Translation Validation of Loop Invariant Code
Optimizations Involving False Computations

Ramanuj Chouksey, Chandan Karfa, and Purandar Bhaduri

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwahati 781039, India
{r.chouksey, ckarfa,pbhaduri }@iitg.ernet.in

Abstract. Code motion based optimizations are used quite often in elec-
tronic design automation (EDA) tools to improve the quality of synthesis
results. Ensuring the correctness of such transformation is necessary for
reliability of EDA tools. A value propagation (VP) based equivalence
checking method of finite state machine with datapaths (FSMD) was
proposed in [1] to specifically verify code motion across loops. In this
work, we identify some scenarios involving loop invariant code motion
where the VP based equivalence checking method fails to establish the
equivalence between two actually equivalent FSMDs. We propose an en-
hancement over the VP based equivalence checking method [1] to over-
come this limitation. Experimental results demonstrate that our method
can handle the scenario where the VP based equivalence checking method
fails.

Keywords: Formal Verification, Translation Validation, Code Motion,
Equivalence Checking, Loop Invariant, FSMDs Model.

1 Introduction

Code motion based transformations move operations across the boundaries of
basic blocks [6]. They are widely used to improve the quality of synthesis results
for designs with complex and nested conditionals and loops. The objectives of
code motion are reducing the number of computations at run time and improving
register utilization by reducing the lifetime of temporary variables. Code motion
techniques [10, 17, 6] change the data-flow of a program considerably. Therefore,
it is necessary to verify the semantic equivalence between the original and the
transformed program.

The bisimulation approach presented in [11,12] has been applied successfully
to verify structure-preserving code motions. This method fails when the control
structure of input behavior is modified by a path based scheduler [2,16]. To
overcome this limitation, a path extension based equivalence checking method
of FSMDs was first proposed in [9]. This work was later enhanced in [8,13] to
handle uniform and non-uniform code motion based optimization techniques.
All these methods fail to handle the case of code motion across loops, and loop

2 Ramanuj Chouksey et al.

invariant code motion in nested loops, since a path can’t be extended beyond a
loop by the definition of a path cover. A VP based equivalence checking method
was proposed in [1], which can additionally handle code motion across loops.

In this paper, we identify some limitations of the VP based equivalence check-
ing method [1]. Specifically, we show that the VP based equivalence checking
method gives false negative results when some loop invariant operation op is
moved before the loop from inside it, some operation after the loop depends on
op and there is a guarantee the loop will execute at least once. As a result of the
transformation, a false computation will arise. A computation of an FSMD is
called false computation if it never executes. Since the method in [1] cannot iden-
tify false computations, it reports a possible non-equivalence of FSMDs (which
are actually equivalent). We propose an enhancement to the value propagation
based equivalence checking method to handle the above scenario. In particular,
at the loop header, we automatically extract a formula that checks whether a
loop will always execute at least once under a propagated condition. We check
the validity of this formula using the SMT solver Z3 [18] in the theory of linear
integer arithmetic. This formula will guide the VP based method during equiva-
lence checking to identify and ignore false computations. More importantly, our
method can handle any level of loop nesting. We implement the enhanced VP
based equivalence checking method. We identify various test cases where VP
based equivalence checking method fails to establish the equivalence, but our
method is able to show the equivalence. Experimental results demonstrate the
contribution of the paper.

The rest of this paper is organized as follows. A scenario where VP based
equivalence checking method presented in [1] gives a false negative result is illus-
trated in Section 2. The FSMD model and the VP based equivalence checking
method are briefly explained in Section 3. A solution to identify a false com-
putation of an FSMD during equivalence checking is presented in Section 4.
The enhanced VP based equivalence checking method is presented in Section 5.
Experimental results are given in Section 6. Section 7 concludes the paper.

2 DMotivational Example

Loop invariant code inside a loop body consists of statements or expressions
which produce the same result each time the loop is executed. In other words,
these statements are not dependent on loop iterations. This code can be moved
outside the loop body without changing the program semantics. Loop invariant
code motion improves overall program execution time by reducing the number
of times loop invariant expressions are executed by a factor equal to the loop
size.

Let us consider the behavior in Fig. 1 and its corresponding FSMDs in Fig. 2.
In this example, the operation z < 5 is a loop invariant for FSMD M, in
Fig. 2(a). It is placed out of the loop in the transformed FSMD M; in Fig. 2(b).

. . >0 —i<

There are three possible computations, ¢; = (goo 2= qo1 = qo3 = qo0)s
n>0 i<n + —i<n —n>0

c2 = (o0 == (01 == qo1)" == qo3 = qoo) and c3 = (goo == 03 = qoo)

Translation Validation of Loop Invariant 3

if(n>0){

if (n>0){
x=0,y=0;
x=5,y=0;
for(i=0;i<n;i++){
5 for(i=0;i<n;i++){
x=5; .
o y=y+i;}
y=y+i;} -
out=x+y;}
out=x+y;}
else
else
out=-1;
out=-1;

Fig. 1: Loop-invariant code motion

for the FSMD in Fig. 2(a). The computation c¢; executes if the loop condition
1 < n is False for n > 0. The computation ¢y executes if the loop condition
1 < mn is true for the input n > 0. The computation c3 executes for n < 0.
In this example, when the state gp; is reached for the first time, n is always
greater than or equal to 0 and ¢ is equal to 0. Therefore, the computation ¢; will
never execute. In other words, the loop will execute at least once for all possible
n > 0 and i = 0. The computation ¢; is, therefore, a false computation. The VP

Slisi+l

Fig. 2: The FSMDs of the behaviors in Fig. 1

based equivalence method in [1] explores all possible computations of a given
FSMD M. It does not check whether a computation is a false computation or
not. During equivalence checking of these two programs, an existing tool will try
to prove that these two behaviors are equivalent for all possible computations.
Thus, the equivalence checker will try to find the equivalence of computations
c1, ¢o and c3 in the other FSMD M;. It finds that the computation c; and c3

4 Ramanuj Chouksey et al.

—i<n

of FSMD M, are equivalent to the computation (g19 24 (q11 =n)t =

G13 = qio0), (g0 et 13 = qio) of FSMD M;, respectively. However the
equivalence checking method finds that the computation ¢; of FSMD Mj is not

. . > —i<
equivalent to the computation {(giq 220 g1 —== g3 = q10) of FSMD M,
since they differ in the final value of the variable x. It may be noted that the
final value of & would be 0 after execution of ¢; in My and 5 after the execution

of {g10 n:20> q11 %ﬁn ¢13 = qi0) in M;. In this example, as described above,
the computation ¢; will never execute. The non-equivalence of FSMDs reported
by this equivalence checking method is due to this false computation. If we can
ignore this false computation during equivalence checking, we can establish the
equivalence between these two behaviors. Most of the existing state-of-the-art
equivalence checking methods fail for such scenario.

In this work, we have enhanced the equivalence checking method reported in
[1] to handle the above situation. During equivalence checking, our method will
automatically identify the false computation by checking whether a loop always
executes or not. If the loop is executed at least once, then our method will ignore
the false computation during equivalence checking. Our method is strong enough
to handle any nested loops as well.

3 Value Propagation Based Equivalence of FSMDs

In this section, the FSMD model and the VP based equivalence checking method
presented in [1] are briefly explained. The details can be found in [1].

3.1 FSMD Model

FSMDs [5] are an extension of the finite state machine (FSM) model with
data/variables used to model behaviors. Unlike FSMs that model the control
flow, FSMDs capture the data-flow aspect of the behavior as well. Each tran-
sition of an FSMD includes a condition over the data variables and a set of
operations transform the variable values.

Definition 1 (FSMD). A FSMD M s defined as a 7 tuple (Q, qo, I,0,V, f, h),
where

— @ is the finite set of states,

— qo € Q is the reset (initial) state,

— I is the finite set of input variables,

— O is the finite set of output variables,

— V s the finite set of storage variables,

— f:Q x 2% = Q is the state transition function,
— h:Q x 25 = U is the update function.

Here S represents the set of relations over arithmetic expression and boolean
literals and U represents a set of storage and output assignments. An FSMD is
an inherently deterministic model.

Translation Validation of Loop Invariant 5

A walk from g; to g; is a sequence of state transitions of the form (¢; — ¢;11 ——
[Cit1

oo —— @iyn = ¢;) Where ¢, € Q for all k, i < k <i+mn, and Jei, € 29 such

Citn—1

that fi(qr,ck) = qey1 for all k, 4 < k <i+4+n—1. A (finite) path « is a walk
where all the states are different, except the end state ¢; may be the same as the
start state g;. The condition of execution R, of a path « is a logical expression
over I UV, which must be satisfied by initial data state in order to traverse the
path a. The data transformation r, of a path « is an ordered pair (s, Oa),
where s, is an updated variable vector and O, is an updated output list after
executing a. Thus R, and r,, are the weakest precondition of the path « [3]. For
a path «a, R, and r, are computed by forward or backward substitution based
on symbolic execution.

3.2 Equivalence of FSMDs

A computation of an FSMD is a finite walk from the reset state go to itself
and g should not occur in between. For an FSMD M, any computation pu is
the concatenation [ajas - -y of paths of M where for all k, 1 < k < n, ax
terminates in the start state of the path aj41, qo is the start state of a3 and the
end state of a,,. Two paths § and a are equivalent, denoted as 8 ~ a if Rg = R,
and rg = r,. The equivalence of two computations can be defined in a similar
fashion. The definition of path cover is as follows.

Definition 2 (Path cover of an FSMD [9]). A finite set of paths P =
{po,p1,-..,Pk} is said to be a path cover of an FSMD M if any computation p
of M can be looked upon as a concatenation of paths from P.

To obtain a path cover, the paper [1] breaks down an FSMD into smaller seg-
ments by introducing cut-points so that each loop in an FSMD is cut in at least
one cutpoint. This is based on the Flyod—Hoare method of program verification
[4,7]. The set of all paths from a cutpoint to another cutpoint without any in-
termediary occurrences of cutpoint is a path cover of the FSMD. The reset state
and all the branching states (state with more than one outgoing transition) are
cutpoints of an FSMD.

Let My = (Qo,qo0, 1,0, Vo, fo,ho) and My = (Q1,q10,1,0,V1, f1,h1) be
two FSMDs having same input(s)/output(s). The correspondence of states and
equivalence between My and M, are defined as follow.

Definition 3 (Corresponding States [9]).

1. The reset states qoo and qi1o corresponding states.

2. The states qor, € Qo and qu € Q1 are corresponding states if the state
qoi € Qo and q1; € Q1 are corresponding states and there exists paths,
from qo; to qor and a from qi; to qu, such that B ~ a.

Theorem 1 ([9]). An FSMD My is contained in another FSMD M; (My C
My), if there exists a path cover Py = {poo,po1, - ,pox} of My and P =
{p10, P11, -+, p1e} of My such that po; ~ p1; for alli, 0 <i < k.

6 Ramanuj Chouksey et al.

Two FSMDs My and M; are equivalent, denoted as My = My, if My C M;
and M7 T M. Since FSMDs are deterministic. It can be shown that My C M;
implies M1 E M.

3.3 VP Based Equivalence Checking

The VP based equivalence checking method of FSMDs [1] is based on propagat-
ing the mismatched values (as a propagated vector) of live variables through all
the subsequent path segments until the values match or the final path segment
ending in the reset state is reached. In the course of equivalence checking of two
FSMDs, two paths, 8 and « say (one from each FSMD), are compared with re-
spect to their corresponding propagated vectors for finding a path equivalence.
If the conditions of execution and the data transformations of these paths are
equal, then they are declared as unconditionally equivalent (U-equivalent, rep-
resented as 8 ~ «). If some mismatch in data transformation is detected then
they are declared to be conditionally equivalent (C-equivalent, represented as
B ~. «) provided their final state-pairs eventually lead to some U-equivalent
paths; otherwise, these two paths and, therefore, two FSMDs are declared to be
not equivalent.

An abstract version of the VP based equivalence checking scheme is given in
Algorithm 1. The details can be found in [1]. The function containmentChecker

Algorithm 1: containmentChecker(FSMD M,, FSMD M)

1 Identify the cutpoints in Mo and M; and compute their path cover Py and Pi;
Wesp is a set of corresponding state pairs and initially contains (qoo, q10);
foreach (qo:,q1;) € Wesp do

if correspondenceChecker(qoi, q1;, Po, P1, Wesp) returns “Failure” then

‘ Report “unable to decide My E M;” and exit;

end if
end foreach
Report “MO [le;

B =R B VU V]

(Algorithm 1) identifies the cutpoints and a path cover in an FSMD. It invokes
correspondenceChecker (Algorithm 2) for each corresponding state pairs, one
by one. The correspondenceChecker function checks whether for every path
emanating from a state in the pair, there is a U- or C-equivalent path from the
other member of the pair. Based on the output returned by correspondenceCh-
ecker, containmentChecker reports whether the initial FSMD is contained in
the transformed FSMD or not.

4 Proposed Enhancement

As described in Section 2, we can establish the equivalence between two behaviors
shown in Fig. 2 by ignoring the false computation ¢y during equivalence checking.

Translation Validation of Loop Invariant 7

Algorithm 2: correspondenceChecker(qo;, ¢1, Po, Pi, Wesp)

1 foreach path 8 : (goi = gom) in Py do
2 if path a: (q1; = ¢1n) can be found in P; such that 8 ~ « then
8 || Weap = Weap U{(@om, ain)};
4 else if path o : (g1 = qin) can be found P such that 8 ~. « then
5 if gom or qin is reset state then
6 return failure;
7 else
8 ‘ correspondenceChecker(qom, qin, Po, P1, Wesp);
9 end if
10 else
11 ‘ return failure;
12 end if

13 end foreach

14 if any path of P; exists which does not pair with a path of Py then
15 ‘ return failure;

16 else

17 ‘ return success;

18 end if

In this section, we propose a solution to identify a false computation in an
FSMD during equivalence checking. Let us consider the generalized nested loop
structure of depth n as shown in Fig. 3 for this purpose. Each iterator i,, 1 <z <
n, is initialized to L,. Each iterator ¢, reaches its upper limit H, by incrementing
a step constant r,. The terms L, and H,, x = 1,...,n, are expressions over the

for(ii;=Li;ii1<Hi;ii+=r1)

for(iz=Lo;iz<Hz;iz+=rs)

for(in=L,;in<Hp;in+=r,)

Sn:

Fig. 3: Generalized nested loop structure

input variables, constants or previous loop iterators i;---i,_1. Let us assume
that C), is a propagated condition at the start of the nested loop structure.
Conceptually, the propagated condition in a state s is the condition of a path
from the reset state of the behavior to the state s. In Fig. 2, for example, the
Cp is n > 0 at state go1. We will elaborate on the propagated condition once we
discuss the enhanced value propagation method. Under the condition C,, the

8 Ramanuj Chouksey et al.

initial value of the loop iterator (i1 = L1) must satisfy the initial loop condition
(i.e., L1 < Hj) to execute a nested loop structure at least once. We can specify
this condition by the following formula 1. If formula 1 is valid then a nested loop
structure with nesting depth 1 will always execute at least once.

Cp = [< H; (1)

In other words, if the formula 1 is valid then the outer most loop of the nested
loop structure will always execute at least once. The formula 2 is generalized form
of the formula 1. If formula 2 is valid then the statement S,, at the generalized
loop structure of nesting depth n, will always execute at least once.

n—1
Cp — (Elil,aig’-.- ,Elin_l,EIal,EIaQ’... 7E|LI,»,L_1((L < H (/\ f,;)))
(2)

where f, = ((Lm <ip < Hp) A(ip = agry + Lz) A (g > O)) The C,, is the
propagated condition before entering the nested loop of depth n. We use these
formulas to identify the false computation as mentioned in Section 2 during
equivalence checking. For checking the validity of these formulas, we use the SMT
solver Z3 [18] in the theory of linear integer arithmetic. These formulas can be
automatically generated i 1n our equivalence checking framework. For example, in

Fig. 2 there is a loop qg1 i=n go1 of nesting depth 1. At state gp; of FSMD My,

the propagation condition C), is n > 0. To verify whether the loop go: = qo1
will execute at least once, we should check the validity of the formulan > 0 —-

0 < n. This formula is valid. Thus, the loop will always execute at least once for
—i<n

all possible values of n > 0. We can say that the computation {(ggg e o1 =——
qos = qoo) is a false computation. During equivalence checking, our method will
ignore this false computation. By ignoring this false computation, we can show
the equivalence between the two behaviors shown in Fig. 2.

5 Enhanced Value Propagation (EVP) Based Equivalence
of FSMDs

In this section, we present the enhanced VP based equivalence checking method.
The existing method gives false negative results when some loop invariant oper-
ation op is moved before the loop from inside it, some operation after the loop
depends on op and there is a guarantee the loop will execute at least once. Let
assume that we are at (go;, ¢1j), a corresponding state pair, during equivalence
checking and g is a loop header. To handle this type of scenario, we should first
check whether a loop starting at state go; with propagated condition Cy,, will
execute at least once or not, over all possible inputs in an FSMD. This can be
checked by generating the formula 2 at qo;, say fy,,, as discussed in Section 4.

If the formula f,, is valid under the propagated condition C,, then there is a

Translation Validation of Loop Invariant 9

guarantee that the loop at the state go; will execute at least once. In this case,
any computation till gg; will be always followed by the loop body for some finite
number of iterations and then take the exit path of the loop. This is ensured
during equivalence checking by:

1.

ensuring the path from ¢g; representing the loop body is considered first for
equivalence checking.

. updating the propagated vector at go; with the propagated vector after the

execution of the loop provided we have already found the U- or C-equivalent
path from ¢;; for the path starting from go; representing the loop body and
propagated vector is loop invariant.

The enhanced version of Algorithm 2 incorporating this idea is presented as
Algorithm 3. The point 2 above is reflected by lines 4-6 (for U-equivalence) and

Algorithm 3: enhancedCorrespondenceChecker(qo;, q15, Po, Pr, Wesp)

W N =

© N o wm

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

/* If qo; is a loop header, then the paths from qo; are ordered such
that the paths corresponding to the loop body are considered
first x/

foreach path 8 : (goi = gom) in Py do

if path a: (¢1; = ¢in) can be found in P; such that 8 ~ « then
Wesp = Wesp U{(qom, q1n) }
if go; is a loop header and loopTest(qo;) returns valid and Rg is
equivalent to loop condition at go; then
‘ updatePropagatedVector(qo;);
end if

Ise if path « : (¢1; = ¢in) can be found in P; such that 8 ~. « then
if qim or qin is reset state then
‘ return failure;
else

enhancedCorrespondenceChecker(qom, qin, Fo, Pi, Wesp);
if go; is a loop header and loopTest(qo;) returns valid and Rg is
equivalent to loop condition at go; then
‘ updatePropagatedVector(qo:);
end if
end if
else
‘ return failure;

end if

end foreach

if any path of P; exists which does not pair with a path of Py then

‘ return failure;
else

‘ return success;
end if

o

10 Ramanuj Chouksey et al.

by line 12-14 (for C-equivalence). By updating the propagated vectors, we are
effectively ensuring that the loop exit path is always preceded by the loop body.
This is inherently a guarantee that any computation till qg; is always followed by
the loop body and the exit path. Thus, computation ¢; as described in Section 2
will never be checked during equivalence checking. In Algorithm 3, the loopTest
function uses the SMT solver Z3 to check the validity of the formula f,,,. The
updatePropagatedVector function updates the propagated vector at the loop
header gg; with the propagated vector after the loop.

6 Experimental Results

In our experimental setup, we replaced the existing correspondenceChecker
function with the enhancedCorrespondenceChecker function. We have tested
our implementation on several benchmarks presented in [1,9]. We assume that
loop information like nesting depth and loop header are available along with
the test cases. This information can easily be obtained during extraction of the
FSMD from the input behavior using dominator tree analysis [15, 14]. The test
cases are run on a laptop with Intel core 2 Duo processor with 2 GHz and
3GB of RAM. The results of the experiments are shown in Table 1 and 2. The

Table 1: Experimental results on the benchmarks presented in [1, 9]
\A EVP

Benchmarks #loops

Equivalent (3‘11131112) Equivalent (EIHI?E)
ASSORT 2 Yes 84 Yes 96
DIFFEQ 1 Yes 24 Yes 24
MODN 1 Yes 28 Yes 28
PERFECT 1 Yes 20 Yes 20
QRS 0 Yes 232 Yes 232
TLC 0 Yes 60 Yes 60
ASSORT-1 2 No 32 No 32
DIFFEQ-1 1 No 100 No 136
MODN-1 1 No 40 No 40
PERFECT-1 1 No 32 No 32
QRS-1 0 No 220 No 220
TLC-1 0 No 48 No 48

comparison of the execution time required by the VP based equivalence checking
method [1] and our EVP method for the benchmarks are tabulated in Table 1.
The second column “#loops” represents the number of loops in the behavior.
For each benchmark, we have recorded the equivalence result and runtime in
milliseconds (ms) obtained by executing these benchmarks in both the tools.
Rows 1-6 represent the equivalent scenarios. Both tools are able to establish the

Translation Validation of Loop Invariant 11

Table 2: Experimental results on test cases with loop invariant code motion
VP EVP

Benchmarks #loops

Equivalent (E‘luxrrlg) Equivalent (1Tr‘1urnn2)
Test 1 1 No 4 Yes 16
Test 2 1 No 8 Yes 16
Test 3 2 No 16 Yes 20
Test 4 2 No 16 Yes 20
Test 5 2 No 16 Yes 16

equivalence in all these scenarios. We manually introduce some changes in the
benchmarks listed in rows 1-6 so that their original and transformed FSMDs
become inequivalent. These modified benchmarks are listed in rows 7-12. Again
both the tools reported non-equivalence in all these scenarios. If a benchmark
has no loop then the execution time obtained by our method is the same as the
existing method. When a benchmark has some loop then our method needs a
little extra time since at each loop header we invoke the SMT solver Z3 to check
whether the loop will execute at least once.

Table 2 presents some test cases where the VP based method fails to establish
the equivalence, but our EVP based method is able to show the equivalence. All
the test cases were created manually by us. In all these test cases, some loop
invariant operation op is moved before the loop from inside it, some operation
after the loop depends on op and there is a guarantee the loop will execute at
least once. It is evident from this table that our method outperforms the existing
method. The results in Table 1 and 2 show that our method can handle all the
scenarios which can be handled by the VP based equivalence checking method. It
can additionally handle the scenarios mentioned in this paper where the existing
method gives false negative results.

7 Conclusion

In this paper we have presented an equivalence checking method to verify loop
invariant code transformations. This work is an enhancement to the VP based
equivalence checking method presented in [1]. Like the VP based equivalence
checking method, our method is also capable of handling control structure mod-
ification of input behavior and uniform and non-uniform code motion and code
motion across loops. In addition, our method can also handle loop invariant code
motions. At a loop header, our method automatically extracts the formula that
encodes that a loop executes at least once. It then, invokes SMT solver Z3 to
check the validity of the formula. If the formula is valid, our method ignores
the false computation during equivalence checking. Thus, our method can prove
the equivalence between two FSMDs for cases where the VP based equivalence
checking method gives false-negative result. Experimental results demonstrate
the advantage of our method over the VP based method.

12 Ramanuj Chouksey et al.
References
1. Banerjee, K., Karfa, C., Sarkar, D., Mandal, C.A.: Verification of code motion

10.

11.

12.

13.

14.

15.

16.

17.

18.

techniques using value propagation. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 33(8), 1180-1193 (2014)

. Camposano, R.: Path-based scheduling for synthesis. IEEE Trans. on CAD of

Integrated Circuits and Systems 10(1), 85-93 (1991)

Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453-457 (1975)

Floyd, R.W.: Assigning meanings to programs. Mathematical aspects of computer
science 19(1), 19-32 (1967)

Gajski, D.D., Dutt, N.D., Wu, A.C.H., Lin, S.Y.L.: High-level Synthesis: Introduc-
tion to Chip and System Design. Kluwer Academic Publishers, Norwell, MA, USA
(1992)

Gupta, S., Savoiu, N., Dutt, N.D., Gupta, R.K., Nicolau, A.: Using global code
motions to improve the quality of results for high-level synthesis. IEEE Trans. on
CAD of Integrated Circuits and Systems 23(2), 302-312 (2004)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576-580 (1969)

Karfa, C., Mandal, C.A., Sarkar, D.: Formal verification of code motion techniques
using data-flow-driven equivalence checking. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES) 17(3), 30 (2012)

Karfa, C., Sarkar, D., Mandal, C., Kumar, P.: An equivalence-checking method for
scheduling verification in high-level synthesis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27(3), 556-569 (2008)

Knoop, J., Riithing, O., Steffen, B.: Lazy code motion. In: Proceedings of the ACM
SIGPLAN’92 Conference on Programming Language Design and Implementation,
PLDI ’92, pp. 224-234. ACM, New York, USA (1992)

Kundu, S., Lerner, S., Gupta, R.: Validating high-level synthesis. In: Computer
Aided Verification, 20th International Conference, CAV’00, pp. 459-472. Springer
(2008)

Kundu, S., Lerner, S., Gupta, R.K.: Translation validation of high-level synthesis.
IEEE Trans. on CAD of Integrated Circuits and Systems 29(4), 566-579 (2010)
Lee, C., Shih, C., Huang, J., Jou, J.: Equivalence checking of scheduling with
speculative code transformations in high-level synthesis. In: Proceedings of the
16th Asia South Pacific Design Automation Conference, ASP-DAC 2011, PLDI
'92, pp. 497-502. IEEE, Yokohama, Japan (2011)

Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems (TOPLAS) 1(1), 121—
141 (1979)

Lowry, E.S., Medlock, C.W.: Object code optimization. Commun. ACM 12(1),
13-22 (1969)

Rahmouni, M., Jerraya, A.A.: Formulation and evaluation of scheduling techniques
for control flow graphs. In: Proceedings of EURO-DAC. European Design Automa-
tion Conference, EURO-DAC’95, pp. 386-391. IEEE, England, UK (1995)
Riithing, O., Knoop, J., Steffen, B.: Sparse code motion. In: Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’00, pp. 170-183. ACM, New York, USA (2000)

Z3. https://github.com/Z3Prover/z3

