
Formalizing Models and Meta-models for System Development
Extended Abstract

R. Venkatesh, Purandar Bhaduri and Mathai Joseph
TRDDC, Tata Consultancy Services

54B Hadapsar Industrial Estate
Pune 411 013�

rvenky,pbhaduri,mathai � @pune.tcs.co.in

Abstract

Meta-model based development offers a promising way
of managing the complexity of industrial scale software
development by describing a system in terms of different
‘views’. These views can then be described as instances
of a single meta-model. Such views are usually not dis-
joint and it is essential that they are shown to be consis-
tent. A weakness of meta-modelling tools is the lack of
support for describing the behaviour of models, and this
is central to demonstrating the consistency of views. We ad-
dress this problem by combining meta-modelling with for-
mal techniques for stating and verifying behavioural prop-
erties. In this paper, we describe a formalization of mod-
els and meta-models and show how this leads to automated
procedures for consistency checking between views in an
industrial software development framework.

1. Introduction

Industrial scale software development relies heavily on
the use of diagrammatic notations to represent what are in-
formally known as models. Each model describes differ-
ent aspects of the system under construction. These mod-
els help in managing the complexity of problems by sep-
arating concerns. Different models often use different de-
scription techniques, each suitable for describing a particu-
lar aspect of the system. For example, the models used in
UML [1, 5] are the structural views, e.g. classes, objects
and their attributes and relationships, and the behavioural
views, e.g. sequence and statechart diagrams, depicting
inter-object collaboration and intra-object state transitions.

Each of these different models can be treated as an in-
stance of a part of a single meta-model. For example, each
UML diagram, which is a view of the system, is an instance
of the UML meta-model [3].

Different views will usually not be disjoint and thus may
describe the same property of the system. Common prop-
erties must be consistently defined to ensure the integrity of
the system. For example, two views can be used to describe
the dynamic behaviour of a system:

1. A state machine model which describes all permissible
sequences of events in the life of an object as well as
the object’s actions in these sequences. This can be
considered as a projection of the system traces on a
specific object.

2. A Message Sequence Chart which describes one pos-
sible time sequence of interactions (send and receive
events) among a set of given objects. This describes
only a set of system traces between two (usually un-
specified) system states restricted to a set of objects.

EXAMPLE. Consider the simple invoicing system de-
scribed in [2]. An order can be placed for a certain quantity
of any one product. An order can be invoiced, i.e. its state
changed from pending to invoiced, if the quantity in the or-
der is less than the quantity of the product in stock. An
order may also be cancelled. It is not clear from the de-
scription of the problem whether an invoiced order can be
cancelled, and two different views might interpret it differ-
ently. Figure 1 shows two views of the invoicing system: the
state machine for an Order and a Message Sequence Chart
(MSC) depicting order cancellation. These two views are
not consistent, because the state machine asserts that an in-
voiced order cannot be cancelled, while the MSC shows a
contradictory situation.

UML has an Object Constraint Language (OCL) [8] for
describing the static semantics of individual UML diagrams
through a set of well-formedness rules. Unfortunately, OCL
can be used only for stating the constraints and invariants of
individual models. Even if the use of OCL were extended
to capture the static relationships between different models,



Invoiced

invoice

cancel

Customer Invoicer Order

invoice

Stock

create

update

cancel

(a) State Machine for Order (b) MSC for cancelling an invoiced order

CancelledPending
create

Figure 1. Two Views of the Invoicing System

OCL is not powerful enough to describe the dynamic be-
haviour of the kind shown in the example. Existing UML
tools cannot detect such inconsistencies either, because they
lack the semantic support necessary for describing the be-
haviour of models, which is central to checking consistency.

In this work, we provide a semantic basis for the views of
a system that are derived from a meta-model by combining
formal techniques with the meta-modelling approach. The
goal is to formalize the behaviour of a system model and
its views, and to be able to automate the consistency check-
ing of different models. We demonstrate how this enables
inconsistencies to be detected.

2. System Model and Views

The consistency of views of a system can be ensured by
defining a unified model of the entire system. This model
specifies all the possible ways in which the system might
evolve over time. We refer to a particular evolution of the
system as a trace.

Consider a labelled transition system with additional
structure on the states as the system model. The system
model is defined as a tuple ���������	�
�	������������������������ ,
where ���	�
�	��� is a set of states, ��� is the transition relation
with labels drawn from the set � �
�!����� . A system state � "
���	�
�	��� is a collection of objects #�$&%('�$&%)"+*�%	,
��-.����/ and
their values, where each object is a tuple ��*�%	,
��-.�	0213���!�!�4�	56 �7�78�9	%;:��	��<3�
=>�
� 6 �7�78�9	%;:��	�?@��AB:��)CD�4��*FE��!8�
�797$��G�!� . The
event � in a system transition �IH������J is either the send or
receipt of a message or an operation invocation.

A system trace is a sequence of system states

��K H7L���M�NPO�OQOR�!S H7T���U��SWVXNPO�OQO
such that two successive states are related by a system tran-
sition. Note that the state of at most one object is modified

Ob2.f1 Ob1.f3
Ob1

Ob2

Ob1

Ob2

Ob1

Ob2
...

Ob2.f1 Ob3.f2 Ob1.f3 ...

Projection / Restriction

Ob1

Ob2

Ob3

Ob1

Ob2

Ob3

Ob1

Ob2

Ob3

Ob1

Ob2

Ob3

View

System Model

Figure 2. System Model and Views

by a system transition. We use an interleaving model of con-
currency in which a system trace represents a serialization
of a given set of events.

A view of a system � is composed of a subset of objects,
transitions and traces of � . The transitions that do not affect
the objects in a view are hidden in the view. Thus, a trace in
a view is a subsequence of a system trace containing exactly
those transitions that affect the objects in the view. This is
illustrated in Figure 2, where the view includes objects Ob1
and Ob2.

The set of traces of a view defines the constraints on the
behaviour of the objects contained in the view. These con-
straints are expressed as assertions over system states and
traces that may, must and never happen in the evolution of
the system. For example, the state machine model of an ob-



ject enumerates the may traces (possible sequences), along
with the proviso that the list of traces not specified must
never occur. An MSC model, on the other hand, enumer-
ates a list of must traces (mandatory sequences) on a set of
objects, while not claiming anything about other traces in
the system. The consistency of two different views follows
from the consistency of the assertions over the system con-
tained in these views.

EXAMPLE (cont.) It follows from our formalization of
consistency that the views in Figure 1 are not consistent.
According to the MSC view create,invoice,cancel must be
a valid system trace when restricted to the Order object.
In contrast, the state machine view asserts that there is no
transition labelled cancel from the Invoiced state, and hence
create,invoice,cancel cannot be a valid trace of Order.

This formalization is an extension of the meta-modelling
approach to software development outlined in [6] which
proposes a meta-model within which the different views can
be related and integrated. This is illustrated in Figure 3,
where the models M1, M2 and M3 can be related by defin-
ing them in terms of a meta-model MM. A1, A2 and A3 are
instances of models M1, M2 and M3 respectively. The pro-
gram P implementing the system is a composition of P1, P2
and P3, each of which implements A1, A2 and A3 respec-
tively. In this paper, we associate meta-views MV1, MV2
and MV3 with M1, M2 and M3 respectively. Associated
with A1, A2 and A3 are views V1, V2 and V3. These are
instances of MV1, MV2 and MV3 respectively. For the pro-
gram P to be correct we require the views V1, V2 and V3 to
be consistent. Further, we have provided a generic formal
definition of a view of a system, from which all particular
views can be derived as instances. The consistency of two
views is also given a generic definition at the meta-level.
The advantage of this generic approach lies in the ability to
extend the meta-model and still be able to check for consis-
tency. When the meta-model is extended to capture another
view, a definition of the extension can be derived as an in-
stance of this generic view.

This technique of meta-model extension is used effec-
tively by the program development environment Master-
Craft [7], where UML is used to represent some models
of an application. The UML meta-model has been ex-
tended to enable additional modelling notations like the
user-interaction and entity-relationship (ER) models. Mas-
terCraft has rules that guarantee type consistency of these
models. The next step is to extend the capability of the tool
for checking the consistency of behavioural models.

3. Conclusion

In this work we formalize the structure and behaviour
of individual models in relation to a single system model,
and not in isolation. This is unlike many approaches to the

MM

M1 M2 M3

P1 P2 P3

Instantiation

Implementation

A1 A2 A3

P

Figure 3. Different views of a system with their
models and meta-model

formalization of UML models. We rely on a combination of
meta-modelling and formalization for ensuring the integrity
of view based system development. The meta-modelling
framework ensures that all instances are statically correct;
the formalized models on the other hand enable tool support
for assuring consistency in dynamic behaviour.

This work is part of a program for formalizing system
development based on meta-modelling. Once a developer
has modelled an application using different views, they can
be checked for consistency using tool support based on this
formalization. The MasterCraft meta-modeller [4] guaran-
tees type consistency of different meta-models and is being
extended to incorporate automated procedures for consis-
tency checking between views.

References

[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1998.

[2] M. Frappier and H. Habrias. Software Specification Methods:
An Overview Using a Case Study. Springer, 2000. Case Study
description available from http://www.DMI.USherb.
CA/˜spec/index.html.

[3] OMG. The Unified Modeling Language (UML) Specifica-
tion - Version 1.3, June 1999. Joint submission to the Ob-
ject Management Group (OMG) http://www.omg.org/
technology/uml/index.htm.



[4] S. Reddy, A. Bahulkar, and J. Mulani. Adex - a meta mod-
eling framework for repository-centric systems building. In
Proceedings of the Tenth International Conference on Man-
agement of Data, COMAD 2000, Pune, Dec. 2000.

[5] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1998.

[6] A. Sreenivas, R. Venkatesh, and M. Joseph. Meta-modelling
for formal software development. In C. Fidge, editor,
Computing: The Australasian Theory Symposium (CATS
2001), Electronic Notes in Theoretical Computer Science,
volume 42. Elsevier Science Publishers, 2001.

[7] Mastercraft: Integrated development framework for dis-
tributed applications. Tata Consultancy Services, 1999.
http://www.tcs.com/products/mastercraft/
htdocs/mastercraft_index.htm.

[8] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.


