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Abstract In this paper we address the problems of schedule synthesis and timing verifi-
cation for component based architectures in embedded systems. We consider a
component to be a set of tasks with response times that lie within specified inter-
vals. When a set of components is deployed to implement a desired functional-
ity, we want to guarantee that the components can achieve the timing constraints
of the application. We solve the associated synthesis and verification problems
using the framework of timed interface automata and timed games.
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1. Introduction

Component based development has been proposed as a framework for deal-
ing with the complexity of embedded control systems. It is based on the
premise that generic components can be developed so as to bereusedin dif-
ferent contexts. While the encapsulation of behaviour in component interfaces
does lead to modularity and enhanced reuse, the verification of non-functional
aspects (such as timing and resource constraints) of an assembly of compo-
nents remains a major challenge.

In this paper we analyse whether a given set of components satisfies the tim-
ing constraints of an embedded control application. We consider a component
to be a collection oftasks, which arefunctionallyandlogically related. In turn,
each task has a response time (i.e., the time between task release and com-
pletion) that is guaranteed to lie within a specified interval by the component
implementation. When a set of components is deployed to implement a de-

∗This work was supported by a grant from GM R&D.



2

sired functionality, we want to guarantee that the components can achieve the
timing constraints of the application. The application-level timing properties
we consider here are theend-to-endtiming constraints oftransactions. Each
transaction is typically a loop consisting of reading sensors, computing control
inputs and writing to actuators. The constituent tasks of a transaction may be
part of different components. The specific problems we are interested in are (a)
timing verification: to ascertain whether the given components can satisfy the
end-to-end timing constraints of the application, and (b)schedule synthesis: if
the answer to (a) is yes, to determine a sequence of task release actions that
will lead to satisfaction of the constraints.

We refer to the above problem ascomponent scheduling, to distinguish it
from task scheduling, the staple of real-time scheduling theory. In task schedul-
ing, we already know the deadlines, periods and execution times of tasks, and
want to know whether the tasks can be scheduled to meet their deadlines. In
component scheduling we know that the tasks can be scheduled to meet cer-
tain deadlines (which maynot be related or derived from the application at
hand), but want to know whether these tasks can be released in such a way
that the end-to-end constraint of a transaction can be met. Task scheduling is
a top-down analysis – from the real-time requirements we identify tasks and
their characteristics, identify the platform and check whether the tasks can be
scheduled. Component scheduling is bottom-up – given the components and
the constituent tasks, along with their pattern of release and completion times,
we want to verify whether they can satisfy the end-to-end constraints. The
component scheduling problem becomes relevant when the tasks are not iden-
tified based on the real-time requirements of the particular application, but the
application itself is built by composing pre-existing components.

Our approach to solving the timing verification and schedule synthesis prob-
lems for components is based on the formalism of timed interface automata
(TIA) [de Alfaro et al., 2002]. We view the problems as atimed gamebetween
two players – one representing the environment (the scheduler orInput) and
an adversary representing the system (the component orOutput). The environ-
ment can decide on when to release tasks for execution, but not their comple-
tion times, which can be decided only by the component. Both players make
certain assumptions about the other player, and deliver certain guarantees. The
overall goal is to check that there is a sequence of allowed moves by the envi-
ronment (release of tasks) which leads to satisfaction of the high-level timing
requirements; in other words, there is a winning strategy for the environment
in the corresponding timed game. The existence of such a winning strategy
guarantees that the components can be used together to satisfy the end-to-end
timing constraints.

Timed games have been used to solve several scheduling problems – see
[Altisen et al., 1999, Altisen et al., 2002] for example. Unlike these works, we
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solve a new scheduling problem that is unrelated to traditional task or job-shop
scheduling. A key feature of our work is that all the timing requirements (both
task characteristics and external timing constraints) are captured using the TIA
formalism, a formalism for compositional reasoning about timed systems. Our
techniques are thereforemodular, and can be applied in acompositionaland
incrementalmanner.

The main novelty of this work is that we define a notion of component
scheduling and propose methods for solving the associated verification and
synthesis problems. Contrary to the classical notion of task scheduling, com-
ponent scheduling deals with transactions involving a set of tasks rather than
separate task instances. In our setting, checking for deadline violation corre-
sponds to checking that the end-to-end constraints of a transaction are satisfied.
Component scheduling is motivated by the fact that modern embedded control
systems are typically built out of existing components. Components consist
of tasks representing component services; transactions are application specific
jobs that span across a set of components. The main technical contribution
of this work is twofold: encodingthe specification of component scheduling
problem as timed interface automata andreductionof the verification and syn-
thesis problem for component scheduling to finding a winning strategy in the
game structure for the associated timed interface automata. Our use of TIA for
modelling both tasks and transactions is novel. So is our use of the formalism
for solving scheduling problems, since we go beyond checking compatibility
of timed components

As an application, we apply our component scheduling framework to the
problem of deriving a static time-triggered schedule for a set of periodic tasks.
We are given a set of processors and a number of tasks with known frequencies,
and execution times lying in fixed intervals. Each task is statically allocated
to a processor, called aTTA node, and must communicate with other tasks
through a shared bus. The problem is to find a static schedule on each processor
along with a bus schedule, such that all task and communication deadlines are
met without any task being preempted when executing. The solution using
our approach is worked out on an automotive Adaptive Cruise Control (ACC)
application.

2. The Component Scheduling Problem

The typical design flow in component-based development of embedded sys-
tems is as follows. To implement a givenfeatureof the system to be built, such
as the adaptive cruise control feature in an automobile, a number of transac-
tions, each consisting of a related set of tasks, is identified. A transaction is
actually a partial order on the tasks reflecting their interdependence. The tasks
comprising a transaction usually span multiple components. The end-to-end
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Figure 1. Components, Tasks and Timing Constraints

timing constraints for each transaction are derived from the feature require-
ments, and must be met by the tasks from different components that constitute
the transaction. This is the essence of the component scheduling problem.

Tasks and task graphs

According to our view, a component is a set of tasks, with each task sat-
isfying certain timing constraints. A component is a black-box which hides
the internal details of how tasks are actually scheduled. The interface only
exposes the timing constraints in the form ofassumptionsabout task release
times andguaranteesabout task completion times. In our setting the release
and execution times of a task may not be strictly periodic, but can lie within a
specified interval. This facilitates modelling of jitter and communication de-
lays and leads to more flexibility in scheduling, as tasks with fixed periods are
too simplistic and lead to pessimistic analysis.

Example 1 (Components and Tasks) Figure 1(a) shows two compo-
nentsC1 andC2. TasksT1 belongs to componentC1, while tasksT2 andT3

belong toC2.
Figure 1(b) shows various timing constraints for the tasksT1, T2 and T3.

For instance, taskT1 cannot be released within the first2 time units, which
is an assumption on the environment; we call such a constraint anoffset con-
straint. Once the taskT1 is released, it must complete within 8 time units, a
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guarantee provided by the component; we call such a constraint anexecution
time constraint. Further, the delay between two successive task-releases has
to be at least 10 time units, again an assumption on the environment; we call
such a constraint aperiod constraint.

Task Graphs. We model transactions astask graphs, i.e., partial orders (or
DAG’s) on tasks. The partial ordering reflects the data dependencies between
tasks in a particular transaction: an edge from taskTi to Tj indicates that task
Ti must complete before taskTj begins. We associate an end-to-end deadline
with each transaction, as well as constraints on inter-task separation to guaran-
tee freshness of data. The constraints on deadline and the inter-task separation
are collectively referred to asend-to-end constraints. Note that a transaction
represented by a task graph is periodic, the period being determined by the
sampling frequency of the associated control loop. We assume that the period
of the transaction is given by the end-to-end deadline of the task graph.

Example 2 (Task Graph) Figure 2 shows a task graph for a transac-
tion involving componentsC1 andC2 in Example 1. It says taskT2 must be
released after tasksT1 andT3 have completed. The transaction has an end-to-
end deadline of14 time units, and a constraint that saysT2 must be released
within 6 time units from the completion ofT3 (to ensurefreshnessof data, for
instance).

Another constraint that is implicit in the task-graph is that the transaction
it represents is required to execute an infinite number of time, alivenesscon-
straint.

T3

T1

T2

≤ 6

≤ 14

Figure 2. Task graph and transaction constraints

Definition 3 A task graph with end-to-end constraintsis a triple G =
(T , <T , d) whereT = {T1, . . . , Tm} is a set ofm tasks,<T is a strict partial
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order (i.e., an irreflexive transitive relation) onT andd is a set of constraints
of the formd(T ) ≤ C or d(a, b) ≤ C for a, b ∈

⋃
1≤i≤m{ri, ci}, whereC

is an integer. The constraintd(T ) ≤ C represents an end-to-end deadline of
C time units for the task graph, while the constraintd(a, b) ≤ C represents a
maximum separation ofC time units between the two actionsa and b, which
are either the releaseri of a taskTi or the completioncj of a taskTj . We de-
note byΠ(T ) the set of immediate predecessors of taskT in the partial order
(T , <T ).

The Problem

The scheduling problem we are trying to solve is: given a set of tasks with
timing constraints on their release and completion, and a task graph with end-
to-end constraints, to find a schedule, i.e., a timed sequence of release actions
(which may depend on the timed sequence of preceding completion actions),
which satisfies the constraints imposed by the task graph. The latter constraints
are: (1) a task can be released only if all its predecessors have completed; (2)
the time duration between the earliest release and the latest completion action is
bounded by the end-to-end deadline of the task graph; and (3) the time duration
between each pair of actions in a specified list is bounded by the corresponding
separation limit.

Definition 4 A timed traceon an alphabetA of actions is a sequenceσ =
(a0, t0), (a1, t1), . . ., where eachaj ∈ A and eachtj ∈ R≥0, with t0 <=
t1 <= t2 . . .. We calltj the time-stampof thejth action occurrence in the
sequence.

Definition 5 Given a set of tasksT with associated timing constraints on
their release and completion actions, arelease-scheduleσ is a function, that
given a time instant for the completion of the task instances released earlier,
assigns a time instantσ(rij) ∈ R≥0 to the release of thejth instance of taskTi

for eachi ∈ {1, . . . ,m} and eachj ≥ 0. Such an assignment must satisfy the
offset and period constraints of each task. Likewise, acompletion-scheduleτ is
a a function, that given the release times of thejth instance of taskTi and other
tasks started earlier, assigns a time instantτ(cij) ∈ R≥0 to the completion of
thejth instance of taskTi for eachi ∈ {1, . . . ,m} and eachj ≥ 0. Such an
assignment must satisfy the execution time constraint of each task.

Given a release-scheduleσ and a completion-scheduleτ , we can define the
outcomeOutcome(σ, τ) of the two schedules in the usual inductive way. This
is a set of timed traces over

⋃
1≤i≤m{ri, ci}.

Definition 6 Given a set of tasksT with associated timing constraints on
their release and completion actions, and a task graphG expressing end-to-
end constraints of a transaction, ascheduleσ is a release-schedule, such that
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for all completion-schedulesτ , every timed traceπ ∈ Outcome(σ, τ) satisfies
the following conditions:

1 Precedence: For every pairTi <T Tj in G, thenth occurrence ofrj is
preceded by thenth occurrence ofci in π, for everyn.

2 End-to-end deadline: For an end-to-end deadline constraint of the form
d(T ) ≤ C, max ({ts(α′) − ts(α)}) ≤ C, whereα, α′ range over all
the nth occurrences of actionscj ,rk respectively inπ, for all j, k ∈
{1 . . .m} and for alln. Herets(α) denotes the time-stamp of actionα.

3 Separation constraints: For every constraint of the formd(a, b) ≤ C,
ts(α′)− ts(α) ≤ C, whereα, α′ are thenth occurrences ofa, b respec-
tively inπ, for all n.

4 Liveness: There is annth occurrence ofri? for everyi ∈ {1 . . .m}, for
everyn.

Intuitively, the above definition captures the fact that a schedule must spec-
ify a correct timed sequence of releasing tasks, no matter how much time the
tasks take for completion, as long as they are within specified bounds. We now
formally define the verification and synthesis problem we are interested in.

Definition 7 The timing verificationand schedule synthesisproblems for
end-to-end constraints are defined as follows. Given a set of tasksT and a task
graphG, verify that there exists a schedule (i.e., a way of generating release
actions for tasks) that satisfies the end-to-end constraints inG, no matter when
the tasks complete, as long as they satisfy the given constraints, and synthesise
such a schedule if it exists.

Example 8 Consider the set of tasks specified in Figure 1 and the task
graph in Figure 2. In this example, the componentsC1 and C2 do meet the
end-to-end constraints of the transaction. A possible schedule for meeting
the requirements would be to release each task according to the timed trace
(r1?, 2), (r3?, 4), (r2?, t) wheret is the maximum of the completion times of
T1 andT3, which is guaranteed to be within10 time units. Note that releasing
the taskT3 earlier than4 time units (say at3 time units) can lead to a viola-
tion of the freshness constraint (depending on whenT1 completes its execution,
which the environment cannot control), although the interface forT3 does not
itself rule out the possibility.

From the above example it is clear that the two timing analyses mentioned
above can be carried out at the level of tasks rather than components, since they
involve the timing assumptions and guarantees of only individual tasks. How-
ever, the component view would be essential when we consider the following
situations:
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Tasks in a component have resource conflicts due to shared resources
such as buffers.

Components may not be “reentrant”, in which case, the execution of two
tasks of the component cannot be overlapped.

Two different transactions can share the computations of certain tasks;
for example, a sensor component will typically not perform the sensing
task for different transactions separately – the sensor data will be broad-
cast to all the components with tasks that depend on the data.

All these situations can be modelled using the TIA framework, though the
resulting TIA models will be more complex in general. For instance, resource
conflicts can be modelled by using an additional TIA for for modelling the
resource access, and guaranteeing mutual exclusion by allowing synchronisa-
tion with the resource TIA. An example of this kind is treated in Section 5,
where we apply our component scheduling framework to derive a static time-
triggered schedule for a set of distributed tasks.

3. Modelling Component Scheduling with Timed
Interfaces

In this section, we model the tasks, and task-graphs of the previous section
using timed interface automata. Interface automata were presented in [de Al-
faro and Henzinger, 2001] as a formalism for studying compatibility of com-
ponents in anopensystem. Timed interface automata (TIA) [de Alfaro et al.,
2002] were proposed as an extension to model real-time constraints on interact-
ing components. Due to lack of space we cannot present all the relevant details
of the TIA model here. The reader is referred to [de Alfaro et al., 2002] for the
formal definitions and the important properties of the TIA model. Our use of
the TIA framework is novel, and is different from the one in [de Alfaro et al.,
2002]: our goal is to synthesise schedules rather than to check compatibility of
components.

Timed Interface Automata for Tasks

Timed interface automata are syntactically similar to traditional timed au-
tomata as in [Alur and Dill, 1994], with the exception that location invariants
are classified as eitherinput or outputinvariants. The crucial difference lies in
the semantics – timed interface automata correspond togamesbetween players
Input andOutput, rather than just labelled transition systems. It is the respon-
sibility of player Input to ensure that all the input invariants are met; similarly
for the output invariants with respect to playerOutput.
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Figure 3. TIA for tasksT1, T2 andT3

Example 9 (TIA) Figure 3 shows timed interface automata corresponding
to the tasks in Example 1.

The release and completion events of tasks are described using actions
ri? andci! of the taskTi.

The clock variablexi in the timed interface automaton for taskTi keeps
track of the time elapsed since the last release of the task.

The guards on the transitions describe when the actionsri? andci! may
take place.

The location invariants describe when certain actionsmusttake place;
for example the location invariantO : x1 < 8 is anoutput-invariant(in-
dicated by the labelO), indicating that the outputc1! must be produced
whilex1 < 8 holds, otherwise player Output loses the game.

The guards on the transitions with input actionri? specify that a min-
imum inter-arrival time should be maintained, otherwise player Input
loses the game.

Definition 10 Let T = {T1, . . . , Tm} be a set ofm tasks. TheTIA for a
taskTi ∈ T (also denoted byTi) is given by a TIA with a single clockxi, input
actionri? and output actionci!. The clock constraints appearing as invariants
and guards express the pattern of release and completion times of the task. We
assume that each TIATi is well-formed, i.e., both players have a strategy to
let time diverge, unless the other player is to be blamed for monopolising the
game from some point on (see [de Alfaro et al., 2002]).

From Task Graph to Specification Automaton

To solve the component scheduling problem, we use TIA in two distinct
ways – first, to model the timing properties of tasks as presented above, and
second to model a task graph for a transaction. We call the TIA for a task graph
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Figure 4. Specification automaton for task graph in Figure 2

a specification automaton. Before describing the procedure for obtaining a
specification automaton from a task graph, we give an example.

Example 11 (Specification Automaton) The specification automa-
ton corresponding to the task graph in Figure 2 is shown in Figure 4. It uses
a clockx to record the time since the transaction was started, and a clocky
to record the time sinceT3 completed. The specification automaton has each
ri andci as inputactions – it is an observer which detects violations of timing
constraints by flagging an error state, and does not generate any output action
(except the special actionend !). It specifies all the legal runs of the environ-
ment (the scheduler) and the components that do not violate the end-to-end
timing constraints.

There is an input invariantI1 : x < 14 associated with every location in the
specification automaton, except the one on the extreme right (which is thefinal
location). This represents the fact that meeting the end-to-end timing deadline
is the responsibility of player Input. For brevity, we use a statechart-like nota-
tion: an invariant associated with a super-location (the dotted oval in Figure 4)
represents an invariant on all the locations contained in the super-location. Vi-
olation of the input invariantI1 leads to a timed error state, where the progress
of time is blocked. Similarly, the violation of the input invariantI2 : y ≤ 6
in the oval shaped location signifies violation of the freshness constraint and
leads to a timed error state. The output actionend ! is a new action not shared
by any other automaton which signifies the end of the transaction.

We following the ideas in [Abdeddaı̈m et al., 2003] to obtain the specifi-
cation automaton from a task graph. First, we build a specification TIAPi
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for each taskTi, consisting of three locations, corresponding to the task states
waiting, executingandcompleted. The transition from thewaiting to theexe-
cutingstate is taken when the specification TIA for the tasks inΠ(Ti) are all
in their final locations.

Definition 12 Let G = (T , <T , d) be a task graph. For
every task Ti ∈ T its associated specification TIA is Pi =
(Qi, q

init
i , qfinal

i , Ci,AI
i ,AO

i , Inv I
i , InvO

i , τi) with the set of locationsQi =
{p0

i , p
1
i , p

2
i }, the initial location qinit

i = p0
i , the final locationqfinal

i = p2
i ,

the set of input actionsAI
P = {ri?, ci?}, the set of output actionsAO

i = ∅, and
the set of transitionsτi include the tuples

(p0
i ,

∧
Tj∈Π(Ti)

p2
j , ri?, ∅, p1

i )

and
(p1

i , true, ci?, ∅, p2
i ).

The global specification automaton is obtained as a composition of the in-
dividual specification automata. The composition can be treated as composi-
tion of ordinary timed automata since the components have no shared actions.
The composition ensures that the release actions of tasks do not violate the
precedence constraints in the task graph. Next, we add some clocks and clock
constraints, both as guards on transitions as well as location invariants, to take
care of the end-to-end constraints in the task graphG = (T , <T , d). For the
end-to-end deadline constraintdT ≤ C, there is a clockte and an input in-
variantIe : te < C on all the locations of the composed automaton except its
final location. For a separation constraint of the formd(a, b) ≤ C, there is a
clock tab which is reset on every transition with the action labela, and an input
invariantIab : tab < C on all locations that are sources of transitions labelled
with actionb. Finally, there is a transition labelled with the output actionend !
from the final location of the composed automaton to the initial location which
resets the clockte.

The specification automaton in Figure 4 is actually obtained by applying
some optimisations on the result of the above transformation on the task graph
in Figure 2: the release actionsr1? andr2? do not appear in Figure 4. A general
optimisation scheme based on chain coverings of a partial order is presented in
[Abdeddäım et al., 2003].

4. Timing Verification and Schedule Synthesis

In this section, we explain how the timing verification and schedule synthe-
sis problems can be viewed as an instance of a timed game (see [Maler et al.,
1995, de Alfaro et al., 2002]) between playersInput (the environment) and
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Output(the system). Further, synthesising a schedule,i.e., a timed sequence of
task release actions that obeys the precedence constraints in the task graph and
leads to all the end-to-end constraints being satisfied, corresponds to finding a
winning strategy forInput in such a game.

As in all timed games, there are two kinds of moves available to each player:
a player can either let time progress, as long as this does not violate an invariant
for the player, or make a discrete transition to a new state when the associated
guard becomes enabled. Thus a move of playerInput (a controllableaction)
either triggers a taskTi via actionri? or allows time to elapse in a location.
Similarly a move ofOutput(anuncontrollableaction) either completes execu-
tion of a taskTi via actionci! or allows time to elapse in a location.

The game structure for the schedule synthesis and verification problemi.e.,
the graph on which the game is played (called atimed interfacein [de Alfaro
et al., 2002]), is obtained from the product of the timed interface automaton for
each task and the specification automaton obtained from the task graph. The
specification automaton has aninput invarianton several locations capturing
the end-to-end constraints. Violation of this invariant leads to atimed error
state. The winning plays are those sequences of states in the game graph that
avoid the error state, and in addition complete the transaction infinitely often,
i.e., the goal involves both asafetyandlivenesscondition. Finding a schedule
for a given set of components that meets the end-to-end constraints of a task
graph then amounts to finding a winning strategy forInput in the corresponding
timed game.

Example 13 (Timed Game Structure) For our running example, the
product of the timed interface automata for the tasksT1, T2 andT3 in Figure 3
with the specification automaton in Figure 4 represents the game structure on
which the timed game is played. The fact that there exists a schedule satisfying
the end-to-end constraints means that player Input has a winning strategy in
the game.

In the rest of this section we elaborate on the solution to the timing verifica-
tion problem in terms of winning strategies for a timed game. In the following
discussion, we assume we are given a set of tasksT = {T1, . . . , Tm} and a
task graphG = (T , <T , d) on the setT . The global specification automaton
for the task graphG, defined in Section 3, is denotedTG.

Consider the product TIAT = T1 ⊗ T2 . . . ⊗ Tm ⊗ TG, i.e., the joint be-
haviour of all the TIA’s corresponding to the tasks together with the speci-
fication automaton. Intuitively, the game structureJT K corresponding to the
TIA T has the set of states(s1, s2, . . . , sm, s) where each componentsi is a
pair (qi, vi) of a location inTi and a clock valuation over the single clockxi,
and likewises is a pair(q, v) of a location inTG and clock valuation over the
clockste andtab, wherea, b range over the the actionsri, cj (see the paragraph
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in Section 3 following Definition 12). The input and output transition relations
of JT K encode the possible moves of the corresponding player at a given state,
and the new state that results, in the combined system of them tasks and the
specification automaton. Each transition is caused either by an immediate ac-
tion (release or completion of a taskTi) or a timed action, where the player
chooses to let time elapse. The available moves of a player in a state must con-
form to the location invariants for the player in the source and target location
and the enabled transition in the source location for each component TIATi.
An input strategy is a partial function from sequences of states to the set of the
enabled moves forInput in the final state of the sequence. So an input strategy
is a way to specify the times at which the release actions for tasks occur, given
the completion times for instances of tasks released earlier, while conforming
to all the constraints imposed by the TIA for each taskTi. Likewise, one can
define an output strategy.

Given an input and an output strategy, one can define the resulting
set of outcomes starting from the initial states0 of JT K (see [de Alfaro
et al., 2002]). These are finite and infinite sequences of the formσ =
s0, α1, γ1, s1, α2, γ2, . . . whereαi is the move made by playerγi ∈ {I,O}
in statesi. A winning input strategy inJT K is one for which all possible out-
put strategies lead to outcomes which avoid reaching all timed error states.
Clearly, a winning input strategy corresponds to what we call a schedule (see
Definition 8), except the liveness property may not be satisfied. In particular,
an outcome can be empty – if no tasks are released there are no constraints to
violate (assuming there are no input invariants in the TIA for the tasks, as is
the case in Figure 3).

The following procedure takes care of the liveness problem. We take the
composition (see [de Alfaro et al., 2002]) of the TIA corresponding to each
task and the TIA for the task graph, and then find a winning input strategy for
the goal�♦ tfinal (which says that the final location of the task graph com-
ponent in the product is reachable) in the result. Intuitively, the composition
T1 ‖ T2 . . . ‖ Tm ‖ TG represents all schedules that satisfy the end-to-end
constraints of the task graphG, without necessarily satisfying the liveness con-
straint; the latter is taken care of by the goal�♦ tfinal . Details of how such
games can be solved using symbolic fixed point computations can be found in
[Maler et al., 1995, de Alfaro et al., 2002]. The correctness of the procedure is
captured by the following theorem.

Theorem 14 A schedule satisfying the end-to-end constraints inG is a win-
ning strategy for Input in the game structureJT K for the TIA given by the
productT = T1 ⊗ T2 . . .⊗ Tm ⊗ TG, with the goal

[�Good(JT1K, . . . , JTmK, JTGK)] ∩ (t div ∪ blameO) ∩�♦ tfinal
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whereGood(JT1K, . . . , JTmK, JTGK) is the set of all states in the game struc-
ture for the productT that are not immediate error states,t div is the set of
outcomes along which time diverges,blameO is the set of all outcomes where
player Output monopolises the game, andtfinal is the set of all states whose
TG-component has the final location of the specification automatonTG.

Implementation. Currently, there is no implementation of timed interface
automata. In order to experiment with our component scheduling framework,
we hand-coded our TIA using the timed game automata (TGA) in theUP-
PAAL TIGA tool [UPPAAL TIGA, 2006, Cassez et al., 2005]. Unfortunately,
the synchronisation behaviour of TGA inUPPAAL TIGA is quite different from
that of TIA. As a result, the task graphs cannot be represented as specification
automata any more. Instead the precedence constraints have to be encoded
using shared boolean variables, and the end-to-end deadline has to be speci-
fied as part of the winning condition (i.e., goal) for the controller. Note that
this encoding inUPPAAL TIGA breaks the nice compositionality properties of
the TIA framework. Also, the specification language used inUPPAAL TIGA

for expressing goals is not very expressive, especially with respect to liveness
constraints. The results of our experiments using theUPPAAL TIGA tool are
described in the next section.

5. Application: Time-triggered Schedule Synthesis

The time-triggered architecture (or TTA, see [Kopetz and Bauer, 2003]) is
a platform for distributed implementations of hard real-time systems used in
automotive and avionics applications. It consists of a number of processors,
called TTA nodes, that communicate by passing messages over a shared bus.
The computation tasks running on the TTA nodes use the shared bus using a
time-division multiple-access (TDMA) discipline based on a static schedule
which recurs periodically. The problem of deriving a time-triggered schedule
for a set of tasks is as follows (see [Caspi et al., 2003]). We are given a set of
m periodic tasks{T1, . . . , Tm} andn processors. Every task is statically allo-
cated to a processor. The taskTi has periodPi and is allocated to processor
host i. Its execution time lies in the interval[li, ui]. Tasks can model compu-
tations as well as messages. There is a special processor modelling the bus –
all tasks corresponding to messages are allocated to that processor. There is
a precedence relation among tasks defined by data-flow constraints. This re-
lation includes a computation task and a message task when the former is the
sender of the message. Likewise, a message task precedes the computation task
that is the receiver of the message. Tasks cannot be preempted once they start
running. Tasks also have relative deadlines among them to model end-to-end
constraints. These are of the formθi − θj ≤ C, whereθi ∈ {si, ei}, wheresi
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sj?

si? ei?

ej?

Figure 5. Synchronisation automaton for enforcing non-preemptive serial execution of tasks
Ti andTj

is the start time andei is the completion time of taskPi. The problem is to find
a static schedule for the bus for transmission of messages, and a schedule for
each TTA node for the tasks that are allocated to that node, so that all timing
constraints are satisfied.

In order to apply our framework to this problem, we start with a TIA for each
processor (TTA node or bus). Since each task is periodic, and has a best-case
computation timeli and a worst-case execution timeui, we can model it using
TIA, as in Section 3. However, now we have the complication that several tasks
can be allocated to a single processor, and tasks cannot be preempted. This
constraint can be captured using a simple device: just take the composition of
the tasks allocated to a single process with a synchronising automaton which
enforces the execution of only one task at a time. For every two tasksTi and
Tj allocated to the same processor, such a synchronising automaton is shown
in Figure 5. Intuitively, the automaton serialises the execution ofTi andTj .
This example illustrates the case where a component (see the description in
Section 2) corresponds to a set of tasks with resource constraints among them.
The resource constraint here is the non-preemptive nature of task execution,
and a component describes the set of tasks allocated to a processor.

Note that the constraint that each task can run only in its allocated slot is
taken care of by the strict periodicity constraint. If the tasks do not have the
same period, we can take the lcm of the periods to be the working period,
and create multiple instances of each task to fit the period. New precedence
constraints must be added between these new instances to indicate their order.

The end-to-end constraints can be modelled as TIA as in Section 3. The
composition of all the TIA involved, if defined, gives us a feasible schedule
for the execution of the tasks. However, the schedule is not static, since it is
an Input strategy in which input moves can depend on previous output moves.
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Figure 6. Adaptive Cruise Control

To extract a static schedule, we can take the specification of execution times
as worst case execution times of tasks (worst case communication times for
messages) instead of intervals. This restricts the choices for playerOutput–
tasks can complete only after a fixed known duration after they start.

Discussion. Various approaches to the problem of synthesising a static time-
triggered schedule based on constraint solving, branch-and-bound techniques
and mixed integer linear programming (MILP) have been proposed in the lit-
erature – see [Schild and Ẅurtz, 2000, Caspi et al., 2003, Zheng et al., 2005]
for example. Because of disjunctions in mutual exclusion constraints, when
posed as an optimisation problem, the feasible region is not convex (see [Caspi
et al., 2003]). The typical workaround is either to use backtracking techniques
based on branch-and-bound search (as in [Caspi et al., 2003]), or code the
problem using binary decision variables and use a MILP solver (as in [Zheng
et al., 2005]). The latter technique involves guessing a large constantM , which
should be as small as possible for feasibility reasons.

It is not clear whether our approach is more scalable than the above ap-
proaches. For a definitive answer, we need an implementation of TIA that we
can use to carry out experiments on real-life time-triggered systems. Our ex-
pectation is that using on-the-fly techniques of [Cassez et al., 2005] we can
effectively conquer the inherent EXPTIME-complexity of the timed control
synthesis problem for reachability and safety objectives.

Example 15 (Adaptive Cruise Control) This example is adapted
from [Kandasamy et al., 2003] and [Zheng et al., 2005], except we require
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Source Target Delay
(µs)

T1 T4 350
T2 T4 650
T3 T5 1425
T4 T5 500
T4 T6 500
T5 T7 500
T6 T8 500

Figure 7. WCCT for messages in ACC
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Figure 8. Time-triggered schedule for ACC example

task scheduling on an ECU to be non-preemptive. Theadaptive cruise-control
(ACC) feature in an automobile automatically adapts the speed of the vehicle
to the speed and distance of the vehicle in front. The ACC application involves
the timely interaction among a number of tasks that are distributed, and must
interact by sending messages. These tasks can be grouped as follows:

Sensors:

T1: Object distance and speed

T2: Vehicle speed

T3: Throttle position

Controllers:

T4: Desired speed

T5: Desired throttle position

T6: Desired brake position
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Actuators:

T7: Throttle actuator

T8: Brake actuator

Figure 6(a) shows the physical architecture of the system – all sensors and
actuators are directly connected to the bus, and one ECU (electronic control
unit) hosts all the controller tasks. Figure 6(b) shows the task graph, with the
WCET (worst case execution time) of each task appearing below the task name.
The end-to-end deadline of the entire transaction is the same as the period, i.e.,
4725µs.

Figure 7 shows the WCCT (worst case communication time) of the mes-
sages. The time-triggered schedule synthesised by our method is shown in
Figure 8.

6. Conclusion

Component based development poses new problems for embedded control
systems software. Traditional real-time scheduling theory has been successful
in investigating whether a set of tasks can be scheduled on a given platform
using the characteristics of the tasks and the platform. The underlying as-
sumption is that the task characteristics have been derived from the application
requirements. Since today’s embedded systems are not monolithic, but are
built using pre-designed components which are composed to realise a given
functionality, what is needed is a new approach that combines task scheduling
within a component with what we call component scheduling. This paper is an
attempt to define and solve the component scheduling problem.

As future work, we would like to have an implementation of timed interface
automata in order to carry out experiments to demonstrate the scalability of our
approach. Experiments on small examples based on hand-coding of TIA using
UPPAAL TIGA have been encouraging.
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