
Synthesis of Interface Automata

Purandar Bhaduri

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

Guwahati 781039, India
Email: pbhaduri@iitg.ernet.in

Abstract. We investigate the problem of synthesising an interface au-
tomaton R such that P ‖ R � Q, for given deterministic interface au-
tomata P and Q. We show that a solution exists iff P and Q⊥ are com-
patible, and the most general solution is given by (P ‖ Q⊥)⊥, where P⊥

is the automaton P with inputs and outputs interchanged. We also char-
acterise solutions in terms of winning input strategies in the automaton
(P ⊗Q⊥)⊥, and the most general solution in terms of the most permis-
sive winning strategy. We apply the synthesis problem for interfaces to
the problem of synthesising converters for mismatched protocols.

1 Introduction

Interfaces play a central role in component based design and verification of sys-
tems. In this paper we study the problem of synthesising an interface R, which
composed with a known interface P is a refinement of an interface Q. This is a
central problem in component based top-down design of a system. The interface
Q is an abstract interface, a high level specification of the component under
development. The interface P is a known part of the implementation and we are
required to find the most general (i.e., abstract) solution R satisfying the rela-
tion P ‖ R � Q. Here P ‖ Q is the composition of P and Q, and P � Q denotes
‘P is a refinement of Q’. This problem has wide ranging applications from logic
synthesis to the design of discrete controllers, and has been studied previously in
[20, 21], where the composition is either the synchronous or parallel composition
of languages, and refinement is inclusion. We study the problem in the setting
of interface automata [6], where composition and refinement of interfaces are
respectively the composition of interface automata and alternating refinement
relations[2].

Interface automata are like ordinary automata, except for the distinction
between input and output actions. The input actions of an interface automaton P
are controlled by its environment. Therefore an input action labelling a transition
is an input assumption (or constraint on P ’s environment). Dually, an output
action of P is under P ’s control, and represents an an output guarantee of P .
Note that unlike I/O automata [12], interface automata are not required to be
input enabled. If an input action a is not enabled at a state s, it is an assumption

on the automaton’s environment that it will not provide a as an input in state
s.

When two interfaces P and Q are composed, the combined interface may
contain incompatible states: states where one interface can generate an output
that is not a legal input for the other. In the combined interface it is the en-
vironment’s responsibility to ensure that such a state is unreachable [6]. This
can be formalised as a two person game [6] which has the same flavour as the
controller synthesis problem of Ramadge and Wonham [17]; in our setting the
role of the controller is played by the environment. More formally, we follow
de Alfaro [7] in modelling an interface as a game between two players, Output
and Input. Player Output represents the system and its moves represent the
outputs generated by the system. Player Input represents the environment; its
moves represent the inputs the system receives from its environment. In general,
the set of available moves of each player depends on the current state of the
combined system. The interface is well-formed if the Input player has a winning
strategy in the game, where the winning condition is to avoid all incompatible
states. Clearly, the game aspect is relevant only when defining the composition
of two interfaces.

Refinement of interfaces corresponds to weakening assumptions and strength-
ening guarantees. An interface P refines Q only if P can be used in any envi-
ronment where Q can be. The usual notion of refinement is simulation or trace
containment [12]. For interface automata, a more appropriate notion is that of
alternating simulation [2], which is contravariant on inputs and covariant on out-
puts: if P � Q (P refines Q), P accepts more inputs (weaker input assumptions)
and provides fewer outputs (stronger output guarantees). Thus alternating re-
finement preserves compatibility: if P and Q are compatible (i.e., P ‖ Q is
well-formed) and P ′ � P , then so are P ′ and Q.

In this paper we show that a solution to P ‖ R � Q for R exists for deter-
ministic interface automata iff P and Q⊥ are compatible, and the most abstract
(under alternating refinement) solution is given by (P ‖ Q⊥)⊥. Further, such an
R can be constructed from the most permissive winning strategy for player Input
in the combined game (P ⊗Q⊥)⊥. Here P⊥ is the game P with the moves of the
players Input and and Output interchanged, and P ⊗ Q is the combined game
obtained from P and Q by synchronising on shared actions and interleaving the
rest. We say a strategy π is more permissive than π′ when, at every position in
the game, the set of moves allowed by π includes those allowed by π′. The most
permissive winning strategy is one that is least restrictive. This result ties up the
relation between composition, refinement, synthesis and winning strategies, and
should be seen as one more step towards a “uniform framework for the study
of control, verification, component-based design, and implementation of open
systems”, based on games [7].

Note that the notation P⊥ is borrowed from linear logic [8], where games play
an important semantic role [3]. Using the notation of linear logic, the solution R
to the synthesis problem can be written as (P⊗Q⊥)⊥ = P⊥OQ = P (Q, where
⊗, O and (are respectively, the linear logic connectives ‘With’, ‘Par’ and linear

implication. In our setting, the ⊗ connective of linear logic is parallel composition
‖. The striking similarity of this solution with the language equation posed in
[20, 21] is intriguing. In their framework, the largest solution of the language
equation P •R ⊆ Q for R is the language P •Q where P •Q is the synchronous
(or parallel) composition of languages P and Q, and P is the complement of P .
Clearly, there is a formal correspondence between P •Q and our P ‖ Q, between
P and our P⊥, and between language inclusion and alternating simulation.

We should also mention the formal resemblance of our work with Abramsky’s
Semantics of Interaction [1], based on the game semantics of linear logic. In par-
ticular, the strategy called Application (or Modus Ponens) in [1] is the solution
to our synthesis problem in a different setting. The solution R = P (Q sug-
gests that the problem of synthesis can be seen as the construction of a suitable
morphism in an appropriate category of interface automata, along the lines of
[13, 18]. However, we do not pursue this thread in this paper.

As a practical application we show how to apply interface synthesis to the pro-
tocol conversion problem for mismatched network protocols. The heterogeneity
of existing networks often results in incompatible protocols trying to commu-
nicate with each other. The protocol conversion problem is, given two network
protocols P1 and P2 which are mismatched, to come up with a converter C which
mediates between the two protocols, such that the combined system conforms
to an overall specification S. We show that a converter C, if it exists, can be
obtained as the solution to P ‖ C � S, where P = P1 ‖ P2 is the composition of
the two protocols.

The controller synthesis problem and its solution as a winning strategy in
a game has a long history, going back to Büchi and Landwebers’ solution of
Church’s problem [4]. More recent applications of the idea in the synthesis of
open systems occur in [13, 14, 16]. The control of discrete event systems [17]
and the synthesis of converters for mismatched protocols [15] can be seen as
applications of the same general principle. The present work extends the principle
to the composition and refinement of interfaces.

2 Interface Automata

In this section we define interface automata and their composition and refine-
ment. We follow the game formulation presented in [7]. Throughout this work
we consider only deterministic interface automata.

Definition 1. An interface automaton P is a tuple (SP , S0
P ,AI

P ,AO
P , Γ I

P , ΓO
P , δP)

where:

– SP is a finite set of states.
– S0

P ⊆ SP is the set of initial states, which has at most one element, denoted
s0

P .
– AI

P and AO
P are disjoint sets of input and output actions. The set AP =

AI
P ∪ AO

P is the set of all actions.

– Γ I
P : SP → 2A

I
P is a map assigning to each state s ∈ SP a set (possibly

empty) of input moves. Similarly, ΓO
P : SP → 2A

O
P assigns to each state

s ∈ SP a set (again, possibly empty) of output moves. The input and output
moves at a state s correspond to actions that can be accepted and generated
at s respectively. Denote by ΓP (s) = Γ I

P (s) ∪ ΓO
P (s) the set of all actions at

s.
– δP : SP×AP → SP is a transition function associating a target state δP (s, a)

with each state s ∈ SP and action a ∈ AP . Note that the value δP (s, a) makes
sense only when a ∈ ΓP (s). When a /∈ ΓP (s), the value can be arbitrary.

The interface automaton P is said to be empty when its set of initial states
S0

P is empty. Empty interface automata arise when incompatible automata are
composed.

Definition 2. An input strategy for P is a map πI : S+
P → 2A

I
P satisfying

πI(σs) ⊆ Γ I
P (s) for all s ∈ SP and σ ∈ S∗P . An output strategy πO : S+

P → 2A
O
P

is defined similarly. The set of input and output strategies of P are denoted by
ΠI

P and ΠO
P respectively.

An input and output strategy jointly determine a set of traces in S+
P as

follows. At each step, if the input strategy proposes a set BI of actions, and the
output strategy proposes a set BO of actions, an action from BI ∪ BO is chosen
nondeterministically.

Definition 3. Given a state s ∈ SP , and input strategy πI and an output strat-
egy πO, the set Outcomes(s, πI , πO) ⊆ S+

P of resulting plays is defined inductively
as follows:

– s ∈ OutcomesP (s, πI , πO);
– if σt ∈ Outcomes(s, πI , πO) for σ ∈ S+

P and t ∈ SP , then for all a ∈ πI(σt)∪
πO(σt) the sequence σtδP (s, a) ∈ OutcomesP (s, πI , πO).

A state s ∈ SP is said to be reachable in P , if there is a sequence of states
s0, s1, . . . , sn with s0 ∈ S0

P , sn = s, and for all 0 ≤ k < n there is ak ∈ ΓP (sk)
such that δP (sk, ak) = sk+1. Reach(P) denotes the set of reachable states of P

The refinement of interface automata is known as alternating simulation, the
right notion of simulation between games [2]. Intuitively, an alternating simu-
lation ρ ⊆ SP × SQ from P to Q is a relation for which (s, t) ∈ ρ implies all
input moves from t can be simulated by s and all output moves from s can be
simulated by t.

Definition 4. An alternating simulation ρ from P to Q is a relation ρ ⊆ SP ×
SQ such that, for all (s, t) ∈ ρ and all a ∈ Γ I

Q(t)∪ΓO
P (s), the following conditions

are satisfied:

1. Γ I
Q(t) ⊆ Γ I

P (s);
2. ΓO

P (s) ⊆ ΓO
Q (t);

3. (δP (s, a), δQ(t, a)) ∈ ρ.

Refinement between interface automata is defined as the existence of an al-
ternating simulation between the initial states.

Definition 5. An interface automaton P refines an interface automaton Q,
written P � Q, if the following conditions are satisfied:

1. AI
Q ⊆ AI

P ;
2. AO

P ⊆ AO
Q;

3. there is an alternating simulation ρ from P to Q, such that (s0, t0) ∈ ρ for
some s0 ∈ S0

P and t0 ∈ S0
Q.

We now define the parallel composition P ‖ Q of interface automata P and
Q in a series of steps.

Definition 6. P and Q are composable if AO
P ∩ AO

Q = ∅.

We first define the product automaton P ⊗ Q of two composable interface
automata P and Q, by synchronising their shared actions and interleaving all
others. The set of shared actions of P and Q is defined by Shared(P,Q) =
AP ∩ AQ.

Definition 7. The product P ⊗Q of two composable interface automata P and
Q is defined by

– SP⊗Q = SP × SQ;
– S0

P⊗Q = S0
P × S0

Q;
– AI

P⊗Q = (AI
P ∪AI

Q)\Comm(P,Q) where Comm(P,Q) = (AO
P ∩AI

Q)∪ (AI
P ∩

AO
Q) is the set of communication actions, a subset of Shared(P,Q);

– AO
P⊗Q = AO

P ∪ AO
Q;

– Γ I
P⊗Q((s, t)) = (Γ I

P (s)\(AO
Q ∪ AI

Q)) ∪ (Γ I
Q(t)\(AO

P ∪ AI
P)) ∪ (Γ I

P (s) ∩ Γ I
Q(t))

for all (s, t) ∈ SP × SQ;
– ΓO

P⊗Q((s, t)) = ΓO
P (s) ∪ ΓO

Q (t), for all (s, t) ∈ SP × SQ;
– for all a ∈ AP⊗Q,

δP⊗Q((s, t), a) =

 (δP (s, a), δQ(t, a)) if a ∈ AP ∩ AQ

(δP (s, a), t) if a ∈ AP \AQ

(s, δQ(t, a)) if a ∈ AQ\AP

Since interface automata need not be input enabled, there may be reachable
states in P ⊗ Q where a communication action can be output by one of the
automaton but cannot be accepted as input by the other. These states are called
locally incompatible.

Definition 8. The set Incomp(P,Q) of locally incompatible states of P and Q
consists of all pairs (s, t) ∈ SP ×SQ for which one of the following two conditions
hold:

1. ∃a ∈ Comm(P,Q) such that a ∈ ΓO
P (s) but a /∈ Γ I

Q(t),

2. ∃a ∈ Comm(P,Q) such that a ∈ ΓO
Q (t) but a /∈ Γ I

P (s).

A local incompatibility can be avoided if there is a helpful environment,
which by providing the right sequence of inputs can steer the automaton away
from such an undesirable state. The states from which Input can prevent the
product P ⊗Q from reaching a state in Incomp(P,Q) are called compatible. In
other words, the compatible states are those from which Input has a winning
strategy. The calculation of winning strategy in such safety games, if one exists,
by using the controllable predecessors of a set of states U and iterative refinement
is standard [19].

Definition 9. A state s ∈ SP⊗Q is compatible if there is an input strategy πI ∈
ΠI

P⊗Q such that, for all output strategies πO ∈ ΠO
P⊗Q, all σ ∈ OutcomesP⊗Q(s, πI , πO)

and all incompatible states w ∈ Incomp(P,Q), the state w does not appear in the
sequence σ.

The composition P ‖ Q is obtained by restricting P ⊗ Q to the states that
can be reached from the initial state under an input strategy that avoids all
locally incompatible states. We call these states backward compatible. These are
the states that are reachable from the initial state of P ⊗ Q by visiting only
compatible states. Note that in [7] backward compatible states are called usably
reachable states.

Definition 10. A state s ∈ SP⊗Q is backward compatible in P ⊗Q if there is
an input strategy πI ∈ ΠI

P⊗Q such that:

– for all initial states s0 ∈ S0
P⊗Q, all output strategies πO ∈ ΠO

P⊗Q, all out-
comes σ ∈ OutcomesP⊗Q(s0, π

I , πO) and all w ∈ Incomp(P,Q), w does not
occur in σ;

– there is an initial state s0 ∈ S0
P⊗Q, an output strategy πO ∈ ΠO

P⊗Q, and an
outcome σ ∈ OutcomesP⊗Q(s0, π

I , πO) such that s ∈ σ.

Definition 11. The composition P ‖ Q of two interface automata P and Q,
with T the set of backward compatible states of the product P ⊗Q, is an interface
automaton defined by:

– SP‖Q = T
– S0

P‖Q = S0
P⊗Q ∩ T

– AI
P‖Q = AI

P⊗Q

– AO
P‖Q = AO

P⊗Q

– Γ I
P‖Q(s) = {a ∈ Γ I

P⊗Q(s) | δP⊗Q(s, a) ∈ T} for all s ∈ T

– ΓO
P‖Q(s) = ΓO

P⊗Q(s) for all s ∈ T

– for all s ∈ T , a ∈ ΓP‖Q(s),

δP‖Q(s, a) =
{

δP⊗Q(s, a) if δP⊗Q(s, a) ∈ T
arbitrary otherwise

Definition 12. P and Q are said to be compatible if their composition is non-
empty i.e., s0

P‖Q 6= ∅. This is equivalent to s0
P⊗Q ∈ T , where T is the set of

backward compatible states of P ⊗Q.

Notation We write ReachO(P) to denote the set of states of P that are reachable
from the initial state s0

P by following only output actions.
We use the following lemma in our proof of Theorems 1 and 2 in Section 3.

Since the best input strategy to avoid locally incompatible states is simply to
generate no inputs to P ⊗Q at any state, the set of compatible states in P ⊗Q is
simply the set of states from which P ⊗Q cannot reach a state in Incomp(P,Q)
by a sequence of output actions.

Lemma 1. P and Q are compatible iff the states in ReachO(P ⊗Q) are locally
compatible, i.e., ReachO(P ⊗Q) ∩ Incomp(P,Q) = ∅.

Proof. Suppose P and Q are compatible. Then s0
P⊗Q is a backward compatible

state in P ⊗Q. This implies there is an input strategy πI for P ⊗Q which avoids
all locally incompatible states starting from s0

P⊗Q, no matter what the output
strategy is. Now Output can always force P⊗Q to enter any state in ReachO(P⊗
Q). In other words, an output strategy πO exists for which every state s in
ReachO(P⊗Q) appears in some sequence in OutcomesP⊗Q(s0

P⊗Q, πI , πO). Since
s0

P⊗Q is a backward compatible in P ⊗ Q, it follows that ReachO(P ⊗ Q) ∩
Incomp(P,Q) = ∅. Conversely, suppose the states in ReachO(P ⊗Q) are locally
compatible. This implies that any state in Incomp(P,Q) can be reached, if at
all, by following a sequence of actions which includes at least one input action.
Then the input strategy which disables all such input actions avoids all locally
incompatible states and so s0

P⊗Q is backward compatible. ut

3 Synthesis of Interface Automata

Our goal is to find the most general solution R to P ‖ R � Q when it exists, and
characterise the conditions under which it exists. By a most general solution we
mean, a solution U , such that for any solution V , it is the case that V � U . In this
section we prove our main result, viz., the most general solution to P ‖ R � Q is
give by R = (P ‖ Q⊥)⊥ and a solution exists iff P and Q⊥ are compatible. Here
P⊥ is the same as P , except all the input actions in P become output actions
in P⊥ and similarly the output actions of P are the input actions of P⊥.

Example 1. Figure 1 presents three examples to illustrate the synthesis idea
with given interface automata P and Q. The construction of Q⊥, P ‖ Q⊥ and
R = (P ‖ Q⊥)⊥ are shown in each case.

1. In Figure 1(a), the input actions are AI
P = AI

Q = {a, c}, and the output
actions are AO

P = AO
Q = {b, d}. Note that in P ‖ Q⊥, the transition labelled

c? does not appear, as it is a shared action, and has to be present in both
P and Q⊥ to appear in their product. Note also, how b appears as an input
action in the result (P ‖ Q⊥)⊥.

2. In Figure 1(b), the action sets are AI
P = {a}, AO

P = {b}, AI
Q = {a, c}

and AO
Q = {b, d}. In this case, the solution is essentially identical with Q,

(b)

d
d

d
d

dd d
d d

d
d
d

d
d
d

d
d
d

dd d
d d

dd d
d d

dd d
d d

dd d
d d

d
d
d

dd d dd d dd d dd d

?

?

?

�
�/

?

@@R

?

?

?

?

?

?

?

�
�/

?

@@R

?

�
�/

?

@@R

?

�
�/

?

@@R

?

�
�/

?

@@R

?

?

?

�
�/

@@R �
�/

@@R �
�/

@@R �
�/

@@R

Q Q⊥ P ‖ Q⊥

P ‖ Q⊥

P ‖ Q⊥

(P ‖ Q⊥)⊥

P

P

Q

Q

Q⊥

Q⊥

P

(P ‖ Q⊥)⊥

(P ‖ Q⊥)⊥

a?

b! b?

a!a!

b!

c?

d!

a?

b!

a?

b?

a?

b! b!

a? c?

d! b?

a! c!

d? b!

a! c!

d? b?

a? c?

d!

b?a!b!a?b!a?b?a!
a?

(a)

(c)

d

Fig. 1. Interface Automata Synthesis Examples

except for the polarity of action b. Note that there is already an alternating
simulation between P and Q. The input transition labelled b? appears in
R because we assume AO

P ⊆ AI
R: in some sense, R can be thought of as a

controller for P , and hence should be allowed to use all the output actions
of P as input, in addition to driving the input actions of P . Note that if we
changed the the input action set of P to be AI

P = AI
Q = {a, c}, then there

would be no solution R, because P and Q⊥ would not be compatible: in the
initial state, Q⊥ is ready to output a c, but P is not ready to accept it as
input, even though c is a communication action between the two.

3. In Figure 1(c), the action sets are AI
P = {a}, AO

P = ∅, AI
Q = {b} and

AO
Q = {a}. In this example, an input of P appears as an output of Q. The

result (P ‖ Q⊥)⊥ adds the input b and also converts a from an input to an
output. In this case, R is identical to Q.

Note Throughout this section we make the weak assumption that AI
P ⊆ AI

Q ∪
AO

Q. This is to ensure that an environment E for which Q ‖ E is a closed system
(i.e., has no inputs) will also make (P ‖ R) ‖ E a closed system. So any inputs
to P will be provided by an output from the environment of Q or from R. In the
latter case, such an input of P will be an output of Q. Further, we assume that
the solution R satisfies AO

P ⊆ AI
R. This is to allow R to use the output actions

of P as inputs in carrying out its control objectives. It is clear that any solution

R will satisfy AO
R ⊆ AO

Q\AO
P , and for the most general solution the two sets will

be equal.

Notation We write p
a−→ p′ if a ∈ ΓP (p) and δ(p, a) = p′ for states p, p′ and

action a in an interface automaton P . We call p
a−→ p′ an input transition if a

is an input action of P . An output transition is defined similarly.
First we prove a result about compatibility that is used in Theorem 1 below.

Lemma 2. If P and Q⊥ are compatible, then P and (P ‖ Q⊥)⊥ are compatible.

Proof. Suppose P and Q⊥ are compatible, but P and (P ‖ Q⊥)⊥ are not.
By Lemma 1, this means there exists a state (p, (p′, q)) ∈ ReachO(P ⊗ (P ‖
Q⊥)⊥) which is in Incomp(P, (P ‖ Q⊥)⊥). Since the interface automata we
consider are deterministic, it must be the case that p = p′. This implies that
there exists an a ∈ Comm(P, (P ‖ Q⊥)⊥) such that either (a) a ∈ ΓO

P (p) and
a /∈ Γ I

(P‖Q⊥)⊥(p, q) = ΓO
(P‖Q⊥)(p, q) = ΓO

P (p) ∪ Γ I
Q(q), which is impossible, or

(b) a /∈ Γ I
P (p) and a ∈ ΓO

(P‖Q⊥)⊥(p, q) which implies (p, q) a−→ (p′, q′) is an

input transition in P ‖ Q⊥ and p
a−→ p′ is not an input transition in P . This

is possible only if a ∈ AO
Q but a /∈ AI

P , which contradicts our assumption that
a ∈ Comm(P, (P ‖ Q⊥)⊥). ut

Theorem 1. A solution R to P ‖ R � Q exists iff P and Q⊥ are compatible.

Proof. (If) Suppose P and Q⊥ are compatible. By Lemma 2 so are P and
(P ‖ Q⊥)⊥. Take R = (P ‖ Q⊥)⊥. We show that there exists an alternat-
ing simulation ρ between P ‖ R and Q. Define the relation ρ = {((p, (p, q)), q) |
(p, (p, q)) is a state in P ‖ R}. Since (s0

P , s0
Q) is the initial state of R, (s0

P , (s0
P , s0

Q))
is the initial state of P ‖ R, and hence ((s0

P , (s0
P , s0

Q)), s0
Q) is in ρ. Now suppose

((p, (p, q)), q) ∈ ρ and q
a−→ q is an input transition in Q. It follows that q

a−→ q′

is an output transition in Q⊥. Therefore, p
a−→ p′ is an input transition in P

for some p′, since (p, q), being in P ‖ Q⊥, is backward compatible in P ⊗ Q⊥.
Hence (p, q) a−→ (p′, q′) is an output transition in P ‖ Q⊥, and so an input
transition in (P ‖ Q⊥)⊥, whence (p, (p, q)) a−→ (p′, (p′, q′) is an input transition
in P ‖ (P ‖ Q⊥)⊥ and by definition of ρ, ((p′, (p′, q′)), q′) is again in ρ. Similarly
for the output side, suppose ((p, (p, q)), q) ∈ ρ and (p, (p, q)) a−→ (p′, (p′′, q′)) is
an output transition in P ‖ (P ‖ Q⊥)⊥. Since we consider only deterministic
automata, p′ = p′′. Also, it must be the case that a ∈ Comm(P, (P ‖ Q⊥)⊥), be-
cause an output action of P is an output action of P ‖ Q⊥, and therefore an input
action of (P ‖ Q⊥)⊥. Suppose p

a−→ p′ is an output transition in P , and because
P and Q⊥ are compatible, and (p, q) is backward compatible in P ⊗Q⊥, q

a−→ q′

is an input transition in Q⊥, and hence an output transition in Q. On the other
hand, if p

a−→ p′ is an input transition in P , then since (p, (p, q)) a−→ (p′, (p′, q′))
is an output transition in P ‖ (P ‖ Q⊥)⊥, (p, q) a−→ (p′, q′) is an output tran-
sition in (P ‖ Q⊥)⊥, and therefore an input transition in (P ‖ Q⊥). From the
assumption that AI

P ⊆ AI
Q and by the definition of the product P⊗Q⊥ it follows

that q
a−→ q′ is an input transition of Q⊥, and hence an output transition of Q.

By the definition of ρ, ((p′, (p′, q′)), q′) ∈ ρ, hence ρ is an alternating simulation
as required.

(Only if) We show the contrapositive. Suppose P and Q⊥ are not compat-
ible. Then, by Lemma 1, there exists a state (p, q) ∈ ReachO(P,Q) which is
incompatible, i.e., there is an a such that either (a) a ∈ ΓO

P (p) and a /∈ ΓO
Q (q)

or (b) a /∈ Γ I
P (p) and a ∈ Γ I

Q(q). Both possibilities rule out the existence of an
alternating simulation between P ‖ R and Q for any R.

ut

Theorem 2.
When the condition stated in Theorem 1 is satisfied, the most general solution
to P ‖ R � Q is R = (P ‖ Q⊥)⊥.

Proof. In the proof of Theorem 1 (If part) we have already shown that R = (P ‖
Q⊥)⊥ is a solution. Suppose U is any solution to P ‖ R � Q. We construct an
alternating simulation ν from U to (P ‖ Q⊥)⊥ as follows. By assumption, there
exists an alternating simulation ρ from P ‖ U and Q. Define ν = {(u, (p, q)) |
((p, u), q) ∈ ρ}. Clearly (s0

U , (s0
P , s0

Q)) ∈ ν, since ((s0
P , s0

U), s0
Q) ∈ ρ. Now suppose

(u, (p, q)) ∈ ν and u
a−→ u′ is an output transition in U . This implies p

a−→ p′

is an input transition in P for some p′, since by assumption ((p, u), q) ∈ ρ and
therefore (p, u) is backward compatible in P ⊗U . Hence, (p, u) a−→ (p′, u′) is an
output transition in P ‖ U . It follows that q

a−→ q′ is an output transition in
Q for some q′, with ((p′, u′), q′) ∈ ρ, which is equivalent to q

a−→ q′ is an input
transition in Q⊥. Therefore, (p, q) a−→ (p′, q′) is an input transition in P ‖ Q⊥,
since (p, q) is backward compatible in P ⊗ Q⊥ by assumption. It follows that
(p, q) a−→ (p′, q′) is an output transition in (P ‖ Q⊥)⊥ and (u′, (p′, q′)) ∈ ν as
required. Next suppose (u, (p, q)) ∈ ν and (p, q) a−→ (p′, q′) is an input transition
in (P ‖ Q⊥)⊥, which is the same as (p, q) a−→ (p′, q′) is an output transition in
P ‖ Q⊥. This implies that either (a) p

a−→ p′ is an input transition in P and
q

a−→ q′ is an input transition in Q or (b) p
a−→ p′ is an output transition in P

and q
a−→ q′ is an output transition in Q. For the first case, by the existence of

the alternating simulation ρ, (p, u) a−→ (p′, u′) is an input transition in P ‖ U
for some state u′ in U with ((p′, u′), q′) ∈ ρ and hence (u′, (p′, q′)) ∈ ν. For the
second case, u

a−→ u′ is an input transition in U for some u′, since (p, u) is
backward compatible in P ⊗ U . Further (u′, (p′, q′)) ∈ ν, since ((p′, u′), q′) ∈ ρ,
and the conclusion follows. ut

4 Winning Strategies and Synthesis

We now characterise the most general solution to P ‖ R � Q in terms of winning
strategies. Specifically, we show that the most general solution corresponds to
the most permissive winning strategy for Input in P ⊗ (P ‖ Q⊥)⊥.

First we define winning strategies for Input and Output in games correspond-
ing to the product P ⊗Q of two interface automata P and Q. We also define a

natural partial order vI on input strategies, such that σI
P vI τ I

P if the strategy
τ I
P generates more inputs than σI

P at every state of P . A similar order vO is
defined on output strategies. Since the orders are lattices, the most permissive
strategy exists, as is given by the lattice join. We then show that the parallel
composition P ‖ Q can be extracted from the most permissive winning strategy
for Input.

Definition 13. Let P and Q be composable interface automata. A winning in-
put strategy for P ⊗Q is an input strategy πI such that for all output strategies
πO, all initial states s0 ∈ S0

P⊗Q, all σ ∈ OutcomesP⊗Q(s0, π
I , πO), and all

incompatible states w ∈ Incomp(P,Q), the state w does not appear in the se-
quence σ. The definition of a winning output strategy is symmetric, where the
winning condition is that a state in Incomp(P,Q) must be reached in every run
σ ∈ OutcomesP⊗Q(s0, π

I , πO).

We now define the order v on strategies. The idea is that an input strategy
is higher in the order if it accepts more inputs. Dually an output strategy is
higher in the order if it generates more outputs.

Definition 14. The binary relation vI on input strategies for P is defined by
πI

0 v πI
1 iff πI

0(σ) ⊆ πI
1(σ) for all σ ∈ S+

P . When πI
0 v πI

1 , we say πI
1 is more

permissive than πI
0 . Similarly, for output strategies, πO

0 vO πO
1 iff πO

0 (σ) ⊆
πO

1 (σ) for all σ ∈ S+
P .

Clearly, the relations vI and vO are lattices, with top elements πI
T (σs) =

Γ I
P (s) and πO

T (σs) = ΓO
P (s), and join and meet given by pointwise union and

intersection. Note that the bottom elements are the empty strategies, which are
allowed by the definition of strategies.

Corollary 1. If there is a winning strategy for either player in a game then
there is a most permissive winning strategy for that player.

Proof. Simply take the join of the set of all winning strategies for the player. ut

Next we show how to extract an interface automaton πI(P ⊗ Q) from an
input strategy πI for the game P ⊗ Q, by cutting down some of its states and
transitions.

Definition 15. The interface automaton πI(P ⊗ Q) defined by input strategy
πI for the game P ⊗Q is defined as follows. Its set of input and output actions
are the same as those of P ⊗Q. The set SπI(P⊗Q) contains those states of P ⊗Q

that are reached in some sequence in OutcomesP⊗Q(s0
P⊗Q, πI , πO

T), where πO
T

is the top output strategy in the lattice of strategies (the one that produces the
most output). The input moves of πI(P ⊗ Q) are defined by Γ I(s) = {a | a ∈
Γ I

P⊗Q such that a ∈ πI(σs) for some σ ∈ S+
πI(P⊗Q)

}. The input transitions of
πI(P ⊗ Q) are defined by δ(s, a) = δP⊗Q(s, a) when a ∈ Γ I(s) and an arbi-
trary element of SπI(P⊗Q) otherwise. The output moves and transitions are the
straightforward restrictions of the output moves and transitions of P ⊗Q to the
set of states SπI(P⊗Q).

The following proposition states that the parallel composition P ‖ Q of
interface automata P and Q is the interface automaton πI

w(P ⊗ Q) defined by
input strategy πI

w for the game P ⊗Q, where πI
w is the most permissive winning

input strategy, if one exists.

Proposition 1. For composable interface automata P and Q, P ‖ Q can be
obtained as πI

w(P ⊗Q) where πI
w is the most permissive winning input strategy

for P ⊗Q. If no winning input strategy exists then P and Q are incompatible.

Proof. By Definition 13, if no winning input strategy exists, there exists an
output strategy πO such that an incompatible state appears in some sequence
σ ∈ OutcomesP⊗Q(s0

P⊗Q, πI , πO), for all input strategies πI . From Definition 10,
this implies that the set T of backward compatible states is empty, and hence by
Definition 11 the composition P ‖ Q is empty. Suppose there is a winning input
strategy for P ⊗ Q. We show that the set of states SπI

w(P⊗Q) is identical with
the backward compatible states T of P ⊗ Q, where πI

w is the most permissive
winning input strategy for P ⊗Q. Suppose s ∈ SπI

w(P⊗Q). Since πI
w is a winning

strategy, s satisfies the first clause in Definition 10 of backward compatibility.
By Definition 15, s is reached in some play in OutcomesP⊗Q(s0

P⊗Q, πI
w, πO)

and therefore s satisfies the second clause as well. Now suppose s is a backward
compatible state of P⊗Q. By Definition 10 there exists a winning input strategy
πI and some output strategy πO for P ⊗ Q, for which s appears in some play
σ ∈ OutcomesP⊗Q(s0

P⊗Q, πI , πO). It follows that s appears in some play in
OutcomesP⊗Q(s0

P⊗Q, πI
w, πO), and by Definition 15, s is in SπI

w(P⊗Q). ut

Next we characterise solutions to P ‖ R � Q in terms of winning strategies
for Input in (P ⊗Q⊥)⊥, and show that the most general solution arises from the
most permissive strategy.

Theorem 3. A solution to P ‖ R � Q exists iff a winning input strategy π
exists for (P ⊗ Q⊥)⊥. The most general solution to P ‖ R � Q is given by
πI

w((P ⊗Q⊥)⊥), where πI
w is the most permissive winning input strategy.

Proof. From Theorems 1 and 2 it follows that a solution exists iff P and Q⊥ are
compatible, and in such a case R = (P ‖ Q⊥)⊥ is the most general solution. By
Proposition 1, (P ‖ Q⊥)⊥ = πI

w((P ⊗ Q⊥)⊥) where πI
w is the most permissive

winning strategy for (P ⊗Q⊥)⊥. ut

5 Application: Network Protocol Conversion

In this section we describe an application of interface synthesis to the protocol
conversion problem. In today’s world global communication over heterogeneous
networks of computers can often lead to protocol mismatches between com-
municating entities. The lack of a uniform global standard for communication
protocols entails that protocol converters have to be built for mediating between
incompatible protocols [5, 11]. We illustrate the use of interface synthesis to the
protocol conversion problem through an example adapted from [10].

(b) Nonsequenced Receiver

snd? data0!

data1! snd? rcv!

ack0? ack!ack1? data?

(a) Alternating Bit Sender

Fig. 2. Two mismatched protocols

||

data0!,data1!

data!

ack0!,ack1!

ack!

snd?

rcv!

Fig. 3. Specification of Converter

Consider the two interface shown in Figure 2 representing two incompatible
protocols. Figure 2(a) is a simplified version of a sender using the Alternating
Bit Protocol (ABP), while the one in Figure 2(b) is a receiver using the Nonse-
quenced Protocol (NS). The ABP sender accepts data from the user (a higher
level protocol) using the input action snd? and transmits it with label 0 using
output action data0!. After receiving an acknowledgement with the correct la-
bel 0 via the input action ack0?, the sender is ready to accept the next piece
of data from the user and transmit it with label 1. The protocol performs in
a loop, alternating labels between 0 and 1. In this simplified version we ignore
retransmissions due to timeouts and receipt of acknowledgements with wrong
labels.

The NS receiver in Figure 2(b) is much simpler, which on receiving a data
packet via input action data?, delivers it to the user via the output action rcv!,
and sends an acknowledgement to the sender via ack!. Since the NS receiver
does not use any labels for the data and acknowledgement packets there is a
protocol mismatch between ABP and NS.

When we want the two protocols above to work together without causing
any inconsistency by using a converter, we need to specify what the converter
is allowed and not allowed to do. This idea was proposed in [15] in the setting
of synchronous hardware-like protocols. We require that the system as a whole
(the two protocols along with the converter) satisfies the interface described by
Figure 3. This specification interface is obtained as the parallel composition of
two interfaces. The one on the left specifies that the converter can send data
packets and acknowledgements to the NS receiver and ABP sender, only after
receiving a data packet or acknowledgement from the other protocol. No data or
acknowledgement can be sent speculatively, nor can packets be lost or duplicated.

rcv?ack?

ack1! ack0!

ack?data!data0?

data1?data!

snd? rcv?

snd?

Fig. 4. Converter for the two protocols

The interface on the right specifies the overall behaviour that the user expects
from the system: the snd and rcv events will alternate strictly in any system
run. Note that every action in Figure 3 is of type output.

The correct converter for the two protocols is shown is Figure 4. The converter
can be obtained be as follows. Let P be the parallel composition of the two
protocols which need conversion. Since we assume the two sets of actions to
be disjoint, the composition is always well defined. The specification S for the
converter relates the two actions sets by specifying temporal ordering of actions.
For instance, in our example, the specification dictates that a data action can
only follow a corresponding data0 or data1 action. The converter C is then
the (most general) solution to P ‖ C � S. Intuitively, the goal of the converter
is to meet the specification, while satisfying the input assumptions of the two
protocols. Moreover, the converter can control only the inputs to the protocols
and not their outputs.

6 Conclusion

We have pointed out the connection between the most general solution to P ‖
R � Q and language equation solving [20, 21], protocol converter synthesis [5]
and the semantics of interaction [1] in Section 1. This suggests an underlying
algebraic framework for interface automata that is yet to be explored. Such
a framework would have axioms and rules for combining interface automata
using composition, alternating refinement and ()⊥. This will simplify the kind
of proofs we have presented in Section 3 and Section 4.

Tabuada [18] has shown the connection between control synthesis and the
existence of certain alternating simulations and bisimulations between the spec-
ification and the system to be controlled. This was carried out using the span of
open maps of Joyal et al [9]. It would be illuminating to see whether our synthesis
problem can be cast in the same framework. To do this, we need to characterise
the composition operation P ‖ Q from the product P ×Q in a suitable category
of interface automata. Note that it is in the definition of composition that the
interface automata formalism differs from the ones considered in [18].

In summary, our work should be seen as a first step towards a unified theory of
component interfaces and their synthesis, with wide ranging applications across
diverse domains.

Acknowledgements We thank David Benson, Paddy Krishnan, Prahlad Sampath
and S. Ramesh for their discussions and critical comments on earlier drafts of
the paper.

References

1. S. Abramsky. Semantics of interaction: an introduction to game semantics. In
Proceedings of the 1996 CLiCS Summer School, pages 1–31. Cambridge University
Press, 1997.

2. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement
relations. In CONCUR 98: Concurrency Theory, Lecture Notes in Computer Sci-
ence 1466, pages 163–178. Springer-Verlag, 1998.

3. Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied
Logic, 56:183–220, 1992. Special Volume dedicated to the memory of John Myhill.

4. J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

5. K. L. Calvert and S. S. Lam. Formal methods for protocol conversion. IEEE
Journal Selected Areas in Communications, 8(1):127–142, January 1990.

6. L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering, pages 109–120. ACM
Press, 2001.

7. Luca de Alfaro. Game models for open systems. In Proceedings of the International
Symposium on Verification (Theory in Practice), volume 2772 of Lecture Notes in
Computer Science. Springer-Verlag, 2003.

8. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
9. André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.

Information and Computation, 127(2):164–185, June 1996.
10. Ratnesh Kumar, Sudhir Nelvagal, and Steven I. Marcus. A discrete event systems

approach for protocol conversion. Discrete Event Dynamic Systems, 7(3):295–315,
June 1997.

11. S. S. Lam. Protocol conversion. IEEE Transactions on Software Engineering,
14(3):353–362, March 1988.

12. Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, pages 137–151, 10–12 August 1987.

13. P. Madhusudan and P. S. Thiagarajan. Controllers for discrete event systems via
morphisms. In CONCUR ’98: Concurrency Theory, 9th International Conference,
volume 1466 of Lecture Notes in Computer Science, pages 18–33. Springer-Verlag,
1998.

14. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete con-
trollers for timed systems (an extended abstract). In 12th Annual Symposium on
Theoretical Aspects of Computer Science, volume 900 of Lecture Notes in Computer
Science, pages 229–242, Munich, Germany, 2–4 March 1995. Springer.

15. Roberto Passerone, Luca de Alfaro, T.A. Henzinger, and Alberto L. Sangiovanni-
Vincentelli. Convertibility verification and converter synthesis: Two faces of the
same coin. In ICCAD ’02: Proceedings of the International Conference on Com-
puter Aided Design, pages 132–140. ACM, 2002.

16. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL ’89.
Proceedings of the sixteenth annual ACM symposium on Principles of programming

languages, January 11–13, 1989, Austin, TX, pages 179–190, New York, NY, USA,
1989. ACM Press.

17. P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE; Special issue on Dynamics of Discrete Event Systems,
77, 1:81–98, 1989.

18. Paulo Tabuada. Open maps, alternating simulations and control synthesis. In
CONCUR ’04, number 3170 in Lecture Notes in Computer Science, pages 466–
480. Springer-Verlag, 2004.

19. Wolfgang Thomas. On the synthesis of strategies in infinite games. In 12th An-
nual Symposium on Theoretical Aspects of Computer Science, volume 900 of Lec-
ture Notes in Computer Science, pages 1–13, Munich, Germany, 2–4 March 1995.
Springer.

20. Nina Yevtushenko, Tiziano Villa, Robert K. Brayton, Alex Petrenko, and Alberto
Sangiovanni-Vincentelli. Solution of parallel language equations for logic synthe-
sis. In Proceedings of the 2001 International Conference on Computer-Aided De-
sign (ICCAD-01), pages 103–111, Los Alamitos, CA, November 4–8 2001. IEEE
Computer Society.

21. Nina Yevtushenko, Tiziano Villa, Robert K. Brayton, Alex Petrenko, and Alberto
Sangiovanni-Vincentelli. Solution of synchronous language equations for logic syn-
thesis. In Proceedings of the 4th Conference on Computer-Aided Technologies in
Applied Mathematics, pages 132–137, September 2002.

