wins in the subgame defined by $\|\rho\|$

• Given ρ , define the strategy f_0^{ρ} that chooses for each position v the successor w with minimum $\rho(w)$

Lemma

 f_0^{ρ} wins in the subgame defined by $\|\rho\|$

Lemma

There is a game progress measure ρ such that $\|\rho\|$ is the winning region for Player 0.

• Given ρ , define the strategy f_0^{ρ} that chooses for each position v the successor w with minimum $\rho(w)$

Lemma

 f_0^{ρ} wins in the subgame defined by $\|\rho\|$

Lemma

There is a game progress measure ρ such that $\|\rho\|$ is the winning region for Player 0.

Player 0 has a memoryless winning strategy f₀ with winning set W₀. The solitaire game over W₀ defined by f₀ has only even cycles ⇒ we can assign a parity progress measure over W₀, which lifts to a game progress measure ρ with W₀ = ||ρ||.

୶ୡୖ

- Define an operator $Lift(\rho, \mathbf{v})$ that updates ρ at \mathbf{v}
 - $Lift(\rho, v)(u) =$

 $\begin{array}{ll} \rho(\mathbf{u}), & \text{if } \mathbf{u} \neq \mathbf{v} \\ \max\{\rho(\mathbf{v}), \min_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_0 \\ \max\{\rho(\mathbf{v}), \max_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_1 \end{array}$

where $\mathsf{Dom}(\rho, \mathsf{v}, \mathsf{w})$ is the smallest value $\mathsf{m} \in \mathsf{M}_{ op}$ such that

- Define an operator $Lift(\rho, \mathbf{v})$ that updates ρ at \mathbf{v}
 - $Lift(\rho, v)(u) =$

 $\begin{array}{ll} \rho(\mathbf{u}), & \text{if } \mathbf{u} \neq \mathbf{v} \\ \max\{\rho(\mathbf{v}), \min_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_0 \\ \max\{\rho(\mathbf{v}), \max_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_1 \\ \text{where } \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w}) \text{ is the smallest value } \mathbf{m} \in \mathsf{M}_\top \text{ such that} \\ \bullet \ \mathbf{m} \geq_{\mathsf{c}(\mathbf{v})} \rho(\mathbf{w}), \text{ if } \mathbf{v} \in \mathsf{V}_0 \end{array}$

- Define an operator $Lift(\rho, \mathbf{v})$ that updates ρ at \mathbf{v}
 - $Lift(\rho, v)(u) =$

 $\begin{array}{ll} \rho(\mathbf{u}), & \text{if } \mathbf{u} \neq \mathbf{v} \\ \max\{\rho(\mathbf{v}), \min_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_0 \\ \max\{\rho(\mathbf{v}), \max_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_1 \end{array}$

where $Dom(\rho, v, w)$ is the smallest value $m \in M_{\top}$ such that

• $\mathbf{m} \ge_{\mathbf{c}(\mathbf{v})} \rho(\mathbf{w})$, if $\mathbf{v} \in \mathbf{V}_0$ • $\mathbf{m} >_{\mathbf{c}(\mathbf{v})} \rho(\mathbf{w})$ or $\mathbf{m} = \rho(\mathbf{w}) = \top$, if $\mathbf{v} \in \mathbf{V}_1$

- Define an operator $Lift(\rho, \mathbf{v})$ that updates ρ at \mathbf{v}
 - $Lift(\rho, v)(u) =$

 $\begin{array}{ll} \rho(\mathbf{u}), & \text{if } \mathbf{u} \neq \mathbf{v} \\ \max\{\rho(\mathbf{v}), \min_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_0 \\ \max\{\rho(\mathbf{v}), \max_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_1 \end{array}$

where $Dom(\rho, v, w)$ is the smallest value $m \in M_{\top}$ such that

• $\mathbf{m} \geq_{\mathsf{c}(\mathsf{v})} \rho(\mathsf{w})$, if $\mathsf{v} \in \mathsf{V}_0$

• m $>_{\mathsf{c}(\mathsf{v})}
ho(\mathsf{w})$ or m = $ho(\mathsf{w})$ = op, if $\mathsf{v} \in \mathsf{V}_1$

 Lift tries to raise the measure of each position in V₀ above at least one neighbour and each position in V₁ strictly above all neighbours

Lift(ρ, v) is monotone for each v

5990

€

æ

- Lift(ρ, v) is monotone for each v
- $\rho : V \to M_{\top}$ is a game progress measure iff $Lift(\rho, v) \sqsubseteq \rho$ for each v

- Lift(ρ, v) is monotone for each v
- $\rho : V \to M_{\top}$ is a game progress measure iff $Lift(\rho, v) \sqsubseteq \rho$ for each v
- Can compute simultaneous fixed point of all Lift(ρ, ν) iteratively

AQ (A

- Lift(ρ, v) is monotone for each v
- $\rho : V \to M_{\top}$ is a game progress measure iff $Lift(\rho, v) \sqsubseteq \rho$ for each v
- Can compute simultaneous fixed point of all Lift(ρ, ν) iteratively
 - Initialize $Lift(\rho, v) = (0, \dots, 0)$ for all v

AQ (A

- Lift(ρ, v) is monotone for each v
- *ρ*: V → M_⊤ is a game progress measure iff Lift(ρ, v) ⊑ ρ
 for each v
- Can compute simultaneous fixed point of all Lift(ρ, ν) iteratively
 - Initialize $Lift(\rho, v) = (0, ..., 0)$ for all v
 - So long as $\rho \sqsubseteq \text{Lift}(\rho, \mathbf{v})$ for some \mathbf{v} , set $\rho = \text{Lift}(\rho, \mathbf{v})$

- Lift (ρ, \mathbf{v}) is monotone for each \mathbf{v}
- ρ: V → M_⊤ is a game progress measure iff Lift(ρ, ν) ⊑ ρ
 for each ν
- Can compute simultaneous fixed point of all Lift(ρ, ν) iteratively
 - Initialize $Lift(\rho, v) = (0, ..., 0)$ for all v
 - So long as $\rho \sqsubset \text{Lift}(\rho, \mathbf{v})$ for some \mathbf{v} , set $\rho = \text{Lift}(\rho, \mathbf{v})$
- Computation takes space O(dn log n)

To describe ρ , for each of **n** positions, store an element of M_{\top} —d numbers in the range $\{0, \ldots, n\}$, hence $n \cdot d \cdot \log n$

- Lift(ρ, ν) is monotone for each ν
- *ρ*: V → M_⊤ is a game progress measure iff Lift(ρ, ν) ⊑ ρ
 for each ν
- Can compute simultaneous fixed point of all Lift(ρ, ν) iteratively
 - Initialize $Lift(\rho, v) = (0, \dots, 0)$ for all v
 - So long as $\rho \sqsubset \text{Lift}(\rho, \mathbf{v})$ for some \mathbf{v} , set $\rho = \text{Lift}(\rho, \mathbf{v})$
- Computation takes space O(dn log n)
 To describe ρ, for each of n positions, store an element of M_T—d numbers in the range {0,..., n}, hence n · d · log n
- Computation takes time $O(d \cdot m \cdot \left(\frac{n}{\lfloor d/2 \rfloor}\right)^{\lfloor d/2 \rfloor})$ Analysis is a bit complicated

Strategy Improvement

• Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality

AQ (A

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality
- Optimal valuations correspond to winning strategies

AQ (A

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality
- Optimal valuations correspond to winning strategies
- If a valuation is not optimal for either player, improve it to get a better strategy

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality
- Optimal valuations correspond to winning strategies
- If a valuation is not optimal for either player, improve it to get a better strategy
- Iteratively converge to an optimal (winning) strategy

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality
- Optimal valuations correspond to winning strategies
- If a valuation is not optimal for either player, improve it to get a better strategy
- Iteratively converge to an optimal (winning) strategy
- Assumptions

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality
- Optimal valuations correspond to winning strategies
- If a valuation is not optimal for either player, improve it to get a better strategy
- Iteratively converge to an optimal (winning) strategy
- Assumptions
 - Max-parity game—player 0 wins if largest infinitely occurring colour is even

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality
- Optimal valuations correspond to winning strategies
- If a valuation is not optimal for either player, improve it to get a better strategy
- Iteratively converge to an optimal (winning) strategy
- Assumptions
 - Max-parity game—player 0 wins if largest infinitely occurring colour is even
 - All positions have distinct colours—assume positions and colours are both numbered $\{0,1,\ldots,d\}$ so that position i has colour i

< n

A typical play P consistent with memoryless (f_0, f_1)

5990

€

=

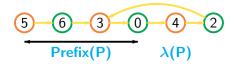
æ

A typical play P consistent with memoryless (f_0, f_1)

• $\lambda(P) = 4$ — max colour in the loop

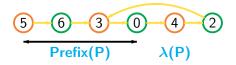
5990

A typical play P consistent with memoryless (f_0, f_1)



- $\lambda(P) = 4$ max colour in the loop
- $\pi(P) = \{5, 6\}$ values higher than $\lambda(P)$ in Prefix(P)

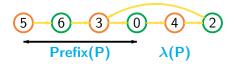
A typical play P consistent with memoryless (f_0, f_1)



- $\lambda(P) = 4$ max colour in the loop
- $\pi(P) = \{5, 6\}$ values higher than $\lambda(P)$ in Prefix(P)
- $\ell(P) = 4$ length of Prefix(P)

AQ (A

A typical play P consistent with memoryless (f_0, f_1)



• $\lambda(P) = 4$ — max colour in the loop

- $\pi(P) = \{5, 6\}$ values higher than $\lambda(P)$ in Prefix(P)
- $\ell(P) = 4$ length of Prefix(P)

Valuation

 $\Theta: \mathsf{v} \mapsto (\lambda(\mathsf{P}), \pi(\mathsf{P}), \ell(\mathsf{P}))$ for some play P starting at v

• Strategy induced valuation

ð

5990

3

Ξ

₹

- Strategy induced valuation
 - Let (f_0, f_1) be memoryless strategies for players 0 and 1

5990

∍

• Strategy induced valuation

- Let (f_0, f_1) be memoryless strategies for players 0 and 1
- Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)

• Strategy induced valuation

- Let (f_0, f_1) be memoryless strategies for players 0 and 1
- Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)
- Locally progressive valuation

AQ (A

- Strategy induced valuation
 - Let (f_0, f_1) be memoryless strategies for players 0 and 1
 - Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)
- Locally progressive valuation
 - For each position u, there is a successor $u \to v$ such that $\Theta(u)$ and $\Theta(v)$ refer to same path P

- Strategy induced valuation
 - Let (f_0, f_1) be memoryless strategies for players 0 and 1
 - Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)
- Locally progressive valuation
 - For each position u, there is a successor $u \rightarrow v$ such that $\Theta(u)$ and $\Theta(v)$ refer to same path P
 - Write this as $\mathbf{u} \rightsquigarrow \mathbf{v}$

AQ (A

- Strategy induced valuation
 - Let (f_0, f_1) be memoryless strategies for players 0 and 1
 - Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)
- Locally progressive valuation
 - For each position u, there is a successor $u \rightarrow v$ such that $\Theta(u)$ and $\Theta(v)$ refer to same path P
 - Write this as $\mathbf{u} \rightsquigarrow \mathbf{v}$
 - Claim For any locally progressive valuation Θ , there are strategies (f_0, f_1) that induce Θ

- Strategy induced valuation
 - Let (f_0, f_1) be memoryless strategies for players 0 and 1
 - Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)
- Locally progressive valuation
 - For each position u, there is a successor $u \rightarrow v$ such that $\Theta(u)$ and $\Theta(v)$ refer to same path P
 - Write this as $\mathbf{u} \rightsquigarrow \mathbf{v}$
 - **Claim** For any locally progressive valuation Θ , there are strategies (f_0, f_1) that induce Θ
 - From any locally progressive valuation ⊖, we can extract a pair of strategies (f₀, f₁) that induce ⊖

- Strategy induced valuation
 - Let (f_0, f_1) be memoryless strategies for players 0 and 1
 - Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)
- Locally progressive valuation
 - For each position u, there is a successor $u \rightarrow v$ such that $\Theta(u)$ and $\Theta(v)$ refer to same path P
 - Write this as $\mathbf{u} \rightsquigarrow \mathbf{v}$
 - **Claim** For any locally progressive valuation Θ , there are strategies (f_0, f_1) that induce Θ
 - From any locally progressive valuation ⊖, we can extract a pair of strategies (f₀, f₁) that induce ⊖
 - From any pair of strategies (f₀, f₁) we can derive a locally progressive valuation ⊖

 Order ⊖(u) = (w, P, ℓ) and ⊖(v) = (x, Q, m) lexicographically

5990

€

=

A.

- Order ⊖(u) = (w, P, ℓ) and ⊖(v) = (x, Q, m) lexicographically
- Linear order on colours (positions) {0, 1, ..., 2k}

 $(2\mathsf{k}{-}1)\prec(2\mathsf{k}{-}3)\prec\cdots\prec 3\prec 1\prec 0\prec 2\prec\cdots<2\mathsf{k}$

- Order Θ(u) = (w, P, ℓ) and Θ(v) = (x, Q, m) lexicographically
- Linear order on colours (positions) {0, 1, ..., 2k}
 (2k−1) ≺ (2k−3) ≺ ··· ≺ 3 ≺ 1 ≺ 0 ≺ 2 ≺ ··· < 2k
- Linear order on sets of colours P and Q
 P ≺ Q iff max(P \ Q) ≺ max(Q \ P)

AQ (A

- Order Θ(u) = (w, P, ℓ) and Θ(v) = (x, Q, m) lexicographically
- Linear order on colours (positions) {0,1,...,2k}
 (2k−1) ≺ (2k−3) ≺ · · · ≺ 3 ≺ 1 ≺ 0 ≺ 2 ≺ · · · < 2k
- Linear order on sets of colours P and Q
 P ≺ Q iff max(P \ Q) ≺ max(Q \ P)
- Order on I and m is normal \leq

Optimal valuations

A valuation Θ is optimal if we have:

Whenever $\mathbf{u} \rightsquigarrow \mathbf{v}$, among successors of \mathbf{u} , $\Theta(\mathbf{v})$ is largest value with respect to \prec

Optimal valuations

A valuation Θ is optimal if we have:

Whenever $\mathbf{u} \rightsquigarrow \mathbf{v}$, among successors of \mathbf{u} , $\Theta(\mathbf{v})$ is largest value with respect to \prec

Lemma

If Θ is an optimal valuation for player 0 (player 1), the corresponding strategy is winning for player 0 (player 1).

• Begin with arbitrary memoryless strategies (f₀, f₁)

5990

€

- Begin with arbitrary memoryless strategies (f₀, f₁)
- Construct induced valuations

- Begin with arbitrary memoryless strategies (f₀, f₁)
- Construct induced valuations
- If the strategy is not optimal for player 0 (player 1), pick a nonoptimal position and improve it

- Begin with arbitrary memoryless strategies (f₀, f₁)
- Construct induced valuations
- If the strategy is not optimal for player 0 (player 1), pick a nonoptimal position and improve it
- Repeat until both players have an optimal strategy

- Begin with arbitrary memoryless strategies (f₀, f₁)
- Construct induced valuations
- If the strategy is not optimal for player 0 (player 1), pick a nonoptimal position and improve it
- Repeat until both players have an optimal strategy
 Claim This procedure converges.

- Begin with arbitrary memoryless strategies (f₀, f₁)
- Construct induced valuations
- If the strategy is not optimal for player 0 (player 1), pick a nonoptimal position and improve it
- Repeat until both players have an optimal strategy **Claim** This procedure converges.
- No theoretical bound is known on the complexity of convergence.

Marcin Jurdiński Small Progress Measures for Solving Parity Games Proc STACS 2000 Springer LNCS 1770 (2000) 290–301

 Marcin Jurdiński and Jens Vöge A Discrete Strategy Improvement Algorithm for Solving Parity Games

Proc CAV 2000

Springer LNCS 1855 (2000) 202-215

Hartmut Klauck

Algorithms for Parity Games

in Erich Grädel, Wolfgang Thomas, Thomas Wilke (Eds.):

Automata, Logics, and Infinite Games: A Guide to Current Research,

```
Springer LNCS 2500 (2002) 107-129
```