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Linear-time Temporal Logic

LTL — convenient specification language

Atomic propositions, boolean connectives, temporal
modalities.
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Linear-time Temporal Logic

LTL — convenient specification language

Atomic propositions, boolean connectives, temporal
modalities.

Models are words.

Formulas are interpreted at positions of a word.

w = w1w2w3 . . . with wi ∈ Σ

w , i |= ϕ ?
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Syntax and Semantics

Atomic propositions: elements of Σ.

w , i |= a ⇐⇒ wi = a
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Syntax and Semantics

Atomic propositions: elements of Σ.

w , i |= a ⇐⇒ wi = a
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The Next state operator:

w , i |= Xϕ ⇐⇒ w , i + 1 |= ϕ
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Syntax and Semantics

The Until operator:

w , i |= ϕUψ ⇐⇒ ∃j ≥ i. w, j |= ψ and ∀i ≤ k < j. w, k |= ϕ
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Syntax and Semantics

The Until operator:

w , i |= ϕUψ ⇐⇒ ∃j ≥ i. w, j |= ψ and ∀i ≤ k < j. w, k |= ϕ
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Boolean Connectives:

ϕ ∧ ψ, ¬ϕ, . . .

with the usual interpretation.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Other Modalities

The Future modality

w , i |= Fϕ ⇐⇒ ∃j ≥ i. w, j |= ϕ
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Other Modalities

The Future modality
Fϕ = ⊤Uϕ
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Other Modalities

The Future modality
Fϕ = ⊤Uϕ
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Henceforth modality:

w , i |= Gϕ ⇐⇒ ∀j ≥ i. w, j |= ϕ
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Other Modalities

The Future modality
Fϕ = ⊤Uϕ
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Henceforth modality:

Gϕ = ¬F¬ϕ
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The Universal Modality

The Next-Until modality:

w , i |= ϕXUψ ≡ ∃j > i. w, j |= ψ and ∀i < k ≤ j. w, k |= ϕ
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The Universal Modality

The Next-Until modality:
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ϕXUψ = X(ϕUψ)
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The Universal Modality

The Next-Until modality:
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ϕXUψ = X(ϕUψ)

Next-Until can express everthing else

Xϕ = ⊥XUϕ
ϕUψ = ψ ∨ (ϕ ∧ ϕXUψ)
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LTL definable languages

A word satisfies ϕ if the initial position satisfies ϕ

w |= ϕ ⇐⇒ w , 1 |= ϕ
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LTL definable languages

A word satisfies ϕ if the initial position satisfies ϕ

w |= ϕ ⇐⇒ w , 1 |= ϕ

Formulas define languages. For example,

G(a =⇒ Fb)

describes words in which there is a b somewhere to the right of
every a.

b∗(aa∗bb∗)∗
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Finite/Infinite Words

LTL formulas are interpreted over both finite and infinite
words.
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LTL formulas are interpreted over both finite and infinite
words.

Satisfiability of a formula may depend on the class of models.
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Finite/Infinite Words

LTL formulas are interpreted over both finite and infinite
words.

Satisfiability of a formula may depend on the class of models.

GX⊤

is satisfied only over infinite words.

F¬X⊤

is satisfied only by finite words.

The empty word is not a model.
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First-Order Logic of Words

Consider the First-Order formula

ϕ = ∀x . (a(x) =⇒ ∃y . ((y > x) ∧ b(x))

interpreted over words.
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First-Order Logic of Words
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ϕ = ∀x . (a(x) =⇒ ∃y . ((y > x) ∧ b(x))

interpreted over words.

The variables x , y etc. refer to positions in the word.
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The formula a(x) asserts that the letter at position x is a.
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First-Order Logic of Words

Consider the First-Order formula

ϕ = ∀x . (a(x) =⇒ ∃y . ((y > x) ∧ b(x))

interpreted over words.

The variables x , y etc. refer to positions in the word.

The formula a(x) asserts that the letter at position x is a.

The quantifiers have the usual meaning.

The formula y > x is true if the position y appears
somewhere to the right of the position x .
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First-Order Logic of Words

Consider the First-Order formula

ϕ = ∀x . (a(x) =⇒ ∃y . ((y > x) ∧ b(x))

interpreted over words.

The variables x , y etc. refer to positions in the word.

The formula a(x) asserts that the letter at position x is a.

The quantifiers have the usual meaning.

The formula y > x is true if the position y appears
somewhere to the right of the position x .

A word w satisfies ϕ only if for any position (x) with the letter a,
there is some position to its right (y) with the letter b.

L(ϕ) = b∗(aa∗bb∗)∗
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First-Order Logic over words

The formula

∀x . ∀y . (a(x) ∧ a(y)) =⇒ x = y

is true of all words that have at most one a.
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First-Order Logic over words

The formula

∀x . ∀y . (a(x) ∧ a(y)) =⇒ x = y

is true of all words that have at most one a.
The formula

First(x)
△
= ∀y .(x = y) ∨ (x < y)

evaluates to true at a position x if and only if it is the first
position in the word.
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First-Order Logic over words

The formula

∀x . ∀y . (a(x) ∧ a(y)) =⇒ x = y

is true of all words that have at most one a.
The formula

First(x)
△
= ∀y .(x = y) ∨ (x < y)

evaluates to true at a position x if and only if it is the first
position in the word. Thus

∀x .(First(x) =⇒ a(x))

identifies all the words that begin with an a.
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .
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LTL formulas are interpreted at a pair w , i .

Translated to FO formulas with a single free variable.
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .

Translated to FO formulas with a single free variable.

T (a) = a(x)
T (Xα) = ∃y . (y = x + 1) ∧ T (α)[y/x ]
T (ϕUψ) = ∃y . (y ≥ x) ∧ T (ψ)[y/x ]∧

∀z .(x ≤ z < y) =⇒ T (ϕ)[z/x ]
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .

Translated to FO formulas with a single free variable.

T (a) = a(x)
T (Xα) = ∃y . (y = x + 1) ∧ T (α)[y/x ]
T (ϕUψ) = ∃y . (y ≥ x) ∧ T (ψ)[y/x ]∧

∀z .(x ≤ z < y) =⇒ T (ϕ)[z/x ]

w , i |= T (ϕ) ⇐⇒ w , i |= ϕ.
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LTL to FO over Words

LTL formulas are interpreted at a pair w , i .

Translated to FO formulas with a single free variable.

T (a) = a(x)
T (Xα) = ∃y . (y = x + 1) ∧ T (α)[y/x ]
T (ϕUψ) = ∃y . (y ≥ x) ∧ T (ψ)[y/x ]∧

∀z .(x ≤ z < y) =⇒ T (ϕ)[z/x ]

w , i |= T (ϕ) ⇐⇒ w , i |= ϕ.

T (ϕ) uses at the most 3 variables. So, LTL is expressible in
FO(3).
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.
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Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.
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Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.

What about FO?
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over
words is non-elementary.
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Complexity of LTL and FO

Satisfiability: Given a formula ϕ determine whether there is some
word w such tha w |= ϕ.

Theorem: (Clarke-Sistla) Satisfiability problem for LTL formulas is
PSPACE complete.

In particular, there is a satisfiability checking algorithm that runs in
time 2|ϕ|.

Not very different from the best known for propositional formulas.

Theorem: (Albert Meyer) Satisfiability checking for FO over
words is non-elementary.

Conclusion: FO seems to be a stronger logic than LTL.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.
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Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke’s proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke’s proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke’s proof due to
Volker Diekert and Paul Gastin.
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Expressive Completeness of LTL

Theorem: (Kamp) LTL is as expressive as FO over words.

Kamp’s logic uses “future” and “past” modalities.

Gabbay, Pnueli, Shelah and Stavi: Expressive completeness for
the future fragment.

Other proofs: Cohen, Perrin and Pin, Thomas Wilke.

Wilke’s proof uses a simple double induction. Has been generalized
to Mazurkiewicz traces.

Our presentation shall follow a variation of Wilke’s proof due to
Volker Diekert and Paul Gastin.

The rest of this talk and the next would be devoted to proving this
result.
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An Outline of the proof

1 Characterize the languages defined by FO.
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1 Every FO formula defines a regular language.
2 Every regular language is recognized by a finite monoid.
3 Every FO formula defines a regular language recognized by an

aperiodic monoid.
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An Outline of the proof

1 Characterize the languages defined by FO.
1 Every FO formula defines a regular language.
2 Every regular language is recognized by a finite monoid.
3 Every FO formula defines a regular language recognized by an

aperiodic monoid.

Ehrenfeucht-Fraisse Games
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An Outline of the proof

1 Characterize the languages defined by FO.
1 Every FO formula defines a regular language.
2 Every regular language is recognized by a finite monoid.
3 Every FO formula defines a regular language recognized by an

aperiodic monoid.

Ehrenfeucht-Fraisse Games

2 Transform aperiodic monoids into equivalent LTL formulas.

Wilke’s technique.
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Formulas with free variables

Let ϕ be a FO formula with free variables x1, . . . xk .
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Formulas with free variables

Let ϕ be a FO formula with free variables x1, . . . xk . A model of
ϕ: A word w along with an assignment of positions to x1, x2 . . . xk .
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Formulas with free variables

Let ϕ be a FO formula with free variables x1, . . . xk . A model of
ϕ: A word w along with an assignment of positions to x1, x2 . . . xk .

Example: φ = (x < y) ∧ a(x) ∧ b(y).

The bacabc with x assigned position 2 and y assigned position 5
satisfies φ.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Formulas with free variables

Let ϕ be a FO formula with free variables x1, . . . xk . A model of
ϕ: A word w along with an assignment of positions to x1, x2 . . . xk .

Example: φ = (x < y) ∧ a(x) ∧ b(y).

The bacabc with x assigned position 2 and y assigned position 5
satisfies φ.

Model as a word decorated with the variables x and y .

b a c a b c

x y
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Formulas with free variables

Let ϕ be a FO formula with free variables x1, . . . xk . A model of
ϕ: A word w along with an assignment of positions to x1, x2 . . . xk .

Example: φ = (x < y) ∧ a(x) ∧ b(y).

Another decorated word:

b a c a b c

x

y

φ is not satisifed by this word.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Formulas with free variables

Let ϕ be a FO formula with free variables x1, . . . xk . A model of
ϕ: A word w along with an assignment of positions to x1, x2 . . . xk .

Example: φ = (x < y) ∧ a(x) ∧ b(y).

Any formula defines a language of decorated words
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Decorated word models

A decorated word is a word over the alphabet Σ × 2V , where V is
a set of free variables.
Words corresponding to the decorated words:

b a c a b c

x y

is (b, ∅)(a, {x})(c , ∅)(a, ∅)(b, {y})(c , ∅).
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Decorated word models

A decorated word is a word over the alphabet Σ × 2V , where V is
a set of free variables.
Words corresponding to the decorated words:

b a c a b c

x

y

is (b, ∅)(a, ∅)(c , ∅)(a, ∅)(b, {x , y})(c , ∅).
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Decorated word models

A decorated word is a word over the alphabet Σ × 2V , where V is
a set of free variables.
Words corresponding to the decorated words:

b a c a b c

x

y

is (b, ∅)(a, ∅)(c , ∅)(a, ∅)(b, {x , y})(c , ∅).

A V -word is a word (a1,U1)(a2,U2) . . . (ak ,Uk) with

1 Ui ∩ Uj = ∅ for i 6= j .

2
⋃

1≤i≤k Ui = V .

L(ϕ) is a language of V-words for any V with free(ϕ) ⊆ V .
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Stratifying FO formulas

A natural measure of the complexity of a FO formula is its
quantifier-depth.

qd(ϕ) = 0 if ϕ is an atomic formula
qd(ϕ ∧ ψ) = Maximum(qd(ϕ), qd(ψ))
qd(¬ϕ) = qd(ϕ)
qd(∃x.ϕ) = 1 + qd(ϕ)
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Stratifying FO formulas

A natural measure of the complexity of a FO formula is its
quantifier-depth.

qd(ϕ) = 0 if ϕ is an atomic formula
qd(ϕ ∧ ψ) = Maximum(qd(ϕ), qd(ψ))
qd(¬ϕ) = qd(ϕ)
qd(∃x.ϕ) = 1 + qd(ϕ)

Theorem: For any i there are only finitely many formulas of
quantifier depth i or less (upto logical equivalence).
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Stratifying FO formulas

Why are we doing all this?
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Stratifying FO formulas

Why are we doing all this?

This allows us to establish properties of FO via induction.

For example, we could show, by induction on quantifier-depth, that
any language definable in FO is a regular language.
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Stratifying FO formulas

Why are we doing all this?

This allows us to establish properties of FO via induction.

For example, we could show, by induction on quantifier-depth, that
any language definable in FO is a regular language.

To do this we need an alternative characterization of
quantifier-depth.
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FO(k) definability

Question: When is L definable in FO(k)?
or equivalently
Question: When is L not definable in FO(k)?
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FO(k) definability

Question: When is L definable in FO(k)?
or equivalently
Question: When is L not definable in FO(k)?

Find a pair of words w , w ′ such that

1 w ∈ L, w ′ 6∈ L.

2 ∀φ ∈ FO(k). (w |= φ) ⇐⇒ (w ′ |= φ).
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Question: When is L definable in FO(k)?
or equivalently
Question: When is L not definable in FO(k)?

Find a pair of words w , w ′ such that

1 w ∈ L, w ′ 6∈ L.

2 ∀φ ∈ FO(k). (w |= φ) ⇐⇒ (w ′ |= φ).

Question: When are two words distinguishable by FO(k) ?
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FO(k) definability

Question: When is L definable in FO(k)?
or equivalently
Question: When is L not definable in FO(k)?

Find a pair of words w , w ′ such that

1 w ∈ L, w ′ 6∈ L.

2 ∀φ ∈ FO(k). (w |= φ) ⇐⇒ (w ′ |= φ).

Question: When are two words distinguishable by FO(k) ?

EF-Games: Set up k-round two player game (between say player 0
and player 1) based on w and w ′. Relate winning strategies to
distinguishability.
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The Game

Let w , w ′ be two words V -words and let k be an integer. The k

round EF-game consists of the two players making k moves. In
round i :
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The Game

Let w , w ′ be two words V -words and let k be an integer. The k

round EF-game consists of the two players making k moves. In
round i :

1 Player 0 (who is trying to show that the two words are
distinguishable) picks one of the two words and a position p in
that word and labels it with xi .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



The Game

Let w , w ′ be two words V -words and let k be an integer. The k

round EF-game consists of the two players making k moves. In
round i :

1 Player 0 (who is trying to show that the two words are
distinguishable) picks one of the two words and a position p in
that word and labels it with xi .

2 Player 1 must then pick the other word (i.e. the one not
picked by player 0 in round i), pick some position p′ and label
it with xi .
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The Game

Let w , w ′ be two words V -words and let k be an integer. The k

round EF-game consists of the two players making k moves. In
round i :

1 Player 0 (who is trying to show that the two words are
distinguishable) picks one of the two words and a position p in
that word and labels it with xi .

2 Player 1 must then pick the other word (i.e. the one not
picked by player 0 in round i), pick some position p′ and label
it with xi .

Let W and W ′ be the two V ∪ {x1, x2 . . . , xk} words resulting
from the k-round game.
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The Game

Let w , w ′ be two words V -words and let k be an integer. The k

round EF-game consists of the two players making k moves. In
round i :

1 Player 0 (who is trying to show that the two words are
distinguishable) picks one of the two words and a position p in
that word and labels it with xi .

2 Player 1 must then pick the other word (i.e. the one not
picked by player 0 in round i), pick some position p′ and label
it with xi .

Let W and W ′ be the two V ∪ {x1, x2 . . . , xk} words resulting
from the k-round game.

1 If W and W ′ are distinguishable by atomic formulas then
Player 0 is the winner.
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The Game

Let w , w ′ be two words V -words and let k be an integer. The k

round EF-game consists of the two players making k moves. In
round i :

1 Player 0 (who is trying to show that the two words are
distinguishable) picks one of the two words and a position p in
that word and labels it with xi .

2 Player 1 must then pick the other word (i.e. the one not
picked by player 0 in round i), pick some position p′ and label
it with xi .

Let W and W ′ be the two V ∪ {x1, x2 . . . , xk} words resulting
from the k-round game.

1 If W and W ′ are distinguishable by atomic formulas then
Player 0 is the winner.

2 Otherwise Player 1 is the winner.
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An Example

Consider the words abba and ababa. Here is a winning strategy for
Player 0.
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An Example

Consider the words abba and ababa. Here is a winning strategy for
Player 0.

Pick the first word and position 3.
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An Example

Consider the words abba and ababa. Here is a winning strategy for
Player 0.

Pick the first word and position 3.

No matter how Player 1 responded, pick the first word and
position 2.
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An Example

Consider the words abba and ababa. Here is a winning strategy for
Player 0.

Pick the first word and position 3.

No matter how Player 1 responded, pick the first word and
position 2.

If the positions picked by player 1 are not 2 and 4, Player 0
has already won.
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An Example

Consider the words abba and ababa. Here is a winning strategy for
Player 0.

Pick the first word and position 3.

No matter how Player 1 responded, pick the first word and
position 2.

If the positions picked by player 1 are not 2 and 4, Player 0
has already won.

Otherwise, pick the second word and position 3.
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.

The proof is an easy inductive argument.

Note that any distinuishing formula dictates a winning strategy for
player 0.
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.

Example: Consider the words

a b b a b b a b

a b a b b a b b

Here is a distinguishing formula:

∃x1. ( b(x1) ∧ ∃x2. (x1 < x2) ∧ ∀x2 > x1. b(x2) )
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.

a b b a b b a b

a b a b b a b b

x1

Here is a distinguishing formula:

b(x1) ∧ ∃x2. (x1 < x2) ∧ ∀x2 > x1. b(x2)
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.

a b b a b b a b

x1

a b a b b a b b

x1 x2

Distinguishing formula:

∃x2. (x1 < x2)
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.

a b b a b b a b

x1

a b a b b a b b

x1

Here is a distinguishing formula:

∀x2 > x1. b(x2)
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.

a b b a b b a b

x1 x2

a b a b b a b b

x1
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EF Games ...

Theorem: (Ehrenfeucht,Fraisse) Player 0 has a winning strategy
in the k round game on w , w ′ if and only if there is a FO(k)
formula that distinguishes w and w ′.

Conversely, winning strategies for Player 0 can be turned into
distinguishing formulas.
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k-equivalence

Two words w and w ′ are said to be k-equivalent if they are
indistinguishable by formulas with quantifier depth k or less.

w ≡k w ′

abbabbab and ababbabb are 1-equivalent but not 2-equivalent.
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k-equivalence

Two words w and w ′ are said to be k-equivalent if they are
indistinguishable by formulas with quantifier depth k or less.

w ≡k w ′

abbabbab and ababbabb are 1-equivalent but not 2-equivalent.

≡k is of finite index.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



k-equivalence

Two words w and w ′ are said to be k-equivalent if they are
indistinguishable by formulas with quantifier depth k or less.

w ≡k w ′

abbabbab and ababbabb are 1-equivalent but not 2-equivalent.

≡k is of finite index.

Let ϕ be a FO(k) formula. Then L(ϕ) is a (disjoint) union of
some of the equivalence classes of ≡k .
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FO definable languages are Regular

Theorem: (Myhill-Nerode) A language L is regular if and only if it
is the union of some of the equivalence classes of a right-invariant
equivalence relation of finite index.

It suffices to show that ≡k is right-invariant.
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FO definable languages are Regular

Theorem: (Myhill-Nerode) A language L is regular if and only if it
is the union of some of the equivalence classes of a right-invariant
equivalence relation of finite index.

It suffices to show that ≡k is right-invariant.

x and y are k-equivalent and z is any word.
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FO definable languages are Regular

Theorem: (Myhill-Nerode) A language L is regular if and only if it
is the union of some of the equivalence classes of a right-invariant
equivalence relation of finite index.

It suffices to show that ≡k is right-invariant.

x and y are k-equivalent and z is any word.

Player 1 has winning strategy in the k round game on x and y .
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FO definable languages are Regular

Theorem: (Myhill-Nerode) A language L is regular if and only if it
is the union of some of the equivalence classes of a right-invariant
equivalence relation of finite index.

It suffices to show that ≡k is right-invariant.

x and y are k-equivalent and z is any word.

Player 1 has winning strategy in the k round game on x and y .

What about the k-round game on xz and yz ?

Simulate strategy on x and y , duplicate moves on z .

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



FO definable languages are Regular

Theorem: (Myhill-Nerode) A language L is regular if and only if it
is the union of some of the equivalence classes of a right-invariant
equivalence relation of finite index.

It suffices to show that ≡k is right-invariant.

x and y are k-equivalent and z is any word.

Player 1 has winning strategy in the k round game on x and y .

What about the k-round game on xz and yz ?

Simulate strategy on x and y , duplicate moves on z .

Theorem: Every First order definable language of words is regular.
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A Non-FO definable Language

Claim: The words am and am+1 are k-equivalent whenever m > 2k .
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A Non-FO definable Language

Claim: The words am and am+1 are k-equivalent whenever m > 2k .

The proof is by induction on k.
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A Non-FO definable Language

Claim: The words am and am+1 are k-equivalent whenever m > 2k .

The proof is by induction on k.

Clearly a ≡0 aa.
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A Non-FO definable Language

Claim: The words am and am+1 are k-equivalent whenever m > 2k .

The proof is by induction on k.

Clearly a ≡0 aa.

Player 0 will pick one of the two words and pick a position in
that word and label it with x to give

as .(a, x).at

where s + t = m or s + t + 1 = m.
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A Non-FO definable Language

Claim: The words am and am+1 are k-equivalent whenever m > 2k .

The proof is by induction on k.

Clearly a ≡0 aa.

Player 0 will pick one of the two words and pick a position in
that word and label it with x to give

as .(a, x).at

where s + t = m or s + t + 1 = m.

Suppose s ≤ t. Player 1 breaks up the other word as

as .(a, x).at′

with s + t ′ = m or s + t ′ + 1 = m.
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A Non-FO definable Language

as .(a, x).at as .(a, x).at′

From now on:
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A Non-FO definable Language

as .(a, x).at as .(a, x).at′

From now on:

On s duplicate moves.
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A Non-FO definable Language

as .(a, x).at as .(a, x).at′

From now on:

On s duplicate moves.

t, t ′ > 2k−1 and differ by 1. On at , at′ use the winning
strategy that exists by the induction hypothesis.
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A Non-FO definable Language

as .(a, x).at as .(a, x).at′

From now on:

On s duplicate moves.

t, t ′ > 2k−1 and differ by 1. On at , at′ use the winning
strategy that exists by the induction hypothesis.

Player 1 has a winning strategy!
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A Non-FO definable Language

as .(a, x).at as .(a, x).at′

From now on:

On s duplicate moves.

t, t ′ > 2k−1 and differ by 1. On at , at′ use the winning
strategy that exists by the induction hypothesis.

Player 1 has a winning strategy!

Theorem: {a2i | i ≥ 1} is not a FO definable language.
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A Non-FO definable Language

as .(a, x).at as .(a, x).at′

From now on:

On s duplicate moves.

t, t ′ > 2k−1 and differ by 1. On at , at′ use the winning
strategy that exists by the induction hypothesis.

Player 1 has a winning strategy!

Theorem: {a2i | i ≥ 1} is not a FO definable language.

Theorem: For all m > 2k and w ∈ Σ+, wm and wm+1 are
k-equivalent.
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A Non-FO definable Language

as .(a, x).at as .(a, x).at′

From now on:

On s duplicate moves.

t, t ′ > 2k−1 and differ by 1. On at , at′ use the winning
strategy that exists by the induction hypothesis.

Player 1 has a winning strategy!

Theorem: {a2i | i ≥ 1} is not a FO definable language.

Theorem: For all m > 2k and w ∈ Σ+, wm and wm+1 are
k-equivalent.

The latter asserts that FO definable languages are aperiodic.
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Monoids as Language recognizers

Let (M, ., 1) be a finite monoid. Let h : Σ∗ −→ M be a morphism.

Theorem: For any X ⊆ M, h−1(X ) is a regular language.

K Narayan Kumar The Expressive Power of Linear-time Temporal Logic



Monoids as Language recognizers

Let (M, ., 1) be a finite monoid. Let h : Σ∗ −→ M be a morphism.

Theorem: For any X ⊆ M, h−1(X ) is a regular language.

Let AM = (M,Σ, δ, 1,X ) with δ(m, a) = m.h(a). Then,

L(A) = h−1(X )
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Theorem: For any X ⊆ M, h−1(X ) is a regular language.

Let AM = (M,Σ, δ, 1,X ) with δ(m, a) = m.h(a). Then,

L(A) = h−1(X )

We say that L = h−1(X ) is recognized by the monoid M.
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Monoids as Language recognizers

Let (M, ., 1) be a finite monoid. Let h : Σ∗ −→ M be a morphism.

Theorem: For any X ⊆ M, h−1(X ) is a regular language.

Let AM = (M,Σ, δ, 1,X ) with δ(m, a) = m.h(a). Then,

L(A) = h−1(X )

We say that L = h−1(X ) is recognized by the monoid M.

The Syntactic Monoid of a Regular Language:
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Monoids as Language recognizers

Let (M, ., 1) be a finite monoid. Let h : Σ∗ −→ M be a morphism.

Theorem: For any X ⊆ M, h−1(X ) is a regular language.

Let AM = (M,Σ, δ, 1,X ) with δ(m, a) = m.h(a). Then,

L(A) = h−1(X )

We say that L = h−1(X ) is recognized by the monoid M.

The Syntactic Monoid of a Regular Language:

Let x ≡L y iff ∀u, v . uxv ∈ L ⇐⇒ uyv ∈ L.
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Monoids as Language recognizers

Let (M, ., 1) be a finite monoid. Let h : Σ∗ −→ M be a morphism.

Theorem: For any X ⊆ M, h−1(X ) is a regular language.

Let AM = (M,Σ, δ, 1,X ) with δ(m, a) = m.h(a). Then,

L(A) = h−1(X )

We say that L = h−1(X ) is recognized by the monoid M.

The Syntactic Monoid of a Regular Language:

Let x ≡L y iff ∀u, v . uxv ∈ L ⇐⇒ uyv ∈ L.

≡L is a congruence on Σ∗.
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Monoids as Language recognizers

Let (M, ., 1) be a finite monoid. Let h : Σ∗ −→ M be a morphism.

Theorem: For any X ⊆ M, h−1(X ) is a regular language.

Let AM = (M,Σ, δ, 1,X ) with δ(m, a) = m.h(a). Then,

L(A) = h−1(X )

We say that L = h−1(X ) is recognized by the monoid M.

The Syntactic Monoid of a Regular Language:

Let x ≡L y iff ∀u, v . uxv ∈ L ⇐⇒ uyv ∈ L.

≡L is a congruence on Σ∗.

SYN(L) = (Σ∗/≡L, ., [ǫ]≡L
) is a finite monoid.
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Monoids recognize Regular languages

Let ηL : Σ∗ −→ SYN(L) be the morphism

ηL(x) = [x ]≡L

Then,
L =

⋃

x∈L

η−1
L ([x ]≡L

)

Theorem: A language is regular if and only if it is recognized by a
finite monoid.
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Aperiodic Monoids

A Monoid M is said to be aperiodic iff there is an integer N such
that

ak = ak+1 for all k ≥ N and a ∈ M

A language L is aperiodic iff it is recognized by an aperiodic
monoid.
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Aperiodic Monoids

A Monoid M is said to be aperiodic iff there is an integer N such
that

ak = ak+1 for all k ≥ N and a ∈ M

A language L is aperiodic iff it is recognized by an aperiodic
monoid.

Theorem: Σ∗/≡k is an aperiodic monoid. Thus, every FO
definable language is aperiodic.
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Aperiodic Monoids

A Monoid M is said to be aperiodic iff there is an integer N such
that

ak = ak+1 for all k ≥ N and a ∈ M

A language L is aperiodic iff it is recognized by an aperiodic
monoid.

Theorem: Σ∗/≡k is an aperiodic monoid. Thus, every FO
definable language is aperiodic.

This follows from the fact that wm ≡k wm+1 for all m > 2k .
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An useful result

If M is an aperiodic monoid and x , y ∈ M and x 6= y then,
x .y 6= 1.
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An useful result

If M is an aperiodic monoid and x , y ∈ M and x 6= y then,
x .y 6= 1.

Suppose x .y = 1. Then, x = x .xN .yN = xN .yN = 1.

Similarly, y = 1, contradicting x 6= y .
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Summary

LTL is expressible in FO.
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Syntacic Monoid)
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Summary

LTL is expressible in FO.

FO definable languages are regular. (Via EF Games)

FO definable languages are aperiodic. (Via EF Games,
Syntacic Monoid)

Schutzenberger’s Theorem: A regular language L is aperiodic if
and only if it expressible as a star-free regular expression.
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