The Expressive Power of Linear-time Temporal Logic

K Narayan Kumar

Chennai Mathematical Institute email:kumar@cmi.ac.in

IIT Guwahati, July 2006

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

イロン イ団 と イヨン イヨン

€ •) < (~

Summary of Last Lecture

• LTL is expressible in FO.

æ

5990

€

Summary of Last Lecture

- LTL is expressible in FO.
- FO definable languages are regular. (Via EF Games)

Summary of Last Lecture

- LTL is expressible in FO.
- FO definable languages are regular. (Via EF Games)
- FO definable languages are aperiodic. (Via EF Games, Syntacic Monoid)

Star-free Regular Languages

Regular expressions constructed without the * operator:

 $e ::= a | e_1 + e_2 | \neg e_1 | e_1 \cdot e_2$

5990

∍

Star-free Regular Languages

Regular expressions constructed without the * operator:

 $e ::= a | e_1 + e_2 | \neg e_1 | e_1 \cdot e_2$

Theorem:(Schutzenberger) *L* is aperiodic if and only if it is star-free.

Theorem: (McNaughton and Papert) L is star-free if and only if it is FO expressible.

Regular expressions constructed without the * operator:

 $e ::= a | e_1 + e_2 | \neg e_1 | e_1 \cdot e_2$

Theorem:(Schutzenberger) *L* is aperiodic if and only if it is star-free.

Theorem: (McNaughton and Papert) L is star-free if and only if it is FO expressible.

Question: Can we translate star-free expressions into LTL?

Regular expressions constructed without the * operator:

 $e ::= a | e_1 + e_2 | \neg e_1 | e_1 \cdot e_2$

Theorem:(Schutzenberger) *L* is aperiodic if and only if it is star-free.

Theorem: (McNaughton and Papert) L is star-free if and only if it is FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas φ_1 and φ_2 to describe the language $L(\varphi_1).L(\varphi_2)$?

Regular expressions constructed without the * operator:

 $e ::= a | e_1 + e_2 | \neg e_1 | e_1 \cdot e_2$

Theorem:(Schutzenberger) *L* is aperiodic if and only if it is star-free.

Theorem: (McNaughton and Papert) L is star-free if and only if it is FO expressible.

Question: Can we translate star-free expressions into LTL?

How do we put together LTL formulas φ_1 and φ_2 to describe the language $L(\varphi_1).L(\varphi_2)$?

Easy if the decomposition is unambiguous. (eg.) $L_1.c.L_2$ where either L_1 or L_2 is *c*-free.

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

DQ CV

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

• *M* is the trivial monoid.

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- *M* is the trivial monoid.
 - *L* is Σ^+ . Use \top .

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- *M* is the trivial monoid.
 - *L* is Σ^+ . Use \top .
 - *L* is \emptyset . Use \bot .

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- *M* is the trivial monoid.
 - *L* is Σ^+ . Use \top .
 - *L* is \emptyset . Use \bot .
- Σ is singleton.

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- *M* is the trivial monoid.
 - *L* is Σ^+ . Use \top .
 - *L* is \emptyset . Use \bot .
- Σ is singleton.
 - L is finite. Easy.

AQ (A

The proof proceeds via a double induction: On the size of the monoid recognizing L and the size of the alphabet.

The Base Cases:

- *M* is the trivial monoid.
 - *L* is Σ^+ . Use \top .
 - *L* is \emptyset . Use \bot .
- Σ is singleton.
 - *L* is finite. Easy.
 - L is $\{a^i \mid i \geq N\}$. Easy.

Induction Step: Given *L* over an alphabet Σ recognized by a monoid *M* such that:

< <p>—

æ

5990

1

€

Induction Step: Given *L* over an alphabet Σ recognized by a monoid *M* such that:

• if |M'| < |M| then any language recognized by M' is expressible in *LTL*.

Sac

Induction Step: Given *L* over an alphabet Σ recognized by a monoid *M* such that:

- if |M'| < |M| then any language recognized by M' is expressible in *LTL*.
- if L' is a language over an alphabet A with |A| < |Σ| recognized by M then L' is expressible in LTL_A.

show that L is expressible in LTL_{Σ} .

AQ (A

Induction Step: Given *L* over an alphabet Σ recognized by a monoid *M* such that:

- if |M'| < |M| then any language recognized by M' is expressible in *LTL*.
- if L' is a language over an alphabet A with |A| < |Σ| recognized by M then L' is expressible in LTL_A.

show that L is expressible in LTL_{Σ} .

Observation 1: If φ is a LTL_A formula describing the language L and $A \subseteq \Sigma$ then

 $\varphi \wedge \bigwedge_{a \in \Sigma \setminus A} \mathsf{G} \neg \mathsf{a}$

is a LTL_{Σ} formula that describes L.

AQ (A

Let *L* be recognized by *M* via the morphism *h* as $h^{-1}(X)$.

5990

€

Let *L* be recognized by *M* via the morphism *h* as $h^{-1}(X)$.

Pick a letter c such that $h(c) \neq 1$.

5990

Let *L* be recognized by *M* via the morphism *h* as $h^{-1}(X)$.

Pick a letter c such that $h(c) \neq 1$.

Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Let *L* be recognized by *M* via the morphism *h* as $h^{-1}(X)$.

Pick a letter c such that $h(c) \neq 1$.

Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Decompose *L* into three disjoint sets:

- L₀ consisting of words of L with no cs.
- L_1 consisting of words of L with exactly one c.
- L₂ consisting of words of L with at least two cs.

Let *L* be recognized by *M* via the morphism *h* as $h^{-1}(X)$.

Pick a letter c such that $h(c) \neq 1$.

Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Decompose *L* into three disjoint sets:

- L₀ consisting of words of L with no cs.
- L_1 consisting of words of L with exactly one c.
- L_2 consisting of words of L with at least two cs.

"No cs", "Exactly 1 c" and "Atleast 2 cs" are expressible in LTL.

Let L be recognized by M via the morphism h as $h^{-1}(X)$.

Pick a letter c such that $h(c) \neq 1$.

Such a c must exist. Otherwise, L is recognized by the trivial monoid.

Decompose *L* into three disjoint sets:

- L_0 consisting of words of L with no cs.
- L_1 consisting of words of L with exactly one c.
- L_2 consisting of words of L with at least two cs.

"No cs", "Exactly 1 c" and "Atleast 2 cs" are expressible in LTL.

It suffices to show that each of these three languages is LTL expressible.

The Trivial Case: L₀

Let
$$A = \Sigma \setminus \{c\}$$
.

< 🗆 🕨

🗗 🕨 🔺 🚍

€

1

Let $A = \Sigma \setminus \{c\}$.

• L₀ is language over a smaller alphabet A, recognized by M via h.

5990

∍

Let $A = \Sigma \setminus \{c\}$.

- L₀ is language over a smaller alphabet A, recognized by M via h.
- So, L_0 is defined by an LTL_A formula φ_0 over A.

Let $A = \Sigma \setminus \{c\}$.

- L₀ is language over a smaller alphabet A, recognized by M via h.
- So, L_0 is defined by an LTL_A formula φ_0 over A.
- By Observation 1, it is expressible in LTL_{Σ} .

The Easy Case: L_1

$L_1 = \bigcup_{\alpha.h(c).\beta \in X} (h^{-1}(\alpha) \cap A^*).c.(h^{-1}(\beta) \cap A^*)$

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

< n

æ

5990

1

€

The Easy Case: L₁

$$L_1 = \bigcup_{\alpha.h(c).\beta \in X} (h^{-1}(\alpha) \cap A^*).c.(h^{-1}(\beta) \cap A^*)$$

Why?

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic

< □ →

🗗 🕨 🔺 🚍

€

1

The Easy Case: L_1

$$L_1 = \bigcup_{\alpha.h(c).\beta \in X} (h^{-1}(\alpha) \cap A^*).c.(h^{-1}(\beta) \cap A^*)$$

Why?

• If xcy is in the RHS then $h(xcy) = \alpha . h(c) . \beta \in X$. Thus $xcy \in L$.

< 🗆

æ

5990

€

=

The Easy Case: L_1

$$L_1 = \bigcup_{\alpha.h(c).\beta \in X} (h^{-1}(\alpha) \cap A^*).c.(h^{-1}(\beta) \cap A^*)$$

Why?

- If xcy is in the RHS then $h(xcy) = \alpha . h(c) . \beta \in X$. Thus $xcy \in L$.
- Let $w \in L_1$. Therefore, w = xcy. Take $\alpha = h(x)$ and $\beta = h(y)$.

< <p>—

5990
The Easy Case: L_1

$$L_1 = \bigcup_{\alpha.h(c).\beta \in X} (h^{-1}(\alpha) \cap A^*).c.(h^{-1}(\beta) \cap A^*)$$

Let $L_{\alpha} = h^{-1}(\alpha) \cap A^*$ and $L_{\beta} = h^{-1}(\beta) \cap A^*$.

< n

æ

5990

₹

The Easy Case: L_1

$$L_1 = \bigcup_{\alpha.h(c).\beta \in X} (h^{-1}(\alpha) \cap A^*).c.(h^{-1}(\beta) \cap A^*)$$

Let $L_{\alpha} = h^{-1}(\alpha) \cap A^*$ and $L_{\beta} = h^{-1}(\beta) \cap A^*$.

 L_1 is a union of languages of the form $L_{\alpha}.c.L_{\beta}$ where $L_{\alpha}, L_{\beta} \subseteq A^*$ are recognized by M and hence LTL_A (and therefore LTL_{Σ}) expressible.

The Easy Case: L_1

$$L_1 = \bigcup_{\alpha.h(c).\beta \in X} (h^{-1}(\alpha) \cap A^*).c.(h^{-1}(\beta) \cap A^*)$$

Let $L_{\alpha} = h^{-1}(\alpha) \cap A^*$ and $L_{\beta} = h^{-1}(\beta) \cap A^*$.

 L_1 is a union of languages of the form $L_{\alpha}.c.L_{\beta}$ where $L_{\alpha}, L_{\beta} \subseteq A^*$ are recognized by M and hence LTL_A (and therefore LTL_{Σ}) expressible.

Well, almost! $L_{\alpha} \cap A^+$ and $L_{\beta} \cap A^+$ are LTL expressible. We have to deal with ϵ separately

We may rewrite $L_{\alpha}.c.L_{\beta}$ as

 $A^*.c.L_{\beta} \cap L_{\alpha}.c.\Sigma^*$

5990

We may rewrite $L_{\alpha}.c.L_{\beta}$ as

 $A^*.c.L_{\beta} \cap L_{\alpha}.c.\Sigma^*$

If φ_{β} is the LTL_{Σ} formula expressing $L_{\beta} \cap A^+$ then $\varphi_1 = \top U(c \wedge X\varphi_{\beta})$ describes $A^*.c.(L_{\beta} \cap A^+)$.

We may rewrite $L_{\alpha}.c.L_{\beta}$ as

 $A^*.c.L_{\beta} \cap L_{\alpha}.c.\Sigma^*$

If φ_{β} is the LTL_{Σ} formula expressing $L_{\beta} \cap A^+$ then $\varphi_1 = \top U(c \wedge X\varphi_{\beta})$ describes $A^*.c.(L_{\beta} \cap A^+)$.

If $\epsilon \notin L_{\beta}$ then φ_1 also describes the language $A^*.c.L_{\beta}$.

A Q Q

We may rewrite $L_{\alpha}.c.L_{\beta}$ as

 $A^*.c.L_{\beta} \cap L_{\alpha}.c.\Sigma^*$

If φ_{β} is the LTL_{Σ} formula expressing $L_{\beta} \cap A^+$ then $\varphi_1 = \top U(c \wedge X\varphi_{\beta})$ describes $A^*.c.(L_{\beta} \cap A^+)$.

If $\epsilon \notin L_{\beta}$ then φ_1 also describes the language $A^*.c.L_{\beta}$.

Otherwise, $\varphi_1 \vee \top U(c \land \neg X \top)$ describes the language $A^*.c.L_\beta$.

A Q Q

We may rewrite $L_{\alpha}.c.L_{\beta}$ as

 $A^*.c.L_{\beta} \cap L_{\alpha}.c.\Sigma^*$

If φ_{β} is the LTL_{Σ} formula expressing $L_{\beta} \cap A^+$ then $\varphi_1 = \top U(c \wedge X\varphi_{\beta})$ describes $A^*.c.(L_{\beta} \cap A^+)$.

If $\epsilon \notin L_{\beta}$ then φ_1 also describes the language $A^*.c.L_{\beta}$.

Otherwise, $\varphi_1 \vee \top U(c \land \neg X \top)$ describes the language $A^*.c.L_\beta$.

This case was easy because our modalities walk only to the right and so cannot "stray" to the left. Dealing with $L_{\alpha}.c.\Sigma^*$ will need a little more work.

Let φ_{α} be a *LTL*_A formula describing $L_{\alpha} \cap A^+$.

5990

∍

Let φ_{α} be a *LTL*_A formula describing $L_{\alpha} \cap A^+$.

We cannot use φ_{α} to describe $L_{\alpha}.c.\Sigma^*$ since the modalities may walk to the right and cross the *c* boundary.

Let φ_{α} be a *LTL*_A formula describing $L_{\alpha} \cap A^+$.

We "relativize" φ_{α} to a formula φ'_{α} which examines the part to the left of the first *c* and checks if it satisfies φ_{α} .

A Q Q

Let φ_{α} be a *LTL*_A formula describing $L_{\alpha} \cap A^+$.

We "relativize" φ_{α} to a formula φ'_{α} which examines the part to the left of the first *c* and checks if it satisfies φ_{α} .

Formally, $w \models \varphi'_{\alpha}$ iff w = xcy, $x \in A^+$ and $x \models \varphi_{\alpha}$.

A Q Q

Let φ_{α} be a *LTL*_A formula describing $L_{\alpha} \cap A^+$.

We "relativize" φ_{α} to a formula φ'_{α} which examines the part to the left of the first *c* and checks if it satisfies φ_{α} .

Formally, $w \models \varphi'_{\alpha}$ iff w = xcy, $x \in A^+$ and $x \models \varphi_{\alpha}$.

This relativization is defined via structural recursion as follows:

$$\begin{array}{lll} a' &=& a \wedge \mathsf{XFc} \\ (\varphi \wedge \psi)' &=& \varphi' \wedge \psi' \\ (\neg \varphi)' &=& (\neg \varphi') \wedge \neg c \wedge \mathsf{Fc} \\ (\varphi \mathsf{XU}\psi)' &=& (\varphi' \wedge \neg c) \mathsf{XU}(\psi' \wedge \neg c) \end{array}$$

Let φ_{α} be a *LTL*_A formula describing $L_{\alpha} \cap A^+$.

We "relativize" φ_{α} to a formula φ'_{α} which examines the part to the left of the first *c* and checks if it satisfies φ_{α} .

Formally, $w \models \varphi'_{\alpha}$ iff w = xcy, $x \in A^+$ and $x \models \varphi_{\alpha}$.

This relativization is defined via structural recursion as follows:

$$\begin{array}{lll} \mathbf{a}' &= \mathbf{a} \wedge \mathsf{XFc} \\ (\varphi \wedge \psi)' &= \varphi' \wedge \psi' \\ (\neg \varphi)' &= (\neg \varphi') \wedge \neg \mathbf{c} \wedge \mathsf{Fc} \\ (\varphi \mathsf{XU}\psi)' &= (\varphi' \wedge \neg \mathbf{c}) \mathsf{XU}(\psi' \wedge \neg \mathbf{c}) \end{array}$$

 $\varphi_2 = \varphi'_{\alpha}$ describes $(L_{\alpha} \cap A^+).c.\Sigma^*$. If $e \notin L_{\alpha}$ then φ_2 also describes $L_{\alpha}.c.\Sigma^*$. Otherwise, use $\varphi_2 \vee c$.

I WILL BE SLOPPY WITH ϵ

FROM NOW ON.

1

∍

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_2 is of the form $t_0ct_1ct_2c \dots t_{k-1}ct_k$ for some k > 1, $t_i \in A^*$.

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_2 is of the form $t_0ct_1ct_2c \dots t_{k-1}ct_k$ for some k > 1, $t_i \in A^*$.

Further, $h(w) = h(t_0)h(ct_1ct_2ct_3...t_{k-1}c)h(t_k) \in X$.

A Q Q

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_2 is of the form $t_0ct_1ct_2c \dots t_{k-1}ct_k$ for some k > 1, $t_i \in A^*$.

Further, $h(w) = h(t_0)h(ct_1ct_2ct_3...t_{k-1}c)h(t_k) \in X$.

Let $\Delta = (cA^*)^+ c$. Then, $L_2 \subseteq A^* \cdot \Delta \cdot A^*$.

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_2 is of the form $t_0ct_1ct_2c \dots t_{k-1}ct_k$ for some k > 1, $t_i \in A^*$.

Further, $h(w) = h(t_0)h(ct_1ct_2ct_3...t_{k-1}c)h(t_k) \in X$.

Let $\Delta = (cA^*)^+c$. Then, $L_2 \subseteq A^*.\Delta.A^*$.

 $L_2 = \bigcup_{\alpha\beta\gamma\in X} (h^{-1}(\alpha)\cap A^*).(h^{-1}(\beta)\cap \Delta).(h^{-1}(\gamma)\cap A^*)$

So far, we got away by examining the alphabet. Here we need to examine M and induct on its size.

A word w in L_2 is of the form $t_0ct_1ct_2c \dots t_{k-1}ct_k$ for some k > 1, $t_i \in A^*$.

Further, $h(w) = h(t_0)h(ct_1ct_2ct_3...t_{k-1}c)h(t_k) \in X$.

Let $\Delta = (cA^*)^+c$. Then, $L_2 \subseteq A^*.\Delta.A^*$.

 $L_2 = \bigcup_{\alpha\beta\gamma\in X} (h^{-1}(\alpha)\cap A^*).(h^{-1}(\beta)\cap \Delta).(h^{-1}(\gamma)\cap A^*)$

The first and third components are LTL definable. What about the middle component?

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

5990

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

Translate each word in Δ to a word over the alphabet M (actually h(A*) ⊆ M) via a map σ.

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

- Translate each word in Δ to a word over the alphabet M (actually h(A*) ⊆ M) via a map σ.
- 2 Construct a language K over M such that:

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

- Translate each word in Δ to a word over the alphabet M (actually h(A*) ⊆ M) via a map σ.
- 2 Construct a language K over M such that:

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

- Translate each word in Δ to a word over the alphabet M (actually h(A*) ⊆ M) via a map σ.
- 2 Construct a language K over M such that:

Q K is recognized by a aperiodic monoid smaller than M.

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

- Translate each word in Δ to a word over the alphabet M (actually h(A*) ⊆ M) via a map σ.
- 2 Construct a language K over M such that:

- **Q** K is recognized by a aperiodic monoid smaller than M.
- the LTL_M formula describing K can be lifted to a formula in LTL_Σ describing L_β ∩ Δ.

We show that the language $L_{\beta} \cap \Delta$ is LTL definable as follows:

- Translate each word in Δ to a word over the alphabet M (actually h(A*) ⊆ M) via a map σ.
- 2 Construct a language K over M such that:

- **2** K is recognized by a aperiodic monoid smaller than M.
- the LTL_M formula describing K can be lifted to a formula in LTL_Σ describing L_β ∩ Δ.

We use m to denote elements of M when treated as letters and m when they are treated as elements of the monoid M.

The map σ and Language K

The map σ is the obvious one:

```
\sigma ct_1 ct_2 \dots t_{k-2} ct_{k-1} c = h(t_1)h(t_2) \dots h(t_{k-1})
```

5990

∍

 $\sigma ct_1 ct_2 \dots t_{k-2} ct_{k-1} c = h(t_1)h(t_2) \dots h(t_{k-1})$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

 $K = \{ \mathbf{m}_1 \mathbf{m}_2 \dots \mathbf{m}_k \mid h(c) m_1 h(c) m_2 \dots h(c) m_k h(c) = \beta \}$

 $\sigma ct_1 ct_2 \dots t_{k-2} ct_{k-1} c = h(t_1)h(t_2) \dots h(t_{k-1})$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

 $K = \{\mathbf{m}_1 \mathbf{m}_2 \dots \mathbf{m}_k \mid h(c) m_1 h(c) m_2 \dots h(c) m_k h(c) = \beta\}$

With these definitions:

 $\sigma^{-1}(\mathcal{K}) = \{ ct_1 ct_2 \dots ct_k c \mid h(t_1)h(t_2) \dots h(t_k) \in \mathcal{K} \}$

AQ (A

 $\sigma ct_1 ct_2 \dots t_{k-2} ct_{k-1} c = h(t_1)h(t_2) \dots h(t_{k-1})$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

 $K = \{\mathbf{m}_1 \mathbf{m}_2 \dots \mathbf{m}_k \mid h(c) m_1 h(c) m_2 \dots h(c) m_k h(c) = \beta\}$

With these definitions:

$$\sigma^{-1}(K) = \{ct_1ct_2\dots ct_kc \mid h(t_1)h(t_2)\dots h(t_k) \in K\} \\ = \{ct_1ct_2\dots ct_kc \mid h(c)h(t_1)h(c)h(t_2)\dots h(c)h(t_k)h(c) = \beta\}$$

 $\sigma ct_1 ct_2 \dots t_{k-2} ct_{k-1} c = h(t_1)h(t_2) \dots h(t_{k-1})$

Given the map σ and requirement 2.1, the definition of K is also quite obvious:

 $K = \{\mathbf{m}_1 \mathbf{m}_2 \dots \mathbf{m}_k \mid h(c) m_1 h(c) m_2 \dots h(c) m_k h(c) = \beta\}$

With these definitions:

$$\sigma^{-1}(K) = \{ct_1ct_2\dots ct_kc \mid h(t_1)h(t_2)\dots h(t_k) \in K\} \\ = \{ct_1ct_2\dots ct_kc \mid h(c)h(t_1)h(c)h(t_2)\dots h(c)h(t_k)h(c) = \beta \\ = L_\beta \cap \Delta \text{ as required by } 2.1 \}$$

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid $Loc_m(M)$: Let M be a monoid and $m \in M$. Then

 $\operatorname{Loc}_m(M) = (mM \cap Mm, \circ, m)$

where $(xm) \circ (my) \stackrel{\triangle}{=} xmy$.

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid $Loc_m(M)$: Let M be a monoid and $m \in M$. Then

 $\operatorname{Loc}_m(M) = (mM \cap Mm, \circ, m)$

where $(xm) \circ (my) \stackrel{\triangle}{=} xmy$.

Observe that xm ∘ ym = xm ∘ my' = xmy' = xym. Thus ∘ is associative and m = 1.m is the identity w.r.t. ∘.

Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid $Loc_m(M)$: Let M be a monoid and $m \in M$. Then

 $\operatorname{Loc}_m(M) = (mM \cap Mm, \circ, m)$

where $(xm) \circ (my) \stackrel{\triangle}{=} xmy$.

- Observe that xm ∘ ym = xm ∘ my' = xmy' = xym. Thus ∘ is associative and m = 1.m is the identity w.r.t. ∘.
- $xm \circ xm \circ \ldots xm = x^N m$. Thus, $Loc_m(M)$ is aperiodic whenever M is aperiodic.
Localizing a Monoid at an element

The following construction is due to Diekert and Gastin.

The Monoid $Loc_m(M)$: Let M be a monoid and $m \in M$. Then

 $\operatorname{Loc}_m(M) = (mM \cap Mm, \circ, m)$

where $(xm) \circ (my) \stackrel{\triangle}{=} xmy$.

- Observe that xm ∘ ym = xm ∘ my' = xmy' = xym. Thus ∘ is associative and m = 1.m is the identity w.r.t. ∘.
- $xm \circ xm \circ \dots xm = x^N m$. Thus, $Loc_m(M)$ is aperiodic whenever M is aperiodic.
- $1 \notin \text{Loc}_m(M)$ if $m \neq 1$. This follows from the fact that $1 \neq m'm$ for any $m, m' \neq 1$.

SQ C

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

5990

€

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^* \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by g(m) = h(c)mh(c).

5990

∍

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^* \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by g(m) = h(c)mh(c).

Claim: $K = g^{-1}(\beta)$

∍

Sac

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^* \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by g(m) = h(c)mh(c).

Claim: $K = g^{-1}(\beta)$

Proof:

∍

Sac

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^* \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by g(m) = h(c)mh(c).

Claim: $K = g^{-1}(\beta)$

Proof:

• Note that $\beta \in \operatorname{Loc}_{h(c)}(M)$ whenever $h^{-1}(\beta) \cap \Delta \neq \emptyset$.

500

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^* \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by g(m) = h(c)mh(c).

Claim: $K = g^{-1}(\beta)$

Proof:

- Note that $\beta \in \operatorname{Loc}_{h(c)}(M)$ whenever $h^{-1}(\beta) \cap \Delta \neq \emptyset$.
- $g(m_1m_2...m_k) = \beta$ if and only if $h(c)m_1h(c) \circ h(c)m_2h(c) \circ ...h(c)m_kh(c) = \beta$ if and only if $h(c)m_1h(c)m_2h(c)...h(c)m_kh(c) = \beta$ if and only if $m_1m_2...m_k \in K$.

SQ C

We now show that the monoid $\operatorname{Loc}_{h(c)}(M)$ accepts the language K.

Let $g: M^* \longrightarrow \operatorname{Loc}_{h(c)}(M)$ be given by g(m) = h(c)mh(c).

Claim: $K = g^{-1}(\beta)$

Proof:

- Note that $\beta \in \operatorname{Loc}_{h(c)}(M)$ whenever $h^{-1}(\beta) \cap \Delta \neq \emptyset$.
- $g(m_1m_2...m_k) = \beta$ if and only if $h(c)m_1h(c) \circ h(c)m_2h(c) \circ ...h(c)m_kh(c) = \beta$ if and only if $h(c)m_1h(c)m_2h(c)...h(c)m_kh(c) = \beta$ if and only if $m_1m_2...m_k \in K$.

K is recognized by a smaller monoid and hence there is an $LTL_{\cal M}$ formula that describes K

SQ C

We show that for any formula φ in LTL_M , there is a formula $\varphi^{\#}$ in LTL_{Σ} such that

$$w \models \varphi^{\#} \iff w = ct_1ct_2c \dots t_{k-1}ct_k, \text{ with } t_i \in A^*$$

and $\sigma(ct_1ct_2 \dots t_{k-1}c) \models \varphi$

5990

3

We show that for any formula φ in LTL_M , there is a formula $\varphi^{\#}$ in LTL_{Σ} such that

$$w \models \varphi^{\#} \iff w = ct_1ct_2c \dots t_{k-1}ct_k, \text{ with } t_i \in A^*$$

and $\sigma(ct_1ct_2\dots t_{k-1}c) \models \varphi$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$m^{\#} = (c \land XFc) \land (X\psi'_m)$$

where ψ_m is the formula in LTL_A describing
 $h^{-1}(m) \cap A^*$ and ψ'_m is its relativization

We show that for any formula φ in LTL_M , there is a formula $\varphi^{\#}$ in LTL_{Σ} such that

$$w \models \varphi^{\#} \iff w = ct_1ct_2c \dots t_{k-1}ct_k, \text{ with } t_i \in A^*$$

and $\sigma(ct_1ct_2\dots t_{k-1}c) \models \varphi$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$\begin{array}{ll} m^{\#} & = & (c \wedge \mathsf{XFc}) \wedge (\mathsf{X}\psi'_{\mathsf{m}}) \\ & & \text{where } \psi_{\mathsf{m}} \text{ is the formula in } LTL_{\mathsf{A}} \text{ describing} \\ & & h^{-1}(\mathsf{m}) \cap \mathsf{A}^{*} \text{ and } \psi'_{\mathsf{m}} \text{ is its relativization} \\ (\varphi_{1} \wedge \varphi_{2})^{\#} & = & \varphi_{1}^{\#} \wedge \varphi_{2}^{\#} \end{array}$$

We show that for any formula φ in LTL_M , there is a formula $\varphi^{\#}$ in LTL_{Σ} such that

$$w \models \varphi^{\#} \iff w = ct_1ct_2c \dots t_{k-1}ct_k, \text{ with } t_i \in A^*$$

and $\sigma(ct_1ct_2\dots t_{k-1}c) \models \varphi$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$\begin{array}{lll} m^{\#} & = & (c \wedge \mathsf{XFc}) \wedge (\mathsf{X}\psi'_{\mathsf{m}}) \\ & & \mathsf{where} \ \psi_{\mathsf{m}} \ \mathsf{is the formula in } LTL_{\mathsf{A}} \ \mathsf{describing} \\ & & h^{-1}(\mathsf{m}) \cap \mathsf{A}^{*} \ \mathsf{and} \ \psi'_{\mathsf{m}} \ \mathsf{is its relativization} \\ (\varphi_{1} \wedge \varphi_{2})^{\#} & = & \varphi_{1}^{\#} \wedge \varphi_{2}^{\#} \\ (\neg \varphi)^{\#} & = & \neg (\varphi^{\#}) \wedge (c \wedge \mathsf{XFc}) \end{array}$$

We show that for any formula φ in LTL_M , there is a formula $\varphi^{\#}$ in LTL_{Σ} such that

$$w \models \varphi^{\#} \iff w = ct_1ct_2c \dots t_{k-1}ct_k, \text{ with } t_i \in A^*$$

and $\sigma(ct_1ct_2\dots t_{k-1}c) \models \varphi$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$m^{\#} = (c \land XFc) \land (X\psi'_m)$$

where ψ_m is the formula in LTL_A describing
 $h^{-1}(m) \cap A^*$ and ψ'_m is its relativization
 $(\varphi_1 \land \varphi_2)^{\#} = \varphi_1^{\#} \land \varphi_2^{\#}$
 $(\neg \varphi)^{\#} = \neg (\varphi^{\#}) \land (c \land XFc)$
 $(X\varphi)^{\#} = X(\neg cU(c \land \varphi^{\#}))$

We show that for any formula φ in LTL_M , there is a formula $\varphi^{\#}$ in LTL_{Σ} such that

$$w \models \varphi^{\#} \iff w = ct_1ct_2c \dots t_{k-1}ct_k, \text{ with } t_i \in A^*$$

and $\sigma(ct_1ct_2\dots t_{k-1}c) \models \varphi$

The formula $\varphi^{\#}$ is defined recursively on the structure as follows:

$$m^{\#} = (c \land XFc) \land (X\psi'_{m})$$
where ψ_{m} is the formula in LTL_{A} describing
 $h^{-1}(m) \cap A^{*}$ and ψ'_{m} is its relativization
 $(\varphi_{1} \land \varphi_{2})^{\#} = \varphi_{1}^{\#} \land \varphi_{2}^{\#}$
 $(\neg \varphi)^{\#} = \neg (\varphi^{\#}) \land (c \land XFc)$
 $(X\varphi)^{\#} = X(\neg cU(c \land \varphi^{\#}))$
 $(\varphi_{1}U\varphi_{2})^{\#} = (c \Longrightarrow \varphi_{1}^{\#})U(c \land \varphi_{2}^{\#})$