Solving parity games

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Formal Methods Update 2006, IIT Guwahati 4 July 2006

Outline

- Parity games
- An efficient algorithm for solving parity games [Jurdziński]
- Solving parity games through strategy improvement [Jurdziński and Vöge]

Parity games

- Two players, 0 and 1
- Game graph G = (V, E), $V = V_0 \uplus V_1$
 - Player 0 plays from V_0 , player 1 from V_1
 - From every position, at least one move is possible
- ullet c : $V \to \mathbb{N}$ assigns a colour to each position
- Player 0 wins an infinite play if it satisfies the parity winning condition
 - Max-parity: largest colour that occurs infinitely often in the play is even
 - Min-parity: smallest colour that occurs infinitely often in the play is even

Memoryless determinacy for parity games

Theorem

The set of positions of a parity game can be partitioned as W_0 , from where player 0 wins with a memoryless strategy, and W_1 , from where player 1 wins with a memoryless strategy.

- Can identify W₀ and W₁ recursively, using 0-paradises and 1-paradises
- Complexity is O(mn^d)
 - m edges, n states, largest colour d
- Can we identify W₀ and W₁ more efficiently?

Solitaire games

 Observation If both players play by memoryless strategy, each infinite play is a finite prefix followed by a simple loop

- Let f_0 be a strategy for Player 0
- f₀ is closed for a set of positions X if all plays that start in X that are consistent with f₀ stay in X
- Remove all moves not consistent with f₀ to get a solitaire game for Player 1
- Odd/even cycle—simple cycle in solitaire game with minimum colour odd/even

Lemma

 f_0 closed on X wins from all states in X iff all simple cycles in the game restricted to X are even.

Parity progress measures

- For a game with d colours, assign a d+1-tuple $\rho(v) = (n_0, n_1, \dots, n_d)$ to each position
 - Compare d-tuples lexicographically
 - $(x_0, ..., x_d) \ge_i (y_0, ..., y_d)$: lexicographic comparison using first i components
- Parity progress measure

For each edge $v \rightarrow w$

- c(v) even $\Rightarrow \rho(v) \geq_{c(v)} \rho(w)$
- c(v) odd $\Rightarrow \rho(v) >_{c(v)} \rho(w)$

Lemma

If a solitaire game admits a parity progress measure, then every simple cycle in the game is even.

Parity progress measures . . .

Lemma

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- Construct $\rho: \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ (assume that \mathbf{d} is odd)
 - For each even i, $n_i = 0$
 - For each odd i, define ni as follows:

Consider all infinite paths from \mathbf{v} with minimum colour \mathbf{i} . Set $\mathbf{n}_{\mathbf{i}}$ to maximum number of times \mathbf{i} appears along all such paths.

- n_i may be set to 0 or ∞ !
- Let V_i be set of positions coloured i
 - Claim 1 Let $\rho(\mathbf{v}) = (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$. For odd i, $\mathbf{n}_i \leq |\mathbf{V}_i + 1|$.
- Claim 2 $\rho(v)$ is a parity progress measure.

Parity progress measures . . .

Lemma

If every simple cycle in a solitaire game is even, we can construct a small parity progress measure.

- We have $\rho: \mathbf{v} \mapsto (\mathbf{n}_0, \mathbf{n}_1, \dots, \mathbf{n}_d)$ such that $\mathbf{n}_0 = \mathbf{n}_2 = \dots = \mathbf{n}_{d-1} = \mathbf{0}$ and, for odd $\mathbf{i}, \mathbf{n}_i \leq |\mathbf{V}_i|$ (recall that we assume \mathbf{d} is odd)
- Range of ρ is M where $\mathsf{M} = \{0\} \times \{0, \dots, |\mathsf{V}_1|\} \times \{0\} \times \dots \times \{0, \dots, |\mathsf{V}_\mathsf{d}|\}$

Game progress measures

- From parity progress measures on solitaire games to game progress measures on full game graph
- Construct $\rho : \mathbf{v} \mapsto \mathbf{M}_{\top}$ so that
 - If $v \in V_0$, for some $v \to w$, $\rho(v) \ge_{c(v)} \rho(w)$
 - If $\mathbf{v} \in \mathbf{V}_1$, for every $\mathbf{v} \to \mathbf{w}$, $\rho(\mathbf{v}) >_{\mathsf{c}(\mathsf{v})} \rho(\mathbf{w})$, unless $\rho(\mathbf{v}) = \rho(\mathbf{w}) = \top$
- Let $\|\rho\| = \{ \mathbf{v} \mid \rho(\mathbf{v}) \neq \top \}$
- Our aim is to find ρ such that $\|\rho\|$ is maximized.

Game progress measures . . .

• Given ρ , define the strategy $\mathbf{f_0^{\rho}}$ that chooses for each position \mathbf{v} the successor \mathbf{w} with minimum $\rho(\mathbf{w})$

Lemma

 $\mathbf{f}_0^{\boldsymbol{\rho}}$ wins in the subgame defined by $\|\boldsymbol{\rho}\|$

Lemma

There is a game progress measure ρ such that $\|\rho\|$ is the winning region for Player 0.

• Player 0 has a memoryless winning strategy \mathbf{f}_0 with winning set \mathbf{W}_0 . The solitaire game over \mathbf{W}_0 defined by \mathbf{f}_0 has only even cycles \Rightarrow we can assign a parity progress measure over \mathbf{W}_0 , which lifts to a game progress measure ρ with $\mathbf{W}_0 = \|\rho\|$.

Computing game progress measures

• Define an operator $\mathsf{Lift}(\rho,\mathsf{v})$ that updates ρ at v

```
\begin{aligned} & \text{Lift}(\rho, \mathbf{v})(\mathbf{u}) = \\ & \rho(\mathbf{u}), & \text{if } \mathbf{u} \neq \mathbf{v} \\ & \max\{\rho(\mathbf{v}), \min_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_0 \\ & \max\{\rho(\mathbf{v}), \max_{\mathbf{v} \to \mathbf{w}} \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w})\}, & \text{if } \mathbf{u} = \mathbf{v} \in \mathsf{V}_1 \\ \end{aligned} \\ & \text{where } \mathsf{Dom}(\rho, \mathbf{v}, \mathbf{w}) \text{ is the smallest value } \mathbf{m} \in \mathsf{M}_\top \text{ such that } \\ & \bullet \ \ \mathbf{m} \geq_{\mathsf{c}(\mathbf{v})} \rho(\mathbf{w}), & \text{if } \mathbf{v} \in \mathsf{V}_0 \\ & \bullet \ \ \mathbf{m} >_{\mathsf{c}(\mathbf{v})} \rho(\mathbf{w}) \text{ or } \mathbf{m} = \rho(\mathbf{w}) = \top, & \text{if } \mathbf{v} \in \mathsf{V}_1 \end{aligned}
```

• Lift tries to raise the measure of each position in V_0 above at least one neighbour and each position in V_1 strictly above all neighbours

Computing game progress measures

- Lift (ρ, \mathbf{v}) is monotone for each \mathbf{v}
- $\rho : V \to M_{\top}$ is a game progress measure iff $Lift(\rho, v) \sqsubseteq \rho$ for each v
- Can compute simultaneous fixed point of all $Lift(\rho, \mathbf{v})$ iteratively
 - Initialize Lift(ρ , v) = (0,...,0) for all v
 - So long as $\rho \sqsubseteq \mathsf{Lift}(\rho, \mathsf{v})$ for some v , set $\rho = \mathsf{Lift}(\rho, \mathsf{v})$
- Computation takes space O(dn log n)

To describe ρ , for each of n positions, store an element of M_{\perp} —d numbers in the range $\{0, \ldots, n\}$, hence $n \cdot d \cdot \log n$

• Computation takes time $O(d \cdot m \cdot \left(\frac{n}{\lfloor d/2 \rfloor}\right)^{\lfloor d/2 \rfloor})$ Analysis is a bit complicated

Strategy Improvement

- Given a pair of memoryless strategies (f₀, f₁) for players 0 and
 1, associate a valuation to each position in the game
- Define an ordering on valuations and a notion of optimality
- Optimal valuations correspond to winning strategies
- If a valuation is not optimal for either player, improve it to get a better strategy
- Iteratively converge to an optimal (winning) strategy
- Assumptions
 - Max-parity game—player 0 wins if largest infinitely occurring colour is even
 - All positions have distinct colours—assume positions and colours are both numbered $\{0,1,\ldots,d\}$ so that position i has colour i

Valuations

A typical play P consistent with memoryless (f_0, f_1)

- $\lambda(P) = 4$ max colour in the loop
- $\pi(P) = \{5, 6\}$ values higher than $\lambda(P)$ in Prefix(P)
- $\ell(P) = 4$ length of Prefix(P)

Valuation

 $\Theta: \mathbf{v} \mapsto (\lambda(\mathsf{P}), \pi(\mathsf{P}), \ell(\mathsf{P}))$ for some play P starting at v

Valuations . . .

- Strategy induced valuation
 - Let (f_0, f_1) be memoryless strategies for players 0 and 1
 - Assign $\Theta(v)$ according to path from v picked out by (f_0, f_1)
- Locally progressive valuation
 - For each position \mathbf{u} , there is a successor $\mathbf{u} \to \mathbf{v}$ such that $\Theta(\mathbf{u})$ and $\Theta(\mathbf{v})$ refer to same path P
 - Write this as u → v

Claim For any locally progressive valuation Θ , there are strategies (f_0, f_1) that induce Θ

- From any locally progressive valuation Θ , we can extract a pair of strategies (f_0, f_1) that induce Θ
- From any pair of strategies (f_0, f_1) we can derive a locally progressive valuation Θ

Ordering valuations

- Order $\Theta(u) = (w, P, \ell)$ and $\Theta(v) = (x, Q, m)$ lexicographically
- Linear order on colours (positions) $\{0,1,\ldots,2k\}$ $(2k-1) \prec (2k-3) \prec \cdots \prec 3 \prec 1 \prec 0 \prec 2 \prec \cdots < 2k$
- Linear order on sets of colours P and Q
 P ≺ Q iff max(P \ Q) ≺ max(Q \ P)
- Order on I and m is normal ≤

Optimal valuations

A valuation Θ is optimal if we have:

Whenever $\mathbf{u} \rightsquigarrow \mathbf{v}$, among successors of \mathbf{u} , $\Theta(\mathbf{v})$ is largest value with respect to \prec

Lemma

If \odot is an optimal valuation for player 0 (player 1), the corresponding strategy is winning for player 0 (player 1).

Strategy improvement

- Begin with arbitrary memoryless strategies (f_0, f_1)
- Construct induced valuations
- If the strategy is not optimal for player 0 (player 1), pick a nonoptimal position and improve it
- Repeat until both players have an optimal strategy
 Claim This procedure converges.
- No theoretical bound is known on the complexity of convergence.

References

Marcin Jurdiński
 Small Progress Measures for Solving Parity Games
 Proc STACS 2000
 Springer LNCS 1770 (2000) 290–301

 Marcin Jurdiński and Jens Vöge
 A Discrete Strategy Improvement Algorithm for Solving Parity Games

Proc CAV 2000

Springer LNCS 1855 (2000) 202-215

Hartmut Klauck
 Algorithms for Parity Games
 in Erich Grädel, Wolfgang Thomas, Thomas Wilke (Eds.):
 Automata, Logics, and Infinite Games: A Guide to Current
 Research,

Springer LNCS 2500 (2002) 107–129