
Virtual Integration of Real-Time Systems based
on Resource Segregation Abstraction?

Ingo Stierand1, Philipp Reinkemeier2, and Purandar Bhaduri3

1 University of Oldenburg, Germany
stierand@informatik.uni-oldenburg.de

2 OFFIS, Germany
reinkemeier@offis.de
3 IIT Guwahati, India

pbhaduri@iitg.ernet.in

Abstract. Embedded safety-critical systems must not only be function-
ally correct but must also provide timely service. It is thus important to
have rigorous analysis techniques for determining timing properties of
such systems. We consider a layered design process, where timing anal-
ysis applies when the system is integrated on a target platform. More
precisely, we focus on contract-based design, and ask whether a set of
real-time components continues to comply to a given system specification
when it is integrated on a common hardware.
We present an approach for compositional timing analysis, and define
conditions under which the system integration will preserve all the timing
properties given by the system specification. Therefore, engineers can
negotiate specifications of the individual components a priori, knowing
that no integration issues will occur due to shared resource usage. The
approach exploits ω-languages, which enables analysis techniques based
on model-checking. Such an analysis is shown by a case study.

1 Introduction and Related Work

Developing safety-critical real-time systems is becoming increasingly complex
due to the growing number of functions realized by these systems. Moreover,
an increasing number of functions are realized in software, which are then inte-
grated on a common target platform in order to save costs. The integration on a
common platform causes interferences between the different software functions
due to their shared resource usage. It is desirable to bound these interferences in
a way to make guarantees about the timing behavior of the individual software-
functions. A schedulability analysis delivers such bounds for interferences be-
tween software-tasks sharing a CPU by means of a scheduling strategy.
? This work was partly supported by the Federal Ministry for Education and Research
(BMBF) under support code 01IS11035M, Automotive, Railway and Avionics Multi-
core Systems (ARAMiS), and by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center Automatic Verification and Analysis of
Complex Systems (SFB/TR 14 AVACS).

Fig. 1. Exemplary Integration Scenario using Resource Segregation

The platform integration is typically part of a larger design process with
different phases. For safety-critical system design it is crucial that, starting with
the initial design, all steps ensure that the final implementation indeed satisfies
all given requirements. Contract-based design [2] provides a formal foundation
allowing us to reason about the validity of a design in all phases. Based on well-
defined semantics and operations, all design steps can be checked to verify the
result still satisfies the overall system requirements.

Formal verification, such as with contracts, is however not an easy task, and
requires carefully selected approaches in order to tackle computational complex-
ity. We focus on the integration phase, where real-time components are allocated
to the hardware platform. We present a compositional analysis framework using
real-time interfaces based on ω-regular languages. Following the idea of interface-
based design, components are described by interfaces and can be composed if
their corresponding interfaces are compatible. The contribution of this work al-
lows us to formally capture the resource demand of an interface, which we call
segregation property. Compatibility of interfaces then can be reduced to compat-
ibility of their segregation properties. Additionally, we put this into the context
of contract-based design, enabling us to reason about the overall specification
satisfied by the integrated implementation in a compositional way.

More specifically, we consider the following scenario. The bottom part of
Figure 1 shows a target platform that is envisioned by say an Original Equipment
Manufacturer (OEM). It consists of two processing nodes (CPU1 and CPU2).
Suppose the OEM wants to implement two applications, components C1 and C2,
on this architecture and delegates their actual implementation to two different
suppliers. Both applications share a subset of the resources of the target platform,
e.g. tasks τ2 and τ4 are executed on CPU2 after integration. Furthermore, we
assume the system specification C shown in Figure 1 to be given from previous
design phases. While some components together with their (local) specifications
may also be known (e.g. in case of reuse), the OEM generally has to negotiate
proper specifications with the suppliers, in our case C1 and C2.

Now two tasks have to be accomplished: It must be ensured that (1) the com-
position of C1 and C2 conforms to the specification C, and (2) the composed
implementation satisfies C as well. It is highly desirable that both tasks are
performed before the suppliers start to implement the respective components.
Later integration issues would require to repeat this step, causing increased de-
velopment time and costs. To this end, the negotiation between the OEM and
the suppliers must include the resource consumption needed by the implemen-

tations. Otherwise, the contract theory will fail to detect integration issues that
may occur due to shared resource usage. We therefore assign a resource reser-
vation to each component, guaranteeing a certain amount of resource supply.
Then the timing behavior of both components can be analyzed independently
from each other based on their resource demands and the guaranteed resource
supply. Verification of the successful integration of C1 and C2 then amounts to
checking whether the reserved resource supplies can be composed. We further
define conditions under which the integrated application will satisfy its system
specification. These conditions allow us to derive proper (real-time) specifications
for the negotiation with the suppliers, and hence to tackle the first task.

There has been a considerable amount of study on compositional real-time
scheduling frameworks [11, 12, 9, 6, 4]. These studies define interface theories for
components abstracting the resource requirement of a component by means of de-
mand functions [11, 12], bounded-delay resource models [6], or periodic resource
models [9, 4]. Based on these theories the required resources of a component,
captured by its interface, can, for example, be abstracted into a single task.
This approach gives rise to hierarchical scheduling frameworks where interfaces
propagate resource demands between different layers of the hierarchy. Our pro-
posed resource segregation abstraction is an extension of the real-time interfaces
presented in [3]. Contrary to the aforementioned approaches, our real-time in-
terfaces and resource segregation are based on ω-regular languages. This means
the approach can for example be employed in automata-based model-checking
frameworks. In addition the results we present are not bound to specific task
and resource models, like periodic or bounded delay.

Analytical methods provide efficient analysis by abstracting from concrete
behavior. This, however, typically leads to over-approximations of the analysis
results. Computational methods on the other hand, such as model-checking for
automata ([1, 7, 5]), typically provide the expressive power to model and ana-
lyze real-time systems without the need for approximate analysis methods. This
flexibility comes with costs. Model-checking is computationally expensive, which
often prevents analysis of larger systems. The contribution of this paper will help
to reduce verification complexity for the application of computational methods.

The paper is structured as follows: We start with an introduction of real-time
interfaces as presented in [10], which characterize components including their
resource demands. Section 3 recapitulates the basic notions of contract-based
design that are consistent with our interfaces. Sections 4 and 5 provide the no-
tions and results to reason about the integration of interfaces in a compositional
way in the context of contract-based design. Section 6 shows the application of
the approach by an example, and Section 7 concludes the paper.

2 Real-Time Interfaces

A real-time interface characterizes a component when it is executed on a set of
resources such as processing nodes and buses. Each interface represents a set
of real-time tasks, and specifies a set of legal schedules when it is executed on

...

...

...
0

input
events

output
events

slots
0

0
0

Fig. 2. Scheduling scenario (left) and exemplary trace-extract (right).

the resources in discrete slots of some fixed duration. For example, consider a
component with two tasks, τ1 and τ3, which are scheduled on a single resource.
A schedule for this component can be described by an infinite word over the
alphabet {0, τ1, τ3}, where 0 means the resource is idle during the slot, and τ1
and τ3 means the corresponding task is running.
Example 1. Suppose that task τ1 is a periodic task with period p = 5 and ex-
ecution time c = 3. The slot language of its interface can be described by the
regular expression 0<5[τ31 ||| 02]ω, where u ||| v denotes all possible interleavings
of the finite words u and v. That means, a schedule is legal for the interface,
as long as it provides 3 slots during a time interval of length 5. Observe that
the slot language captures an assumption about the activation pattern of task
τ1. The part 0<5 of the regular expression represents all possible phasings of the
initial task activation. This correlates to the formalism of event streams, which
is a well-known representation of task activation patterns in real-time systems
by lower and upper arrival curves η−(∆t) and η+(∆t) [8].

As interfaces also capture task activations and completions, we consider lan-
guages over tuples of symbols. A component has a set P = Pin]Pout of input and
output ports. Symbols occurring at a port represent activation and completion
events for the tasks that are connected to this port. The events observed at port
p ∈ P are characterized by the alphabet Σp, and we define ΣP = Σp1×. . .×Σpn .
As task activations and completions need not occur at each time step, we define
a special symbol ⊥ denoting that no event occurs. Interfaces talk about sets R
of resources that are running in parallel. To each resource r ∈ R a set of tasks
is allocated, which is represented by the alphabet Σr, as shown above.

Definition 1. An interface is a tuple IK = (K,ΣK , LK) where K = P ∪ R is
a set of ports P and resources R, ΣK =

∏
k∈K Σk, LK ⊆ Σω

K , and:

– For k ∈ P,Σk is the set of events, ⊥ ∈ Σk, that may occur at port k.
– For k ∈ R,Σk is the set of tasks, 0 ∈ Σk, that run on resource k. �

Example 2. Suppose task τ1 on the system depicted at the bottom of Figure 1
is as in Example 1. Task τ2 depends on τ1, i. e., is activated by τ1, and has an
execution time c2 = 2. Task τ3 depends on τ2 and has an execution time c3 = 1.
Task τ4 is also a periodic task with period p4 = 5 and c4 = 2. Suppose both
CPUs are scheduled using a fixed priority preemptive policy, where tasks τ1 and
τ4 have high priority on their CPU. The delay of the task-chain τ1 → τ2 → τ3
depends on the activation-pattern of τ4 and its execution time. This is illustrated
on the left of Figure 2. Once τ1 completes execution it activates (via port po1) τ2,

which in turn might be preempted by τ4. Finally, τ3, activated by τ2, could be
preempted by a subsequent instance of τ1 resulting from another event i1 of the
periodic event stream. The interface of this system is IK = (K,ΣK , LK), K =
P ∪R, P = {pi1 , pi4 , po1 , . . . , po4} and R = {cpu1, cpu2}, Σpij

= {ij ,⊥}, Σpoj
=

{oj ,⊥}, Σcpu1 = {τ1, τ3, 0} and Σcpu2 = {τ2, τ4, 0}. An excerpt of a possible
trace in LK is shown in Figure 2, which corresponds to the discussed scheduling
scenario. Observe that every port has its own event tape in the interface, just
as each resource has its own tape of time slots. Note that we omitted input
ports connected to some output port: we define a connection between tasks by
a unification of their ports to characterize a synchronization of the behavior.

The key to dealing with interfaces having different alphabets is a projection
operation. For alphabet Σ, language L ⊆ Σω, and Σ′ ⊆ Σ, we consider the
projection proj (Σ,Σ′)(L) to Σ′, which is the unique extension of the function
Σ → Σ′ that is identity on the elements of Σ′ and maps every element of Σ \Σ′
to 0. We will also need the inverse projection proj−1(Σ′′, Σ)(L), for Σ′′ ⊇ Σ,
which is the largest language over Σ′′ whose words projected to Σ belong to L.
We further define proj (Σ, ∅)(L) := ∅, and proj−1(Σ′′, ∅)(∅) := Σ′′ω.

For alphabets of the form ΣK = Σk1
× . . .×Σkn

, the projection operation is
performed component-wise, i.e., for each ki individually. Furthermore, we want
to consider interfaces over different index sets. To this end, we define normaliza-
tion operations. LetK andK ′ ⊆ K be index sets. For an alphabet ΣK′ we define
ΣK′→K =

∏
k∈K Σ′k where Σ′k = Σk if k ∈ K ′, and {0} otherwise. For an al-

phabet ∆K we define ∆K |K′ =
∏

k∈K′ ∆k. We extend these operations to words
and languages, i.e., we define ωK′→K , LK′→K , ωK |K′ and LK |K′ , respectively.

Definition 2. Let N = {1, ..., n}, and let Σ = Σ1×...×Σn and ∆ = ∆1×...×∆n

be alphabets with Σi ⊆ ∆i for i ∈ N . Define projection function proj (∆,Σ) :
∆ω → Σω by the unique extension of the function proj (∆,Σ) : ∆ → Σ where
proj (∆,Σ)(δ1, ..., δn) = (σ1, ..., σn) such that σi = δi if δi ∈ Σi, and 0 otherwise.
For M = {i1, . . . , im} ⊆ N and Σ′ = Σi1× ...×Σim we define proj (∆,Σ′)(L) :=
proj (∆|M , Σ′)(L|M). �

In other words, if Σi ⊆ ∆i then projecting a word over the larger alphabet
∆i into a word over the smaller alphabet Σi will map any symbol from ∆i not
belonging to Σi to 0; symbols that belong to Σi will be mapped to themselves.
The projection of a word over Σ then projects all elements i simultaneously. The
inverse projection of a word over Σi results in a set of words where every 0 in
the word is replaced by all the letters in ∆i which are not in Σi. The inverse
projection of a word over Σ results in a set of words with all combinations of
replacements for the individual elements.

This notion of interfaces exhibits several interesting operations and properties
[10]. In the considered context the composition operation is of importance, which
obtains the set of schedules when two components are executed together:

Definition 3. Let I1 = (K1, ΣK1 , LK1) and I2 = (K2, ΣK2 , LK2) be interfaces.
The parallel composition I1 ‖ I2 is the interface (K,ΣK , LK), where
– K = K1 ∪K2,

– ΣK =
∏

k∈K(ΣK1→K |k ∪ ΣK2→K |k),
– LK = proj−1(ΣK , ΣK1

)(LK1
) ∩ proj−1(ΣK , ΣK2

)(LK2
) �

The intuition of this definition is that a schedule is legal for I1 ‖ I2 if its
restriction to resources R1 and the port set P1 of interface I1 is legal in I1, and
similarly for interface I2. That means the tasks of an interface are allowed to
run in a slot of resource r ∈ R when r is idle in the other interface, i. e., the slot
is not used in that other interface.

Note that the projection operation also captures the synchronization of the
connected ports of I1 and I2, i. e., which events are synchronized in the compo-
sition. This is illustrated in Figure 2. Ports connected in the system are unified
in the corresponding interface (e.g. port po1), which means the same behavior
can be observed at connected ports. In the following, we will write L1∩̆L2 for
inverse projection followed by intersection when the common target alphabet is
known from the context. So we could write LK = LK1

∩̆LK2
in Definition 3.

3 Contracts and Virtual Integration

While our interfaces are suitable for expressing concurrent resource usage of an
implementation, contracts are a suitable notion for specifications in upstream de-
sign phases. A main advantage of contract-based design is to distinguish explic-
itly responsibilities of the individual parts of a design. A contract is a pair (A,G)
of assertions where A is an assumption about the environment of a component,
and G is the guarantee the component offers to its environment [2]. Logically,
this is equivalent to A⇒ G. In the context of this paper, both assumptions and
guarantees will talk about bounds on the frequency of task arrivals and time to
completions. In addition, they capture dependencies between tasks, for example,
by stating that “task 2 is triggered whenever task 1 completes”.

Both the assumptions A and the guarantees G consist of task release (or
arrival) times as well as task finishing (or completion) times. Again, these are
modeled using ω-regular languages. The semantics of a contract is about the
behavior observed at the ports P of a component. An ω-language of a contract is
defined over the set ΣP of events, and corresponds to time instants when either
nothing happens (modeled by ⊥), a task arrives (modeled by an event at the
input port of the task) or finishes execution (modeled by an event at an output
port). The contract (A,G), where A ⊆ Σω

P and G ⊆ Σω
P , specifies promises on

the arrival and finishing times of a set of tasks, given the assumptions on the
arrival times of the same set of tasks. A dependency between tasks, such as task
τi triggers task τj , is captured by the occurrence of an event at the port that
connects the two tasks. When we compose components it becomes important to
care about which ports contracts talk about. Hence we define a contract over a
set of ports as a tuple C = (P,ΣP , A,G) where A,G ⊆ Σω

P .
An important objective of any design process is successive refinement. The

contract theory provides the corresponding relation that states whether a spec-
ification C ′ refines another specification C. Indeed this is the case if C ′ can be
used in any context as C, and if C ′ has a restricted behavior:

Definition 4. [2] A contract C ′ refines another contract C, written C ′ � C if
and only if A ⊆ A′ and G′ ⊆ G. �

As the ultimate goal of the design process is to obtain an implementation, we also
need to define under which conditions an implementation behaves as specified:

Definition 5. [2] Let C = (P,ΣP , A,G) be a contract. An implementation M
of the contract satisfies C, written M |= C, if and only if M ∩A ⊆ G. �

Note that contract refinement and satisfaction are consistent. When an im-
plementation M satisfies a contract C ′, and C ′ refines C, then M also satisfies
C. In our scenario, we indeed consider interfaces as implementations.

The last important operation in the present setting is contract composition.
Systems are build from individual parts that are put together in order to provide
the intended functionality. In a bottom-up design, the composed contract C
is obtained from the contracts of the composed components. The operation is
based on the observation that the assumption of a composed contract shall be
the maximal behavior that does not cause integration errors. For contracts C1 =
(A1, G1) and C2 = (A2, G2), the contract C = C1 ‖ C2 is given by:

A = max{A | A ∩G1 ⊆ A2 ∧A ∩G2 ⊆ A1} (1)
G = G1 ∩G2 (2)

For ω-languages the equations above result in the following definition. Note
that, in order to reason about contracts over different port sets, the alphabets of
the involved assertions must be made equal. This is done exactly as for interfaces:

Definition 6. Let C1 = (P1, ΣP1 , A1, G1) and C2 = (P2, ΣP2 , A2, G2) be con-
tracts. The composition C1 ‖ C2 is the contract C = (P,ΣP , A,G) where P =
P1 ∪ P2, ΣP =

∏
p∈P (ΣP1→P |p ∪ ΣP2→P |p), and

A = (A′1 ∩A′2) ∪ (A′1 ∩G′1) ∪ (A′2 ∩G′2), G = G′1 ∩G′2,

where A′i = proj−1(ΣP , ΣPi
)(Ai), G′i = proj−1(ΣP , ΣPi

)(Gi). �
In a top-down design process we assume the system specification to be given.

Though some components might be known (e.g. from previous versions of the
design), the designers have a good understanding of what the system shall do.
In this case, one can derive from Eq. (1) and (2) the conditions under which a
system composed of individual parts conforms to a given specification. We call
them virtual integration conditions:

Lemma 1. For contracts C = (A,G), C1 = (A1, G1) and C2 = (A2, G2) the
following holds: C1 ‖ C2 � C if and only if A ∩G1 ⊆ A2 and A ∩G2 ⊆ A1 and
G1 ∩G2 ⊆ G. ut

4 Compositional Virtual Integration

One important property of contract based design is that contracts can be in-
dependently implemented. In [2] this is formalized as follows: For all contracts

C1, C2, C ′1 and C ′2, if C ′1 � C1 and C ′2 � C2 hold, then C ′1 ‖ C ′2 � C1 ‖ C2.
Thus, contracts can be independently refined towards a final implementation
and composing these implementations always results in an implementation of
the composed contracts. So considering real-time interfaces as implementations,
one might expect: Given a system specification C, it can be decomposed into
contracts Ci negotiated with suppliers. If C1 ‖ ... ‖ Cn � C holds, as well as
Ii |= Ci, then I1 ‖ ... ‖ In |= C. However, it can happen that reasoning about
integration based on the introduced contract formalism fails to detect integra-
tion issues when composing interfaces. To give an example, consider contracts
C1 and C2, each specifying an assumption about events occurring with a period
interval [5, 6] at an input port, and as guarantee a deadline of 6 between events
occurring at that input port until an event is sent at an output port. Now assume
interfaces I1 |= C1 and I2 |= C2, each of which exactly mirrors the input and
output behavior of C1, C2 respectively. Each interface has a single task with an
execution time of 3 and both tasks share the same resource. Observe that all the
formulas from above hold. However, I1 ‖ I2 only accepts input behavior for both
input ports with a strict period of 6. This is due to the incompatible resource
usages, i.e. the tasks are not schedulable under the assumed activation rates. Of
course this is not what we want, since the assumption of C1 ‖ C2 tells us that a
valid environment may send events with a period interval of [5, 6]. Hence, relying
on the assumption and using I1 ‖ I2 in a context, where the environment sends
events with a period of 5 would cause deadlines of C1 and C2 to be missed.

The cause of this problem is twofold: First, our specification in terms of con-
tracts is incomplete. Since the contracts do not talk about resource usage, there
is simply no way to detect integration errors due to resource sharing solely based
on them. Second, satisfaction as per Definition 5 does not force the implemen-
tation to accept every behavior expressed by the assumption.

Our solution to these problems is, first, to define a notion of characteristic
contract of an interface. This allows us to use the stricter contract refinement
relation instead of satisfaction. Second, we define a composability criterion for
interfaces, which avoids integration errors when composing them. As we con-
sider real-time interfaces as implementations, we develop sufficient conditions
for interface composability, which can be checked based on contracts and an
abstraction of the resource usage of the interfaces. The latter allows us to check
for proper integration in design phases before the actual implementation exists.

For the characteristic contract of an interface, we focus on the case where the
assumptions define activations patterns for each input port, and the guarantees
define execution deadlines [10]. As an interface includes the behavior observed at
the component ports, it can serve as a specification. Expressing such a combined
specification of assumption and guarantee as a contract is in general not easy.
However, if one is interested in assumptions that talk only about the behavior
of the input ports, as in our case, it becomes straightforward:

Definition 7. Let I be an interface, and P be the set of ports in the index set
K = P ∪R of I. We define the characteristic contract CI = (AI , GI) of I, where
AI = LI |Pin and GI = LI |P . �

As we have observed, composition of interfaces may restrict their accepted
input behavior. The goal is to define composability of interfaces, such that this
restriction does not occur. More formally, for composable interfaces the following
should hold: CI1‖...‖In � CI1 ‖ ... ‖ CIn . For the definition of composability, we
need a notion of “maximal resource usage” that allows us to reason about the
maximum resource demand of an interface:

Definition 8. Let ω = σ0σ1 . . . and ω′ = σ′0σ
′
1 . . . ∈ Σω where 0 ∈ Σ. We say

ω′ ≤ ω if and only if ∀i ∈ N : σi = σ =⇒ σ′i ∈ {0, σ}. We extend this to words
over tuple of symbols: Let be ωK , ω

′
K ∈ Σω

K . We say ω′K ≤ ωK if and only if
∀k ∈ K : ω′K |k ≤ ωK |k. �

A word ω′ precedes ω if either both words agree on the usage of each slot σi, or
that slot is not used in ω′ (i.e. σ′i = 0). In other words, a slot used in ω′ (σ′i 6= 0)
is also used in ω. We extend this order on slot words to languages over Σω

K :

Definition 9. Let be LK , L
′
K ⊆ Σω

K . We define L′K v LK if and only if ∀ω′K ∈
L′K : ∃ωK ∈ LK : ω′K ≤ ωK . �

Intuitively, L′K v LK means that the slot usage of all words ω′K ∈ L′K is
“dominated” by at least one word ωK ∈ LK . Note that (P(Σω

K),v) is a pre-
order, as LK v L′K and L′K v LK does not necessarily imply LK = L′K . We are
interested in a particular subset of a slot language LK ⊆ Σω

K , containing only
those words from LK with maximal execution demands:

Definition 10. Given a slot language LK ⊆ Σω
K , we define L̂K = {ωK ∈ LK |

∀ω′K ∈ LK : ωK ≤ ω′K ⇒ ωK = ω′K} �

Intuitively, L̂K removes all words from LK , whose slot usage is “dominated”
by another word in LK . L̂K is unique and maximal with respect to the order v:
Lemma 2. For every LK ⊆ Σω

K the subset L̂K ⊆ LK is unique and maximal,
i.e. ∀L′K ⊆ LK : L′K v L̂K . ut

Now we can define the conditions for composability of interfaces, based on
Definition 10 and Lemma 1:

Definition 11 (Composability of Interfaces). Let I1 and I2 be two inter-
faces. We say I1 and I2 are composable if:
1. L1|P1in

=
∏

p∈P1in
L1|p and L2|P2in

=
∏

p∈P2in
L2|p

2. L1|P2in
⊆ AI2 and L2|P1in

⊆ AI1

3. ∀a ∈ L1|P1in
∩̆L2|P2in

: ̂L1(a)|R1
∩̆ ̂L2(a)|R2

6= ∅,
where Lj(a) = {ω ∈ Lj | ω|Pjin

= a|Pjin
}. �

The first condition requires the behavior specified for the individual input
ports of every component to be independent. The second one provides the virtual
integration condition as in Lemma 1 (note that Li = AIi ∩GIi). And the third
condition requires that all components can be executed even if they expose
maximal execution usage, considered separately for every possible activation.

The following result states that under these conditions the involved interfaces
can indeed be composed without restricting their original input specification:

Theorem 1. Let I1 and I2 be composable interfaces, and let I = I1 ‖ I2. Then
AI = (AI1 ∩̆AI2)|Pin

. ut

This result establishes the requested properties: Considering interfaces as
implementations of their characteristic contracts, we can check whether their
composition restricts input behavior:

Corollary 1. Let I1 and I2 be composable interfaces. Then the following holds:
CI1‖I2 � CI1 ‖ CI2 . ut

We use the above results to solve our initial integration problem as follows.
Given the system specification C = (A,G), the OEM can decompose it into sub-
contracts C1...Cn during the negotiation phase with the suppliers. The property
C1 ‖ ... ‖ Cn � C establishes Condition 2) of Definition 11, provided the char-
acteristic contracts of the interfaces implemented by suppliers refine their local
sub-contract, i.e. CIi � Ci. This is the responsibility of the suppliers. Further
the assumption of each CIi must be such that Condition 1) of Definition 11 is
satisfied. Condition 3) requires the interfaces to be known, which still remains
an obstacle in the design flow. In the remaining part we introduce segregation
properties, providing sufficient conditions to establish the third condition of Def-
inition 11, which can be negotiated without knowing the final implementation.

5 Resource Segregation

A segregation property BI for an interface I abstracts from the slot allocations of
the legal schedules of I, by means of a set of input-independent slot reservations
for which the interface is schedulable. Note that BI indeed may reserve more
slots than are used by the interface I. The basic idea is that composition of
segregation properties BI1 and BI2 of interfaces I1 and I2 then combines non-
conflicting slot reservations of BI1 and BI2 . If at least one such combination
exists, then the third condition for composability of I1 and I2 holds.

Definition 12. Let IK be an interface, and let B ⊆ Σω
R be a slot reservation

language over R, the set of resources in K. B is a segregation property for IK
if and only if

∀b ∈ B, ∀a ∈ LK |Pin : ∃ω ∈ ̂LK(a)|R : ω ≤ b
where L(a) = {ω ∈ L | ω|Pin = a|Pin} �

Hence B is a segregation property for IK , if for all its possible activation
patterns each word in B "dominates" at least one of the maximal execution
demands resulting from the activation pattern.

The composition of slot reservation languagesB1 andB2 is defined byB1∩̆B2.
The condition for composability of slot reservation languages is rather simple:

Definition 13. Two slot reservation languages B1, B2 ⊆ Σω
R are composable if

and only if B1∩̆B2 6= ∅. �

The following proposition states the desired sufficient condition for the third
condition of interface composability based on their segregation properties.

Theorem 2. Let I1 and I2 be interfaces with disjoint input port sets P1in , P2in

and disjoint output port sets P1out
and P2out

. Let Bi ⊆ Σω
R be segregation property

for Ii. Then the following holds:

B1∩̆B2 6= ∅ =⇒ ∀a ∈ L1|P1in
∩̆L2|P2in

: ̂L1(a)|R1
∩̆ ̂L2(a)|R2

6= ∅

where Lj(a) = {ω ∈ Lj | ω|Pjin
= a|Pjin

}. ut

From Definition 12 follows that, given a segregation property BI , any non-
empty subset B′I ⊆ BI is also a segregation property for interface I. In particular
every b ∈ BI is a segregation property for I. Further, if I is schedulable under b,
then it is schedulable under any slot reservation b′ with b ≤ b′. In other words,
we can always reserve more slots for I without affecting its schedulability. This
leads us to the following definition for refinement of slot reservation languages:

Definition 14. Given slot reservation languages B,B′ ⊆ Σω
R, we say B′ refines

B (B abstracts B′), denoted B′ � B, if and only if ∀b ∈ B : ∃b′ ∈ B′ : b′ ≤ b. �

Similar to the order on slot languages, refinement for slot reservations is a pre-
order (P(Σω

R),�). Given a segregation property BI , every B′I with BI � B′I is
also a segregation property for I. Hence, composability of segregation properties
can be checked based on their abstractions, as stated by the following Lemma,
which follows directly from Definition 14:

Lemma 3. Let B1, B2, B
′
1, B

′
2,⊆ Σω

R be slot reservation languages such that
B′1∩̆B′2 6= ∅, then B1 � B′1 and B2 � B′2 implies B1∩̆B2 6= ∅. ut

This allows us to augment contract-based design with resource reservations by
associating with contract C a slot reservation B. In this combined specification
(C,B), contracts are refined together with their slot reservation. Composition of
(C1, B1) and (C2, B2) amounts to composing the contracts as well as their slot
reservations, i.e. (C1, B1) ‖ (C2, B2) = (C1 ‖ C2, B1 ‖ B2). An implementation
I satisfies (C,B) if CI � C and B is a segregation property for I.

6 Case Study

We apply the approach to a case study from the automotive domain as depicted
in Figure 3. The system under investigation has two components that control
the signal lights of a car according to the drivers actions. The Brake Light
component controls the rear brake lights according to the drivers brake pedal
position. The pedal position is periodically sensed, which is characterized by the
input port BrakeSensTimer. The activity of the brake lights is controlled by the
output port BrakeLamp. The Turn Light component controls the turn lights
according to the position of the turn switch and the warning light switch at
the driver console. To this end, the component senses periodically the position

Fig. 3. Case Study: Components, Contracts and Segregation Properties

of the switches (input port SwitchSensTimer), and actuates the turn indicator
lights accordingly. In our case, these are the lights connected to the output ports
RearLeftLamp and RearRightLamp, respectively (the front lights are omitted).

The system also implements an emergency brake signaling feature. Whenever
the driver performs an emergency brake (which is indicated by a brute force brake
action), then the car should activate both rear turn lights in order to signal
following drivers about the emergency brake situation. The emergency brake
detection takes place in the Brake Light component. It informs the Turn
Light component via the EmcyStatus/EmcySens port connection about the
current emergency brake status, which actuates the turn lights accordingly.

The OEM defines two timing requirements for the system. The first one states
that the delay between the brake sensing and the activation of the brake light
must be no greater than 25ms. The second requirement states that the end-to-
end latency between the brake sensing and the activation of the warning turn
lights in case of an emergency brake situation must not exceed 60ms.

Negotiation Phase: The OEM mandates different suppliers for the two compo-
nent implementations. According to our approach, the OEM specifies contracts
for the individual components, which are shown at the right part of Figure 3.
The assumptions A11 and A12 define the activation patterns for the compo-
nent Brake Light in terms of periodic event streams as discussed in Section 2.
Assumption A11 defines a periodic event stream with a period of 20ms for the
sensing part, and A12 defines a periodic activation with 10ms period for the ac-
tuator part. A similar situation holds for the assumptionsA21 andA22 (20ms),
and A24 (10ms) for the component Turn Light. Note that these assumptions
anticipate an implementation detail, as the OEM defined asynchronous activa-
tions for the individual parts of the components (sensing (A11, A22), control
(A21) and actuator (A12, A24)). The deadline requirements are expressed by
contract guarantees. The first one is local to Brake Light, and expressed by the
guaranteeG11. The second requirement expresses an end-to-end deadline across
the two components. Here, the OEM has to split the deadline into two parts. In
our case, the OEM selects 10ms for component Brake Light, expressed by the
guarantee G12, and 50ms for component Turn Light (G22).

Fig. 4. Case Study: Implementation Model

The applications shall be deployed on a hardware architecture with two
ECUs. The sensing and control part shall be implemented on the ECU CEM,
and the actuator part on the ECU REM. The ECUs are connected to the body
CAN bus for exchanging data between the parts. The OEM provides for each
part a time budget. The slot reservation for the Brake Light component is
indicated by a set of real-time tasks (upper part of Figure 3). For example, the
OEM ensures that the ECU provides 3 − 4ms execution time for sensing and
control of the brake light part, and additional 2ms for the calculation of the
emergency brake situation. This is expressed by the task at the top level corner
of Figure 3. For the analysis, the slot reservation is represented by a finite state
machine (FSM) that is generated in a separate analysis step. As Brake Light
shall have higher priority, the slot reservation for the Turn Light component is
simply the inverted FSM where non-occupied slots can be used, and vice versa.

Implementation: The suppliers eventually generate the implementation depicted
in Figure 4. The Turn Light component implements sensing and pre-processing
tasks for the turn switch (TSSens, TSPrep) and the warning lights (WLSens,
WLPrep). The pre-processed data is read by the central Logic task, which
generates control values for the individual actuator tasks. The data is sent via
the CAN bus to the actuator tasks RLAct and RRAct, which are hosted at the
ECUREM. The task also generates control data for the switch lights that reside
in the driver console (SLAct). The brake pedal is sensed and preprocessed by
the tasks BPSens and P2L, respectively. The latter sends the generated control
values via the bus to the actuator task BLAct. The task EmcyPrep calculates
whether an emergency brake took place. The dotted elements with a rectangle
symbol indicate shared variables that store control values. The variables at the
ECU CEM store the data from the pre-processing tasks. Whenever the Logic
task is activated, it reads the stored values to generate the actuator control
values. The shared variables at the ECUREM store these values for the actuator
tasks. As the analysis has no functional (i.e. data dependency) aspect, we omit
the variables in the analysis model in order to reduce computational complexity.

The trigger elements in the model (rectangles with a filled circle symbol)
characterize the event streams conforming to the respective assumptions. Trigger
T11 for example implements an event stream that activates task BPSens every
20ms according to assumption A11.

Guarantee Brake Light Turn Light integrated
G11 [5.25, 16.25] - [5.25, 15.25]
G12 [5, 6] - -
G22 - [10.25, 46.25] -
G12+G22 - - [15.25, 45.25]

FSM states 28.021 225.945.919 41.806.561
explored states 109.262 932.377.509 265.473.150

Table 1. Guarantee Verification Results

Analysis: We first check the proof obligations imposed by the conditions of Def-
inition 11. The independence of the individual input ports is trivially satisfied
due to the definition of independent event streams for all inports. The second
condition concerns the ports that connect the involved components. In our case,
the required language inclusion is given by definition, which can be checked by
comparing the definitions of A23 and G13, and A12 and G21, respectively.
In general, however, a formal language inclusion check must be performed. For
the third condition, requiring the composability of the component interface, we
exploit Theorem 2. Hence, it must be ensured that the composition of the indi-
vidual slot reservation languages does not impose an empty language. Also this
is given by definition in our case, as the slot reservation of the one component
is the inverted slot reservation of the other one.

The remaining proof obligation is to check whether the implementations of
the individual components satisfy the given requirements, while using only slots
that are given by the respective slot reservation language. The analysis employs
an evolved version of the tool RTana2 for computational real-time scheduling
analysis [10]. Three analysis runs have been performed. The first analysis checks
whether the Brake Light implementation satisfies the guarantees G11 and
G12. To this end, the analysis model contains both the application tasks and
the slot reservation FSM. The tool performs a scheduling analysis where the
application tasks can only use time slots that are available according to the
slot reservation scheme. The second run does the same with the Turn Light
implementation and guarantee G22, using however the inverted slot reservation
of the first run. The third analysis checked the integrated model for comparison,
and also performed an end-to-end analysis of the guarantees G12+G22. The
results are shown in Table 1. Note that the number of states are consistently
larger for the analysis of the separate Turn Light component compared to
the integrated analysis. This is due to the fact that the slot reservation scheme
introduces an additional non-determinism for the analysis of the component.

Verification for the guarantees G13 and G21 is not shown. The latter is
trivially given as the events of triggerT24 are directly put through to component
Brake Light. G13 can be derived from A11 and G12. A formal verification
would require a language inclusion check, which is however not yet available in
the tool. Finally, the (over-approximated) end-to-end latency G12+G22 can be
easily derived by adding the results from the separated analysis runs.

7 Conclusion

In this paper we have proposed a compositional method to verify proper compo-
nent integration at an early design stage, while taking into account resource usage
of implementations of respective components. The method combines contract-
based reasoning for verifying refinement of a system specification by a set of
component specifications, with resource segregation properties. We provided a
set of conditions for the composability of resource segregation that guarantees
preservation of the validity of the contract-based refinement check, when resource
usage of implementations of the contracts are considered in a later design step.

We showed the application of the approach by a case-study from the automo-
tive domain, containing all steps of the proposed design process. The verification
steps employed an extended version of the prototype analysis tool for interfaces
discussed in [10] with preliminary support of segregation properties.

References

1. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: Proc. Software Engineering and Formal Methods (SEFM) (2006)

2. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier,
P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts
for Systems Design (2013), INRIA Research Report No. 8147 (November 2012)

3. Bhaduri, P., Stierand, I.: A Proposal for Real-Time Interfaces in SPEEDS. In:
Proc. Design, Automation Test in Europe (DATE) (2010)

4. Easwaran, A., Anand, M., Lee, I.: Compositional Analysis Framework using EDP
Resource Models. In: Proc. Real-Time Systems Symposium (RTSS) (2007)

5. Guan, N., Ekberg, P., Stigge, M., Yi, W.: Effective and Efficient Scheduling of
Certifiable Mixed-Criticality Sporadic Task Systems. In: Proc. Real-Time Systems
Symposium (RTSS) (2011)

6. Henzinger, T., Matic, S.: An Interface Algebra for Real-Time Components. In:
Proc. of the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). pp. 253–266 (2006)

7. Perathoner, S., Lampka, K., Thiele, L.: Composing Heterogeneous Components
for System-wide Performance Analysis. In: Design, Automation Test in Europe
Conference Exhibition (DATE) (2011)

8. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models.
Ph.D. thesis, TU Braunschweig, Germany (2005)

9. Shin, I., Lee, I.: Periodic Resource Model for Compositional Real-Time Guarantees.
In: Proc. International Real-Time Systems Symposium (RTSS). pp. 2–13 (2003)

10. Stierand, I., Reinkemeier, P., Gezgin, T., Bhaduri, P.: Real-Time Scheduling In-
terfaces and Contracts for the Design of Distributed Embedded Systems. In: Proc.
Symposium on Industrial Embedded Systems (SIES) (2013)

11. Thiele, L., Wandeler, E., Stoimenov, N.: Real-Time Interfaces for Composing Real-
Time Systems. In: Proc. International Conference on Embedded Software (EM-
SOFT). pp. 34–43 (2006)

12. Wandeler, E., Thiele, L.: Interface-Based Design of Real-Time Systems with Hier-
archical Scheduling. In: Proc. Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS). pp. 243–252 (2006)

