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Abstract. Meta-model based development offers a promising way of manag-
ing the complexity of industrial scale software by describing a system in terms
of different ‘views’. These views can then be described as instances of a single
meta-model. Such views are usually not disjoint and it is essential that they are
shown to be consistent. A weakness of meta-modelling tools is the lack of sup-
port for describing the behaviour of models, and this is central to demonstrating
the consistency of views. We address this problem by combining meta-modelling
with formal techniques for stating and verifying behavioural properties. In this
paper, we describe a formalization of models and meta-models and show how
this leads to automated procedures for consistency checking between views in an
industrial software development framework.

1 Introduction

Industrial scale software development relies heavily on the use of models, which help in
managing the complexity of problems by separating concerns. Different models often
use different description techniques, each suitable for describing a particular aspect of
the system. For example, the models used in UML [2] are the structural views, e.g.
classes, objects and their attributes and relationships, and the behavioural views, e.g.
sequence and statechart diagrams, depicting inter-object collaboration and intra-object
state transitions.

Each of these different models can be treated as an instance of a part of a single
meta-model. For example, each UML diagram, which is a view of the system, is an
instance of the UML meta-model [8].

Different views are usually not disjoint and thus may describe the same property of
the system. Common properties must be consistently defined to ensure the integrity of
the system. For example, two views can be used to describe the dynamic behaviour of
a system:

1. A state machine model which describes all permissible sequences of events in the
life of an object as well as the object’s actions in these sequences. This can be
considered as a projection of the system traces on a specific object.

2. A Message Sequence Chart which describes one possible time sequence of interac-
tions (send and receive events) among a set of given objects. This describes only a
set of system traces between two (usually unspecified) system states restricted to a
set of objects.



Example 1. (Views) An organization needs a financial and budgeting system for keep-
ing track of expenses for different items. All expenditure must be budgeted for by cre-
ating and updating an obligation. A user must first budget expenses through an obliga-
tion which must be approved by the finance department. Expenses can be made only
against such approved obligations. The amount of an obligation can be amended. All
such amendments must be approved afresh.

The above requirements can be interpreted in two possible ways. The first says
that no payment can be made against an amended obligation before the amendment is
approved, shown by the state machine view in Figure 1. The other is that a payment can
be made even if the amendment is approved, provided the amount of the payment was
already approved before the amendment. This interpretation is shown by the MSC view
in Figure 1
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Fig. 1. Two Views of the Budgeting System

In order to deal with the issue of consistency of views, we must have a formal system
model as a framework for reasoning about the relationship between the different views.
The system model should describe both the static and dynamic aspects of the system.
The static aspect comprises the entities in the system along with their relationships at
any point of time. This could be taken to be the objects, the values of their attributes and
the links between them. The dynamic aspect of the system should capture the transitions
of the system from one static view to another. These transitions are caused by operation
invocations on objects, which may trigger other invocations in turn.

In this paper we propose a formalization of different models of a system along
with the system model to address the problem of compatibility of views. We focus on
consistency of dynamic behavioural views only, and ignore issues of static consistency
checking. We do not deal with consistency of views with respect to data states, which



will be the subject of a future paper. Here we limit ourselves to the control aspects of
dynamic behaviour.

For concreteness, we focus on three different models of a system, comprising the
static structure, object interaction and intra-object behaviour views:

1. Class Diagram This gives the static view of the system in terms of classes, their
attributes and operations, the associations between classes and their properties (e.g.
cardinality constraints), invariants (constraints) satisfied by objects of the class, and
pre- and post-conditions of operations.

2. Message Sequence Charts [6]. This gives the dynamic view of object interaction
in terms of exchange of messages (operation calls or signals) to realize a particular
functionality.

3. State Diagrams This is the dynamic view corresponding to intra-object behaviour
in terms of states and transitions of the object in question. Each transition is labelled
by a triggering event (invocation of a operation in this object), a guard (a boolean
condition) and a resulting action (e.g. a call to a operation in another object), all of
which are optional.

These views are not independent as Example 1 shows. The class diagram places
constraints on the cardinality of objects and links which any evolution of the system
must satisfy as invariants. A class diagram may also impose pre- and post-conditions on
the invocation of operations in each object, which must be consistent with the transitions
that are enabled in the corresponding states in the state machine. A state diagram for a
class specifies the order in which the operations in an object of the class can be invoked
and this must conform to the inter-object scenarios presented by a set of MSCs.

Our contribution in this paper is to give a unified model of these notions of views
and consistency. We abstract away from concrete views like state machines and MSCs,
and instead define a generic notion of a view. In order to do this, we define an abstract
model of a system in terms of a labelled transition system with additional structure
on the states. The views are projections of this system model which impose certain
constraints on the system. Consistency between two views can be checked by using
algorithms for intersection of finite automata. These notions can be easily integrated
with a model based CASE tool for automatic consistency checking of views.

2 Models and Consistency

To formalize the notions of views and consistency we consider a labelled transition
system with additional structure on the states as the system model. A system state is
a collection of objects and links between them, where each object is a tuple of object
identifier, object state and a set of operations. The event � in a system transition �

�
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�

is either the send or receipt of an asynchronous message or an operation invocation on
an object contained in � .

A system trace is a sequence of system states
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such that two successive states are related by a system transition. Note that the state of
at most one object is modified by a system transition. We use an interleaving model of
concurrency in which a system trace represents a serialization of a given set of events.

A view of a system
�

is a system
� �

composed of a subset of objects and transitions
in
�

. An example of a system and a possible view is shown in Figure 2, where the view
includes objects Ob1 and Ob2, and the transitions labelled by Ob2.f1 and Ob1.f3.
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Fig. 2. System Model and Views

In addition to being a subsystem of a system
�

, a view also places certain constraints
on

�
. These constraints can be expressed as assertions over system states and traces

that may, must and never happen in the evolution of the system. For example, the state
machine model of an object enumerates the may traces (possible sequences), along with
the proviso that the list of traces not specified must never occur. An MSC model, on the
other hand, enumerates a list of must traces (mandatory sequences) on a set of objects,
while not claiming anything about other traces in the system. We decorate a view with a
mode which is either must or never to capture this intuition. Note that we do not need a
mode called may, because this can be expressed with must and never. The consistency of
two views with different modes can then be expressed as the condition that the must and
never traces do not intersect for the common set of objects. The algorithm for checking
consistency is just the familiar one for checking the non-emptiness of the intersection
of two finite automata.

Example 2. (Consistency) It follows from our formalization of consistency that the
views in Figure 1 are not consistent. According to the MSC view the sequence
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must be a valid system trace when restricted to the Obligation object. In contrast, the
state machine view asserts that the sequence is not a valid trace of Obligation.

The notions of view and consistency can be generalized from the specific cases
of state machines and MSCs. We can think of a view as a property of finite traces of a
system. This is tantamount to using a finite state automaton for stating safety properties,
with some additional features such as unspecified states and transitions which act as
wild cards. Checking a view and a property for consistency then amounts to checking
whether the view satisfies the property.

In the rest of the paper, we propose a formalization of these notions of a system
model, the different views of a system and their consistency. Our goal is to automate
the consistency checking of views in multi-view modelling of object-oriented systems.

Related Work Various approaches to dynamic meta-modelling have been proposed in
the literature for defining the behavioural semantics of UML. In [3], dynamic meta-
modelling is proposed as a new approach to the operational semantics of behavioural
UML diagrams. The system dynamics is specified by means of collaboration diagrams,
which are interpreted as graph transformation rules. A similar framework for the for-
mal integration of object-oriented modelling notations using transformation systems has
been investigated in [5]. In [4], the authors use Object-Z as the formal meta-language
for the definition of UML dynamic semantics. Our dynamic model based on labelled
transition systems and the definition of consistency based on intersection of finite traces
are conceptually simpler and more amenable to tool support. Our work is closely re-
lated to that of [9], where the authors propose a general schema of the semantics of the
UML. The different UML diagrams are given individual semantics in a common for-
mal meta-language, which are then composed to get the semantics of the entire model.
The formalism used is labelled transition systems with algebraic structure on the states,
as supported by the concrete modelling notation CASL-LTL. In this approach, con-
sistency of different UML models is modelled by the consistency i.e., existence of a
model, of the resulting algebraic specification. We have taken a simpler approach, as
we are primarily interested in automated tool support for analysing consistency.

3 Formalization of System Model, Views and Consistency

In this section we present the technical details of our formal meta-modelling framework.
We give formal presentations of the various concepts involved – labelled transitions sys-
tems (LTS), system, views, properties expressed by views in terms of traces, must and
never modalities, mapping between views and system model and consistency between
views.

3.1 System Model

The consistency of multiple views of a system can be ensured by defining a unified
model of the entire system. This model specifies all the possible ways in which the
system might evolve over time. It is presented as a labelled transition system with an
additional structure on the states.



Definition 1. A labelled transition system (LTS) is a tuple
��� � �������

���
� � � ���
	

��� � � � ��� ���! ,
where

�������
� � is a set of states, ��� is the initial state,


is a set of final states,

�
	
��� � � is

a set of event labels and � � is the transition relation ����� �������
� ��� �
	 ��� � ��� ������� ��� .

Notes

1. An LTS may be nondeterministic i.e., two distinct transitions with the same event
label may originate at one state.

2. The final states are needed for defining complete traces of systems. All consistency
conditions and properties are stated in terms of finite traces.

3. An LTS is defined without any structure on the states. In our setting, all the LTS’s
come equipped with enriched structure defined on the states.

A system is defined as an LTS where the states have internal structure – collection
of objects with their local states and links.

Definition 2. A system is an LTS
��� � �������

� �
� � � ���
	

��� � � � ��� ���! , where a system
state ��� �������

� � is a set of objects �����������
���! #" ����	%$�& and links �(')��'��+*�, �.-�$/& be-
tween them. Each object is a tuple

� �! #"�0�1 � �2 #"43 	��
	���� � ��������	 , ���5$�! , of an object iden-
tifier, an object (local) state and a set of operations the object offers. At this stage we
do not further refine the notion of an object state in terms of values of attributes. The
event � in a system transition �

�
� � �

�
is either the send or receipt of an asynchronous

message or an operation invocation (call event) on an object in �
�
. We assume that in

a transition �
�

� � �
�
, the state of at most one object is modified from � to �

�
. All the

objects retain their identity and set of operations from � to �
�
, unless an object is created

or destroyed.

Example 3. Part of the LTS from the budgeting example above is shown in Figure 3.
The state of the Obligation object in each state of the LTS is shown in parenthesis at the
bottom of the box depicting the object.
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Fig. 3. Labelled Transition System for the Budgeting System



Definition 3. A system trace is a sequence of system states
� �

���
� 	
� � � ��������

� �
��� ��� � ���� � �

such that two successive states are related by a system transition and the ending state
� � is in


. By this definition a trace is always finite.

Note that a trace is a sequence containing both states and transitions. In compar-
ing two traces, we will compare both components. However, in the definition of a view
presented below, we do allow a trace to have unspecified states and transitions. When
comparing two traces, an unspecified state or transition will match any state or transi-
tion.

Definition 4. The restriction
�����

of a system trace
�

to a set of objects
�

is obtained
by

1. removing objects from each state � � of
�

that are not in
�

,
2. erasing the transition labels � � from � �

� �
��� � � � � if � � is not an operation in objects

in
�

, and finally,
3. collapsing those states that are related by null transitions into a single state.

Example 4. In Figure 2, the trace at the bottom is the restriction of the one at the top to
the set of objects � �! �� � �! 	� & .
Notes

1. Formally, given a set of objects
�

, we define an equivalence relation on system
states as follows: ��
 �

�
if �

��� �
�
� ���

, where �
���

is the system state obtained by
removing those objects and their corresponding links from the system state � that
are not in the set

�
. The relation can be read as “ � and �

�
look the same modulo the

set of objects in
�

”.
2. The collapsing of states and transitions corresponds to identifying system states by

taking the equivalence classes modulo 
 , and deleting the null transitions.

3.2 Views

A view of a system
�

is an LTS composed of a subset of objects and transitions of�
. The transitions that do not affect the objects in a view do not appear in the view.

In addition, a view defines constraints on the behaviour of the objects contained in the
view. These constraints are expressed as assertions over system states and traces that
must or never happen in the evolution of the system. For example, the state machine
model of an object enumerates the possible traces of the object, along with the proviso
that the list of traces not specified must never occur. An MSC model, on the other hand,
enumerates a list of must traces (mandatory sequences) on a set of objects, while not
claiming anything about other traces in the system. The consistency of two different
views follows from the consistency of the assertions over the system contained in these
views.

Definition 5. A view  is a pair
��� ����� ���
!

, where
�

is a finite-state LTS and mode is
one of the two modalities must and never.



Notes A view can have unspecified object states, transition labels and links. The mean-
ing of an unspecified event, state or link is that it will match any event, state or link in
comparing two traces.

Example 5. Figure 4 is an example of (a) a never view  , that asserts that the event
��� will never follow ��� on the given object and (b) a system

�
that fails the view. In

this example, the final state is a dead state that captures all forbidden behaviours. Note
that in the view the state in the middle can be instantiated to more than one state in the
system, since it is unspecified.

(b) System S fails M

e1 e3 e2

(a) View M with mode never

e1 e2

Fig. 4. Example of a never view

Definition 6. A view  is said to be a view of the system
�

when one of the following
conditions hold:

1. if  has mode must, then for every trace
�

of  , there exists a trace
� �

of
�

, which
when restricted to the objects in  is

�
, i.e.,

� � � ����� ��� � ��� 	� � �
;

2. if  has mode never, then for every trace
�

of  , there does not exist a trace
� �

of�
, which when restricted to the objects in  is

�
.

3.3 Consistency between Views

Definition 7. Two views  �
� ���

�
����� ���

�
!

and �
 � ��� 
 ����� ��� 
 ! are consistent if

1.
������

�
� ��� ��� 
 , or

2. (when
������

��� ��� ��� 
 ) the traces of  � and �
 when restricted to their common
objects do not intersect, i.e.,

	 ������ $ �  � � ����� 	 ������ $ � �
�� ��� ���
, where

� �
�  #" ����	%$ �  ��� � �  #" ����	%$ �  
 � .

Notes

1. The consistency between two views is with respect to safety properties, i.e., prop-
erties whose violation can be detected by considering finite traces.

2. The consistency checking algorithm reduces to checking that the intersection of
two FSMs is non-empty.



4 State Machines, MSCs and Properties as Views

In Section 3 we defined a view of a system and consistency of two views at an abstract
level. In this section, we provide translations from object state machines and MSCs
to the abstract notion of a view. Further, we show how the properties involved in the
notion of consistency between views can themselves be captured as views. To check
that a system satisfies a property then reduces to checking that the property is a view
of the system, in the sense of definition 6. To check that a state machine (respectively
MSC) satisfies a property reduces to checking the consistency between the view and the
state machine (respectively MSC) in the sense of definition 7.

State Machines as Views: Translating object state machines to views is straightforward.
A state machine defines all possible transitions of an object. No other transition should
occur in the system on this object. Thus a state machine presents a never view of the
system, where the view is obtained from the state machine by adding a dead state as the
only final state, and adding all the missing transitions from every state to the dead state.
Figure 4 is an example of a state machine treated as a view.

MSCs as Views: An MSC defines an example scenario that must be exhibited by the
system. Recall that an MSC defines a partial ordering on the events in a system, where
the events are sending and receiving of messages (see [1] for details). The ordering is
defined by the ordering of events along a timeline and the fact that a send event precedes
the corresponding receive. From this partial order on the events, one obtains a finite LTS
in a standard way. The downward closed subsets of the partial order, referred to as cuts,
represent states of the LTS. There is a transition �

�
��� �

�
if ��� �

�
�
�
. We declare all

states as final states. Alternatively, if an MSC is used to present a forbidden scenario,
then it is a never view, where the state containing all the events is the only final state.

Note that in general, a high-level MSC (HMSC) cannot be translated to a finite LTS.
For bounded HMSCs, a finite state LTS can be obtained, and checking for consistency
with a state machine view reduces to model checking of bounded HMSCs, which is
co-NP complete (see [1]).

Properties as Views: We have seen how object state machines and MSCs can be trans-
lated to views. We can generalize this situation to properties on finite traces, which sub-
sumes both these cases. This way we can specify safety properties, properties whose
violation can be detected by inspecting all finite traces. We give examples to illustrate
how simple safety properties can be expressed using views.

Example 6. Consider the property, “The subsequence of events
��� �����������

never occurs
in a trace.” This is depicted below as a never view. Note that the unlabelled transitions

e2

Mode: never

e1 e3



in the view match any transition in the system.

Example 7. “An event
� �

always leads to an event
� �

in a trace.” This is again a never
view, as shown below.

e2

e1

Mode: never

To check whether a view satisfies a property amounts to checking the consistency
of the view with the property. We have already seen that this requires checking the
emptiness of the intersection of two finite automata.

5 Conclusion

In this paper we have proposed a formal notion of consistency of models commonly
used in model based software development. Our underlying semantic framework is
labelled transition systems with additional structure on the states to capture the data
aspects of the models. The novelty of our approach lies in viewing each model as an
LTS with a must or never modality, that places constraints on the global system model.
Consistency checking between models for purely control aspects of behaviour is sim-
ply checking non-emptiness of the intersection of two finite automata. We are exploring
ways to integrate this notion of consistency and its automated verification in an indus-
trial meta-model based development tool.

The examples presented here all involve determining the consistency of purely con-
trol aspects of behaviour described by different models. When the models also involve
properties of the data state of the system, such as invariants and pre- and post-conditions
for operations, we will need a logical framework for reasoning about consistency. We
are currently investigating Lamport’s Temporal Logic of Actions (TLA) [7] as a suit-
able formalism for describing and proving properties of transition systems with both
data and control elements. The advantage of using TLA is that it provides a single logi-
cal formalism for describing transition systems and formulating their properties, which
include both data and control aspects.

Our formalization of the notion of consistency, and its verification in the context of
multiple model based development, should be seen as a first step towards an integrated
behaviour modelling and analysis framework. This would integrate both structural and
behavioural models and aid in forward engineering –refinement, code generation and
test case generation, in addition to detecting faults early in the life cycle.
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