Infinite games on finite graphs

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Formal Methods Update 2006, IIT Guwahati 3 July 2006

Madhavan Mukund Infinite games on finite graphs

Reactive systems

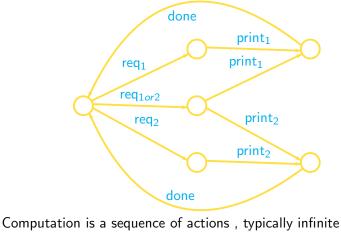
• Traditionally, computer programs are transformational Compute output as a function of inputs

• Inadequate to describe schedulers, operating systems ... Reactive systems

• Describe continuous interaction between system and environment as an infinite game

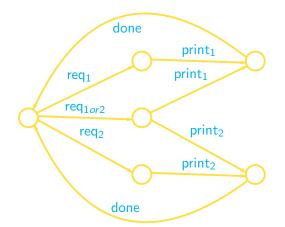
Modelling reactive systems

A scheduler that allocates requests to two printers



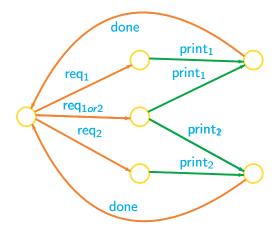
 $req_1 print_1 done req_{1or2} print_1 done req_{1or2} print_2 done ...$

Desirable and undesirable computations



Printer 1 is colour printer, Printer 2 is black and white Schedule jobs to minimize cost — respond to req_{1or2} with print₂ req₁ print₁ done req_{1or2} print₁ done req_{1or2} print₂ done ... is bad req₁ print₁ done req_{1or2} print₂ done req_{1or2} print₂ done ... is OK

Controllable and uncontrollable actions



Requests are uncontrollable, choice of printer is controllable Select controllable actions to achieve objective

Respond to req_{1or2} with print₂

Controllability

- Given a system and an objective, is there a strategy to select controllable actions such that the objective is realized?
- Can this strategy be effectively computed?

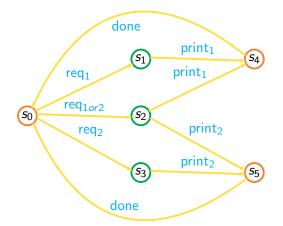
Controllability ... as a game

- Given a system and an objective, is there a strategy to select controllable actions such that the objective is realized?
- Can this strategy be effectively computed?
- Formulate the problem as a game
 - Two players, system and environment
 - Can select moves for system
 - Control objective is represented as the winning criterion for the game
 - Controllability is a winning strategy for system

Infinite games on finite graphs

- Two players, Player 0 and Player 1
- Moves are determined by a finite game graph with positions labelled 0 or 1.
 - Assume neither player ever gets stuck
 - Moves need not be strictly alternating
- A play of the game is an infinite path through the graph
- Winning condition
 - Some infinite sequences of states are good
 - Player 0 wins if the path chosen is describes a good sequence
 - Otherwise Player 1 wins

Infinite games on finite graphs ...



- Player 0 plays at green positions, Player 1 at orange positions
- Winning condition: every s_2 is immediately followed by s_5

Winning conditions

- How are the winning conditions specified?
- Simplest winning condition is reachability
 - A set G of good states
 - Want to visit some state in G at least once
- Working backwards, compute Reach(G), the set of states from which Player 0 can force the game to visit G
- Compute Reach(G) iteratively
- R₀ = G if already in G, we have visited G
- R_{i+1} : states from which Player 0 can force game into R_i
 - $\bullet \ 0$ plays at s, some move from s to $s' \in R_i \Rightarrow \mathsf{add} \ s$ to R_{i+1}
 - $\bullet~1$ plays at s, every move from s leads to $s'\in R_i\Rightarrow \mbox{add}~s$ to R_{i+1}
- Eventually $R_{i+1} = R_i$ because set of states is finite
- This is Reach(G)

Winning conditions — recurrence (Büchi condition)

- Want to visit a set G of good states infinitely often
- Reach some g ∈ G, such that from g we can return to g as many times as we want
 - Must leave **g** and then get back
- Reach⁺(G) : states from which we can reach G in one or move moves
 - Reach(G) : states from which G is reachable in zero or move moves
- Calculate Reach⁺(G) iteratively, like Reach(G)
- R₀⁺ is set of states from we can reach G in one move
 When computing Reach(G), R₀ = G
- \mathbf{R}_{i+1}^+ : states where Player 0 can force game into \mathbf{R}_i^+ , as before
- Eventually $R_{i+1}^+ = R_i^+ = \text{Reach}^+(G)$

Winning conditions — recurrence (Büchi) ...

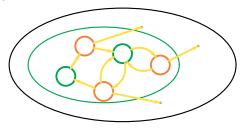
- Want to visit a set G of good states infinitely often
- Reach⁺(G) ∩ G states in G from which we can return to G once
- Reach⁺(Reach⁺(G) \cap G) \cap G states in G from which we can return to G twice
- . . .
- Converges to Recur(G) states in G from which we can return to G infinitely often
- Reach(Recur(G)) is the set of states from which Player 0 can start and win the game

Strategies and memory

- For reachability game, Player 0 wins from state s if s ∈ Reach(G)
 - $s \in R_i$ for some R_i when computing Reach(G)
 - Call this the rank of s
 - s has at least one successor of lower rank : uniformly fix one and choose it every time we are at s
- Strategy "decrease rank" depends only on s no memory is required
- Recurrence game also has memoryless strategy
 - Initially play decrease rank till we reach Recur(G)
 - Every Player 0 state s ∈ Recur(G) is in Reach⁺(Recur(G)) : again play decrease rank to revisit Recur(G)

Determinacy

- What happens outside Reach(Recur(G))?
- Trap for Player 0 : set of states X such that
 - For Player 0, all moves from X lead back to X
 - For Player 1, at least one move from X leads back to X



 Player 0 cannot leave the trap and Player 1 can force Player 0 to stay in the trap

Determinacy . . .

- Complement of Reach(Recur(G)) is a 0 trap
 - In general, for any set X, the complement of Reach(X) is a 0 trap
- If the game starts outside Reach(Recur(G), Player 1 can keep the game outside Reach(Recur(G) and win
- Büchi games are determined
 From every position, either Player 0 wins or Player 1 wins
- This is a special case of a very general result for infinite games [Martin, 1975]

More complicated winning conditions

- A play in this game is a sequence in which states {1,2} alternate with {A, B}
- Player 0 wins if the highest number that appears infinitely often is equal to the number of letters that appear infinitely often
 - If only A or B appear infinitely often, 2 should not appear infinitely often
 - If both A and B appear infinitely often, 2 should appear infinitely often

More complicated winning conditions

- A memoryless strategy will force Player 0 to uniformly respond with a move to 1 or 2 from A and from B
 - If Player 0 chooses 1 from both, Player 1 alternates A and B
 - If Player 0 chooses 1 from A and 2 from B, Player 1 always plays B
 - If Player 0 chooses 2 from A and 1 from B, Player 1 always plays A
 - If Player 0 chooses 2 from both, Player 1 uniformly chooses A (or B)

More complicated winning conditions

- Player 0 should remember what Player 1 has played
 - Choose 1 if the latest move by Player 1 is the same as the previous move
 - Choose 2 if the latest move by Player 1 is different from the previous move
- This is a finite memory strategy Player 0 only needs to remember one previous move of Player 1

More complicated winning conditions . . .

- Muller condition: family of good sets (G_1, G_2, \ldots, G_k) Set of states visited infinitely often should exactly be one of the G_i 's
- The winning condition of the previous example can be represented as the family ({1, A}, {1, B}, {2, A, B}, {1, 2, A, B})

Strategies and memory

- Need a systematic way to maintain bounded history
- Later Appearance Record (LAR)
 - Remember relative order of last visit to each state
 - Hit position, where last change occurred

 $\begin{array}{l} \bullet \hspace{0.1cm} A \longrightarrow A1 \longrightarrow A1B \longrightarrow A1B2 \longrightarrow \bullet 1B2A \longrightarrow 1B \bullet A2 \\ \longrightarrow 1 \bullet A2B \longrightarrow 1A \bullet B2 \longrightarrow 1 \bullet B2A \longrightarrow 1B \bullet A2 \\ \longrightarrow 1 \bullet A2B \longrightarrow 1A \bullet B2 \longrightarrow 1 \bullet B2A \longrightarrow \cdots \end{array}$

Analyzing LAR

- States visited only finite number of times eventually stay to left of hit position
- If exactly s₁, s₂,..., s_n are visited infinitely often, then infinitely often the LAR will be of the form α ● β where, among the states visited so far,
 - α is the set of states visited finite number of times
 - β is a permutation of s_1, s_2, \ldots, s_n
- Consider a run

 $\begin{array}{l} \mathsf{A} \rightarrow 1 \rightarrow \mathsf{B} \rightarrow 2 \rightarrow \mathsf{A} \rightarrow 2 \rightarrow \mathsf{B} \rightarrow 2 \rightarrow \mathsf{A} \rightarrow 2 \rightarrow \cdots, \\ \text{visiting } \{\mathsf{A},\mathsf{B},\mathsf{2}\} \text{ infinitely often} \end{array}$

LAR evolves as

 $\begin{array}{l} \mathsf{A} \rightarrow \mathsf{A1} \rightarrow \mathsf{A1B} \rightarrow \mathsf{A1B2} \rightarrow \bullet \mathsf{1B2A} \rightarrow \mathsf{1B} \bullet \mathsf{A2} \\ \rightarrow \mathsf{1} \bullet \mathsf{A2B} \rightarrow \mathsf{1A} \bullet \mathsf{B2} \rightarrow \mathsf{1} \bullet \mathsf{B2A} \rightarrow \mathsf{1B} \bullet \mathsf{A2} \\ \rightarrow \mathsf{1} \bullet \mathsf{A2B} \rightarrow \mathsf{1A} \bullet \mathsf{B2} \rightarrow \mathsf{1} \bullet \mathsf{B2A} \rightarrow \cdots \end{array}$

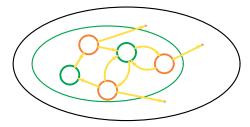
A new winning condition

- Muller condition (G₁, G₂, ..., G_k)
- Expand state space to include LAR: states are now (s, ℓ)
- E_i : (s, ℓ) s.t. $\ell = \alpha \bullet \beta$ an LAR with hit position < i
- F_i : E_i plus (s, ℓ) s.t. $\ell = \alpha \bullet \beta$ an LAR with hit position = *i* and β a permutation of some Muller set G_i
- $\bullet \ \mathsf{E}_1 \subsetneq \mathsf{F}_1 \subsetneq \mathsf{E}_2 \subsetneq \cdots \subsetneq \mathsf{E}_n \subsetneq \mathsf{F}_n$
 - Merge (E_i, E_{i+1}) if $F_i \setminus E_i = \emptyset$
 - Merge (F_i, F_{i+1}) if $E_{i+1} \setminus F_i = \emptyset$
- Among $E_1 \subsetneq F_1 \subsetneq \cdots \subsetneq E_n \subsetneq F_n$, consider largest set that appears infinitely often
 - If this set is some E_i, Player 0 loses
 - If this set is some F_i, Player 0 wins
- Rabin chain condition

Parity condition

- \bullet Rabin chain condition $\mathsf{E}_1 \subsetneq \mathsf{F}_1 \subsetneq \cdots \subsetneq \mathsf{E}_n \subsetneq \mathsf{F}_n$
- Player 0 wins if "index" of largest infinitely occurring set is even
- Colour states with colours {1, 2, ..., 2n}
 - States in E₁ get colour 1
 - States in $F_1 \setminus E_1$ get colour 2
 - . . .
 - $\bullet~\mbox{States}$ in ${\sf E}_i \setminus {\sf F}_{i-1}$ get colour 2i-1
 - States in $\textbf{F}_i \setminus \textbf{E}_i$ get colour 2i
- Player 0 wins if largest colour visited infinitely often is even
- Parity condition

- Trap for Player 0 : set of states X such that
 - For Player 0, all moves from X lead back to X
 - For Player 1, at least one move from X leads back to X
 - Player 0 cannot leave the trap and Player 1 can force Player 0 to stay in the trap



- Trap for Player 1 : symmetric
- For any X, S \ Reach(X) is a 0 trap

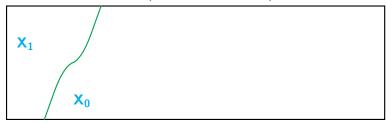
- A set of positions **U** is a 0-paradise if **U** is a 1 trap in which Player 0 has a winning strategy
- Define a 1-paradise symmetrically

Theorem

The set of positions of a parity game can be partitioned into a 0-paradise and a 1-paradise

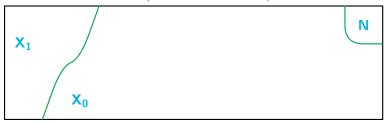
- Proof is by induction on the size of largest colour **n** used to label positions
- Base case: n = 0
 - Only Player 0 can win
 - Entire set of positions is a 0 paradise

• Assume n > 0 is even (n odd is symmetric)



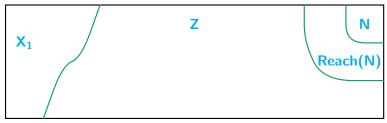
• Suppose X_1 is an 1-paradise and complement X_0 is a 1 trap

• Assume n > 0 is even (n odd is symmetric)

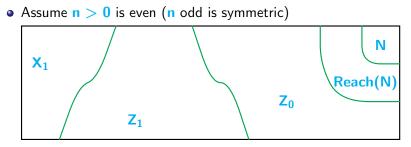


- Suppose X₁ is an 1-paradise and complement X₀ is a 1 trap
- Let $N \subseteq X_0$ be states with colour **n**

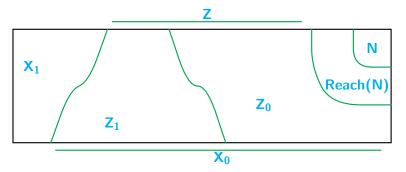
• Assume n > 0 is even (n odd is symmetric)



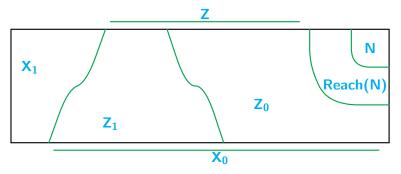
- Suppose X₁ is an 1-paradise and complement X₀ is a 1 trap
- Let $N \subseteq X_0$ be states with colour n
- Let Z be $X_0 \setminus \text{Reach}(N)$



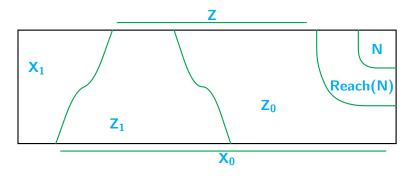
- Suppose X₁ is an 1-paradise and complement X₀ is a 1 trap
- Let $N \subseteq X_0$ be states with colour n
- Let Z be X₀ \ Reach(N)
- Z is a subgame with parities < n Inductively, split Z as 1 paradise Z₁ and 0 paradise Z₀



- If Z_1 is nonempty, we can extend 1 paradise X_1 to $X_1 \cup Z_1$
 - Z is a 0 trap in X_0 , Z_1 is a 0 trap in $Z \Rightarrow Z_1$ is a 0 trap in X_0
 - $X_1 \cup Z_1$ is a 0 trap
 - If game stays in Z₁, 1 wins Z game
 - If game moves to X_1 , 1 wins in X_1



- If Z_1 is nonempty, we can extend 1 paradise X_1 to $X_1 \cup Z_1$
- If Z_1 is empty, X_0 is a 0 paradise
 - From N, return to X₀
 - From Reach(N) return to N
 - From Z₀ win Z₀ game



- If Z_1 is nonempty, we can extend 1 paradise X_1 to $\mathsf{X}_1 \cup \mathsf{Z}_1$
- If Z_1 is empty, X_0 is a 0 paradise
- Recursively partition positions into 0 and 1 paradise, starting with X₁ empty

Concluding remarks

- Problem originally posed by Church/Büchi, solved by Büchi and Landweber in 1969
- Can be extended to certain kinds of infinite game graphs that are finitely generated
 - Pushdown graphs, corresponding to an automaton with a stack
- The model checking problem for modal *µ*-calculus directly reduces to solving parity games
- What is the complexity of constructing a memoryless winning strategy for parity games?
 - Our recursive algorithm has complexity O(mn^d) for a game with m edges, n positions, d colours
 - The problem is in $NP \cap co(NP)$. Is it in P?
- Can we do improve on LAR for winning conditions that require memory?

References

- Robert McNaughton: Infinite games played on finite graphs, Annals of Pure and Applied Logic, 65 (1993) 149–184.
- Wolfgang Thomas:

On the synthesis of strategies in infinite games, Proceedings of STACS 1995, Springer Lecture Notes in Computer Science (1995).

• Erich Grädel, Wolfgang Thomas, Thomas Wilke (Eds.): Automata, Logics, and Infinite Games: A Guide to Current Research,

Springer Lecture Notes in Computer Science Vol 2500 (2002).