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Abstract—A notion of interfaces based on regular languages
for modelling and verification of real-time scheduling constraints
was proposed in [5]. This initial notion considers task sets running
on single resources, and simple deadline requirements. We extend
the approach to enable support for complex task models running
on systems with multiple resources. We show that this extension
preserves all properties of the original notion. In addition, this
extension gives rise to the application of our interfaces in the
design of more complex systems, where components can be spread
over distributed architectures.

The work is complemented by an initial implementation that
performs scheduling analysis for a relevant class of real-time
interfaces. It actually constructs an interface for a system model
if it satisfies a set of given real-time requirements.

I. INTRODUCTION

The design of safety-critical systems calls for rigorous
formal design and verification methods as malfunctions might
lead to catastrophic results. Recently, contract based design
has received renewed attention in this area. New results [4]
enable contract based design to solve important issues such as
compositional reasoning, allowing us to construct even large
systems from a set of well-designed components. Contract
based design also paves the way for incremental design meth-
ods, where components are refined successively during the
design process, starting from the initial high-level specification
down to the final implementation. In [4] it is also discussed
how contract based design can be applied in the deployment
and mapping phase of the design process. Following the
methodology advocated in Platform Based Design [19] a set
of application contracts C is related to a set of platform
contracts P by their conjunction C ∧ P . Obtaining a valid
deployment then amounts to finding an execution platform P
and a mapping of the application components on the platform
components such that C ∧ P is consistent.

In the context of contract based design, various concrete
theories exist (assume/guarantee contracts, interface theories,
timed interface theories, probabilistic interface theories, etc.),
which are extensively discussed in [4]. However, the target
hardware is considered in a rather abstract way, if at all.
Interferences between different applications resulting from
their deployment to the same platform component are not
explicitly addressed by these theories. In other words, the
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methodological question of how to obtain an implementation
of an application on a target platform is left open.

On the other hand real-time scheduling analysis [12] is
an important building block in the deployment and mapping
phase. It considers applications when they are deployed to
processors, buses and other devices, thus exhibiting an explicit
notion of a platform. Much work on real-time scheduling
analysis has been done, with increasing expressive power
along the evolution of analysis methods. It is impossible to
give even a rough overview here, and we refer to [20] for
a survey. Further, there has been a growing interest to relate
compositional real-time scheduling analysis frameworks with
interface-based design [11], [24], [22], [25] – as described in
[4], interface-based design can be seen as an instantiation of
the theory of contracts. These studies define interface theories
for components abstracting the resource requirement of a
component by means of demand functions. For example in
[24], [22], [25] a notion of real-time interface is presented
based on the Real-Time Calculus and the underlying principles
of interface-based design [8].

The notion of real-time interfaces proposed in [5] is a com-
plementary approach for modelling systems at the platform
level when the system is implemented on a target processor.
The formalism is based on the control interfaces proposed
by Weiss and Alur [26], [1], [2]. It assumes a discrete time
model, where time is divided into slots of pre-defined equal
length. All scheduling related events, such as task arrivals,
completions and preemptions, take place at these discrete time
points. A schedule on a processor is described by an ω-word
that describes the sequence of tasks that run in the discrete
time slots. An ω-regular language describes the set of legal
schedules.

These interfaces have been related to contracts allowing
us to reason about whether a given interface – treated as
implementation – satisfies a set of contracts. Moreover, the
interface formalism is equipped with well-defined composition
and refinement operations, which paves the way to a consistent
application of contract based design methods down to the final
implementation, explicitly addressing interferences between
applications due to their deployment on a common target
platform.

The expressiveness of the present interface formalism is still
limited. Firstly, it does not capture task activations and comple-
tions directly but task executions only. Relating interfaces with



task activations and completions, such as defined by a contract,
requires a mapping function introducing inevitable ambiguity.
This makes modelling of more complex systems such as with
execution dependencies difficult, if not impossible. The second
drawback is the restriction to single resources.

The present paper extends the interface notion, allowing
us to express task activations and completions directly in
the interface language. Similar to assume-guarantee interfaces
[11], we equip our interfaces with input and output ports
characterising interface behaviour at component boundaries.
Along with this we add the ability to define interfaces on
multiple resources. In addition to preserving all algebraic
properties of the original notion, the extended one embeds
consistently into contract-based design.

The paper presents an initial attempt at constructing in-
terfaces that satisfy a given set of real-time requirements
expressed as contracts. It is similar to other computational
real-time scheduling analysis approaches based on model-
checking, where the system is represented as a state-transition-
system. The DREAM framework [13] for example transforms
real-time models to the model-checking tool UPPAAL [7]
for verification. The TIMES tool [3] also employs UPPAAL,
but seems to access UPPAAL’s internal state space in order
to optimise analysis of scheduling specific properties. The
framework FUNSTATE [21] exploits a symbolic representation
of finite state machines called Interval Decision Diagrams,
which enables efficient state-space storage and operations.

As interfaces are defined by ω-languages, the approach
constructs the transition system in terms of a finite state
machine (FSM). Along this process it is checked whether a
given set of timing requirements is satisfied. If so, the resulting
FSM represents the interface of the system that conforms to the
given contracts by construction. While the present approach
performs holistic (i.e., non-compositional) scheduling analysis
we consider it as an important building block towards support
for other key design steps such as incremental design and
compositional analysis.

Section II introduces the extended real-time interface notion
and the basic definitions for contracts used throughout the
paper. It also defines a class of real-time models from which
timing contracts and interfaces will be derived. Section III
presents the approach for state space construction for a given
model, and Section IV presents an evaluation of the imple-
mentation by a set of benchmarks. Section V discusses further
work and concludes the paper.

II. INTERFACES, CONTRACTS AND SYSTEM MODEL

A. Real-Time Interfaces

The notion of real-time interfaces defined in [5] allows us
to reason about real-time components that are executed on a
single resource such as a processing node or communication
medium. Each component consists of a set of tasks. A real-
time interface of a component specifies the set of legal
schedules when it is executed on the resource. To this end,
time is divided into discrete slots of some fixed duration.
The real-time interface of a component then is an ω-language

containing only legal schedules of the component, i.e., those
satisfying its requirements. For example, consider a component
with two tasks τ1 and τ2, which are scheduled on a single
resource, as shown in Figure 2 for component CPU1. A
schedule for this component can be described by an infinite
word over the alphabet {0, τ1, τ2}, where 0 means the resource
is idle during the slot, and τ1 and τ2 means the corresponding
task is running.

Example 1: Suppose that task τ1 in Figure 2 is a periodic
task with period p = 5 and an execution time c = 3. The
language of its interface Iτ1 can be described by the following
regular expression: Lτ1 = 0<5[τ3

1 ||| 02]ω , where u ||| v denotes
all possible interleavings of the finite words u and v. That
means, a schedule is legal for interface Iτ1 , as long as it
provides 3 slots during a time interval of length 5.

Observe, that interface Iτ1 captures an assumption about
the activation pattern of task τ1. The part 0<5 of the regular
expression represents all possible phasings of the initial task
activation. This correlates to the formalism of event streams,
which is a well-known representation of task activation pat-
terns in real-time systems (cf. [17]) by lower and upper arrival
curves η−(∆t) and η+(∆t).

Fig. 1: Arrival curves of periodic events

While this notion of real-time interfaces provides desired
properties such as composability and refinement, it lacks
two important features. Firstly, as the interface does not
capture task activations and completions but task executions
only, modelling more elaborate task systems such as with
task dependencies becomes complex, if not impossible. In
order to relate interfaces with contracts that characterise task
activations and completions, [5] defines a function α that
maps such events to possible tasks executions in terms of
interface languages. Such mapping functions however do not
solve this issue properly, because in general no unique inverse
mapping exists. Secondly, this notion does not allow us to
define interfaces for multiple resources.

Hence we consider interfaces defined over tuples of sym-
bols. A component has a set P = Pin ] Pout of input
and output ports. Symbols occurring at the individual ports
represent activation and completion events for the tasks that
are connected to the corresponding ports. The events that may
be observed at port p ∈ P are characterised by the alphabet
Σp, and we define ΣP = Σp1 × . . .×Σpn . As task activations
and completions might not occur at each time step, we assume
a special symbol ⊥ denoting that no event occurs.
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Fig. 2: System example (top) and exemplary trace-extract
(bottom) of the corresponding interface.

While [5] defines interfaces by languages over a set T of
tasks that occupy slots of a single resource, we extend this
to sets R of resources that are running in parallel. To each
resource r ∈ R a set of tasks is allocated, which is represented
by the alphabet Σr.

Definition 1: An interface is a tuple IK = (K,ΣK , LK)
where K = P ∪ R is an index set of ports P and resources
R where:

• For k ∈ P,Σk is the set of events that may occur at port
k. ⊥ ∈ Σk means “no event”.

• For k ∈ R,Σk is the set of tasks that run on resource k.
0 ∈ Σk means “slot not used”.

and ΣK =
∏
k∈K Σk, LK ⊆ ΣωK . �

Example 2: Focus on the example system depicted on the
left hand side of Figure 2. Suppose that task τ1 is a periodic
task with period p = 5 and an execution time c = 3 just like
in Example 1. Task τ3 is also a periodic task with p = 5 and
c = 2. Further, task τ4 is dependent on τ1, i. e., is activated by
τ1, and has an execution time c = 2. Task τ2 is dependent on
τ4 and has an execution time c = 1. Now assume both CPUs
are scheduled using a fixed priority policy with preemption,
where tasks τ1 and τ3 have high priority on their respective
CPUs. The delay of the task-chain τ1 → τ4 → τ2 processing
the periodic event stream depends on the activation-pattern
of τ3 and its execution time. This is illustrated on the right
hand side of Figure 2. Once τ1 completes its execution it
activates (via its output port po1 ) τ4, which in turn might
be preempted by τ3. Finally, τ2, activated by τ4, could be
preempted by a subsequent instance of τ1 resulting from
another event i1 of the periodic event stream. The interface
of this system is IK = (K,ΣK , LK), with K = P ∪ R,
P = {pi1 , pi3 , po1 , . . . , po4} and R = {cpu1, cpu2}. For
pij ∈ P we have Σpij = {ij ,⊥}, for poj ∈ P we have
Σpoj = {oj ,⊥}, for cpu1 we have Σcpu1 = {τ1, τ2, 0} and for
cpu2 we have Σcpu2 = {τ3, τ4, 0}. An excerpt of a possible

trace in LK is shown in Figure 2, which corresponds to the
previously discussed scheduling scenario. Intuitively, each port
in a system has its own event-tape in the interface, and so does
each resource. Note, that we omitted input ports connected
to some output port. This is because we define a connection
between tasks by a unification of their ports to denote a
synchronisation of the behaviour.

The key to dealing with interfaces having different alphabets
is a projection operation. For alphabet ΣT and language L of a
(simple) interface I , and ΣT ′ ⊆ ΣT , we consider its projection
proj (ΣT ,ΣT ′)(L) to ΣT ′ , which is the unique extension of
the function ΣT → ΣT ′ that is identity on the elements of ΣT ′

and maps every element of ΣT \ΣT ′ to 0. We will also need
the inverse projection proj−1(ΣT ′′ ,ΣT )(L), for ΣT ′′ ⊇ ΣT ,
which is the language over ΣT ′′ whose words projected to ΣT
belong to L.

Notation: For f : X → Y , A ⊆ X and B ⊆ Y , we write
f(A) for the direct image {f(a) | a ∈ A} and f−1(B) for the
inverse image {x ∈ X | f(x) ∈ B}.

For interfaces that are defined over alphabets of the form
ΣK = Σk1 × . . . × Σkn , projection becomes more involved.
First, projection must be performed component-wise, i.e., for
each ki individually. Secondly, we have to consider interfaces
that are defined over different index sets. To this end, we define
normalisation operations. Let K and K ′ ⊆ K be index sets.
For an alphabet ΣK′ we define ΣK′→K =

∏
k∈K Σ′k where

Σ′k = Σk if k ∈ K ′, and {0} otherwise. For an alphabet ∆K

we define ∆K |K′ =
∏
k∈K′ ∆k.

Definition 2: Let N = {1, ..., n}, and let Σ = Σ1× ...×Σn
and ∆ = ∆1 × ... ×∆n be alphabets with Σi ⊆ ∆i for i =
1, ..., n. Define projection function proj (∆,Σ) : ∆ω → Σω

by the unique extension of the function proj (∆,Σ) : ∆→ Σ
where proj (∆,Σ)(δ1, ..., δn) = (σ1, ..., σn) such that σi = δi
if δi ∈ Σi, and 0 otherwise.

For M = {i1, . . . , im} ⊆ N and Σ′ = Σi1 × ...× Σim we
define proj (∆,Σ′)(L) := proj (∆|M ,Σ′)(L|M ). �

In other words, if Σi ⊆ ∆i then projecting a word over
the larger alphabet ∆i into a word over the smaller alphabet
Σi will map any symbol from ∆i not belonging to Σi to
0; symbols that belong to Σi will be mapped to themselves.
The projection of a word over Σ then projects all elements i
simultaneously. Taking the inverse projection of a word over
Σi will result in a set of words where any 0 in the word
will be replaced by all the letters in ∆i which are not in Σi.
The inverse projection of a word over Σ results in a set of
words with all combinations of replacements for the individual
elements.

We define a composition operation to obtain the set of
schedules when two components are executed together:

Definition 3: Given two interfaces I1 = (K1,ΣK1 , LK1)
and I2 = (K2,ΣK2

, LK2
), the parallel composition I1 ‖ I2 is

the interface (K,ΣK , LK), where
• K = K1 ∪K2,
• ΣK =

∏
k∈K(ΣK1→K |k ∪ ΣK2→K |k)

• LK = proj−1(ΣK ,ΣK1
)(LK1

)
∩ proj−1(ΣK ,ΣK2

)(LK2
) �
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The intuition of this definition is that a schedule is legal
for I1 ‖ I2 if its restriction to resources R1 and the port set
P1 of interface I1 is legal in I1, and similarly for interface
I2. That means tasks of an interface are allowed to run
in a slot of resource r ∈ R when r is idle in the other
interface, i. e., the slot is not used in that other interface.
Additionally, the projection operation controls which ports
of I1 and I2 shall be related, i. e., which events shall be
synchronised in the composition. This intuition is illustrated
in Figure 2. Ports connected in the system are unified in the
corresponding interface (for example port po1 ), which means
the same behavior can be observed at connected ports.

Definition 4: Given two interfaces I = (K,ΣK , LK) and
I ′ = (K ′,ΣK′ , LK′), we say I ′ refines I , I ′ � I , if and only
if K ′ ⊇ K, ΣK′ ⊇ ΣK→K′ and proj (ΣK′ ,ΣK)(LK′) ⊆ LK .
�

The intuition of this definition is that all schedules legal in
I ′ are (modulo projection) also legal schedules in I , and I ′ is
able to schedule more tasks in the gaps left by schedules in
I . Note that, if I and I ′ are defined over the same index sets
and alphabets, refinement becomes simple language inclusion:
LK′ ⊆ LK .

The following lemmas provide useful properties of the real-
time interface framework.

Lemma 1: Parallel composition of interfaces is associative
and commutative. �

An associative and commutative composition operation
guarantees that composable interfaces may be assembled to-
gether in any order.

Lemma 2: Refinement of interfaces is a partial order. �
As refinement is a partial order, it is ensured that: If interface

I ′ � I , then for any interface I ′′ � I ′ it holds that I ′′ � I .
That means interfaces can be refined iteratively.

Lemma 3: Refinement is compositional. That means I ′ � I
implies I ′ ‖ J � I ‖ J . �

B. Adding Contracts

As in [5] we equip our real-time interfaces with a notion of
contracts. Contracts are pairs (A,G) where A is an assumption
about the environment of a component, and G is the guarantee
that the component offers to its environment [4]. For real-
time interfaces, both assumptions and guarantees will talk
about bounds on the frequency of task arrivals and time to
completions. In addition, they can capture the dependencies
between tasks, for example, by stating that “task 2 is triggered
whenever task 1 completes”.

Both, the assumptions A and the guarantees G, consist of
task release (or arrival) times as well as task finishing (or
completion) times. These are again modelled using ω-regular
languages, but now the semantics is about the behaviour
observed at the ports P of a component. An ω-language of a
contract is defined over the set ΣP of events, and corresponds
to time instants when either nothing happens (modelled by ⊥),
a task arrives (modelled by an event at the input port of the
task) or finishes execution (modelled by an event at an output
port). The contract (A,G), where A ⊆ ΣωP and G ⊆ ΣωP

specifies promises on the arrival and finishing times of a set
of tasks, given the assumptions on the arrival and finishing
times of the same set of tasks. A dependency between tasks,
such as task τi triggers task τj , is captured by the occurrence
of an event at the port that connects the two tasks. When
we compose components it becomes important to care about
which ports contracts talk about. Hence we define a contract
over a set of ports as a tuple C = (P,ΣP , A,G) where
A,G ⊆ ΣωP .

In [5] the relation between contracts and interfaces is
provided by a map α that translates the assumptions and
guarantees into interface languages. Suppose a periodic task i
with period pi, zero phasing, and relative deadline di. Assume
that di ≤ pi. This is captured by the contract (A,G) where
A = (

⋃
s+t=pi−1 ai(0

s)fi(0
t))ω and G = (0?ai0

≤di−1fi)
ω .

The events ai and fi represent the activation and completion
of task i. Suppose task i has execution time of ci on the
processor. The translation of A into a set of task executions
is given by α(A) = (ici ||| 0pi−ci)ω and that of G by
α(G) = (0?(ici ||| 0di−ci))ω .

With this translation, checking whether an interface com-
plies to a contract reduces to language inclusion with respect
to the mapping α. Indeed, the mapping involves an abstraction
of the behaviour, which causes problems for more complex
scenarios, as the mapping induces more behaviour in the in-
terface than intended. With the revised definition of interfaces,
these issues in the relation with contracts disappear:

Definition 5: [4] Let C = (P,ΣP , A,G) be a contract. An
implementation M of the contract satisfies C, written M � C,
if and only if M |P ∩ A ⊆ G. Here M , A and G are all sets
of traces (sequences). �

Considering interfaces as implementations of contracts, we
get the following relation. An interface IK = (K,ΣK , LK)
satisfies a contract C = (P,ΣP , A,G) if LK satisfies C.

We define a parallel composition of contracts that is consis-
tent with the definition in [4]. However, in order to reason
about contracts over different port sets, it is necessary to
equalise the alphabets of the involved assertions. This is done
exactly as for interfaces:

Definition 6: Let C1 = (P1,ΣP1 , A1, G1) and C2 =
(P2,ΣP2

, A2, G2) be contracts. The parallel composition C1 ‖
C2 is the contract C = (P,ΣP , A,G) where P = P1 ∪ P2,
ΣP =

∏
p∈P (ΣP1→P |p ∪ ΣP2→P |p), and

A = (A′1 ∩A′2) ∪ ¬(G′1 ∩G′2),

G = G′1 ∩G′2,

A′i = proj−1(ΣP ,ΣPi)(Ai) and G′i = proj−1(ΣP ,ΣPi)(Gi).
¬X denotes the complement of X . �

We conclude the section by revisiting the proposition about
compositionality of contract satisfaction. The following lemma
states that the satisfaction relation between implementations
and contracts is also compositional for the revised notion of
interfaces.

Lemma 4: If the interfaces I1 and I2 satisfy contracts C1

and C2 respectively, then I1 ‖ I2 satisfies C1 ‖ C2. �

4



C. System Model

We now instantiate the framework for a relevant class of
models in the context of real-time systems. We first charac-
terise this class, and then define how to obtain contracts and
interfaces for a given model.

Applications are modelled by networks of tasks, which
define the atomic functional units to be executed on a target
architecture. Tasks are also used to model messages that are
transmitted over a communication medium [23]. Task invoca-
tions (execution requests) are modelled by events occurring at
particular ports, and the same holds for task completions. Task
dependencies are modelled by the unification of their ports.

Tasks without dependencies are connected to event sources
that represent task activations from the environment. For each
event source, we define an activation pattern that characterises
event occurrences. Following the approach for assumed acti-
vation patterns of real-time interfaces outlined in Example 1,
we consider activation patterns conforming to the formalism
of event streams. We define a particular class of event streams
characterised by tuples (Σ, ρ−, ρ+, j) where ρ−, ρ+ ∈ N+,
and j ∈ N. It defines an interval [ρ−, ρ+] that determines the
minimal and maximal inter-arrival time between individual
events from the set Σ. Additionally, each event might be
further delayed up to a maximum jitter j.

Definition 7: A task network is a tuple TN = (Σ, P,Φ, T )
where:
• Σ is a finite set of events,
• P is a finite set of ports. We define Σ(p) ⊆ Σ as the

set of events that can be observed at port p ∈ P , and
Σ(Q) =

⋃
p∈Q Σ(p) for Q ⊆ P .

• Φ is a finite set of event sources φ = (Pφ, ρ
−, ρ+, j)

where Pφ ⊆ P is a set of output ports, Pφ 6= ∅, and all
ports share the same event set, i.e., ∀p ∈ Pφ : Σ(p) =
Σ(Pφ). (Σ(Pφ), ρ−, ρ+, j) forms an event pattern.

• T is a finite set of tasks τ = (pIτ ,Γ, P
O
τ ) where pIτ ∈ P

is an input port, ∅ 6= POτ ⊆ P a set of output ports, and

Γ =Σ(pIτ )→ Ψ

Ψ =
⋃
∅6=Q⊆POτ

{ψ : Q→ (Σ(Q)× N+ × N+) |

ψ(po) = (σ, δ−, δ+) =⇒ σ ∈ Σ(po)}

where Γ maps input events arriving at the input port pIτ
to an output specification ψ ∈ Ψ that maps output ports
to output events and execution intervals. �

A set Ψ defined for a task τ denotes all non-empty subsets
of output ports of τ in combination with output events and
execution intervals [δ−, δ+]. The input/output function of a
task hence allows sending events to any combination of output
ports, depending on the input event received at its input port.
Bounds for execution intervals are assumed to be known.

We require task networks to be well-formed, i.e., input and
output ports of the individual tasks must be disjoint. We also
require that the composition is closed, i.e., where each task
is either connected to a preceding task or to an event source.
Because tasks have a single input port, only tree-shaped task

networks can be defined. This is not a general restriction but
to keep the definitions simple.

The following definition provides a notion of architecture
represented by a set of resources R, and an allocation of a
task network TN to the resources:

Definition 8: A real-time model is a tuple A = (TN,R,Ξ)
where:

• TN is a task network,
• R is a set of resources, where r ∈ R is defined by a

scheduling strategy sch : R→ {FPS, . . .},
• Ξ : T → R is an allocation function that assigns a

resource r ∈ R to every task τ ∈ T . �
Observe that Ξ induces a set of input and output ports

Pr ⊆ P for each resource r ∈ R, which contains the input
and output ports of all tasks mapped to r. Note that the set
of scheduling strategies is deliberately abstract. We like to
point out that the approach can cope with a broad range of
scheduling schemes.

We consider a real-time model as a system characterisation
for which we create contracts and interfaces. Given a task
network TN = (Σ, P,Φ, T ) we obtain the corresponding
contract as follows. As the event sources in Φ characterise
the activation of the application by the environment, their
behaviour serves as the assumption of the contract specifying
the application. As ω-languages correspond to finite state
machines, the language of a single event source can be
characterised by the corresponding automaton. An example for
a periodic event source is shown in Figure 4a. Event sources
are independent, and hence the assumption for a set of event
sources is obtained by the product of the respective languages.
If LA(φ) is the language of event source φ, the assumption
is A =

∏
φ∈Φ LA(φ) = {(σ0,1, . . . σ0,n)(σ1,1, . . . σ1,n) . . . |

σ0,iσ1,i . . . ∈ LA(φi)}.
The guarantee of the contract defines a set of deadlines. To

keep the discussion simple we consider local deadlines only.
For each task τ ∈ T we define a mapping D : Σ(pIτ ) →
N+ that assigns to each possible activation event of τ the
maximal allowed time to completion. Suppose for simplicity
the case where the deadline of task τ with a single output port
is less than its minimal inter-arrival time for every activation.
Then we can derive the guarantee from D and the function
Γτ . For a task with deadline smaller than the minimal inter-
arrival time it results in a language of the form LG(τ) =

[0∗σpIτ 0
<D(σpIτ

)
σpOτ ]ω . The guarantee of the model is obtained

by G =
⋂
τ∈T proj−1(ΣP ,Σ(Pτ ))(LG(τ)).

The language of an interface subsumes all ports P and
resources R of the model. It contains all valid schedules
with respect to the underlying architecture and scheduling
policies. The interface of a real-time model can be obtained in
various ways, depending on the intended scenario and design
process. For abstract interfaces, where no concrete scheduling
is yet defined, mapping functions as discussed earlier can be
exploited. The next section introduces an approach to construct
the interface of a real-time model when scheduling policies
and contracts are known.
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III. REAL-TIME ANALYSIS APPROACH

The remainder of this paper presents an approach to obtain
initial tool support for the real-time interface formalism. We
concentrate on the question of how to construct interfaces with
respect to an underlying architecture and given scheduling
policies. A complementary view to this aspect is the well-
known area of real-time scheduling analysis [20], where it
is checked whether a set of tasks can be scheduled on
given hardware architecture without violating given (deadline)
requirements.

In our setting, this is equivalent to finding an interface for a
given real-time model and deadlines. As interfaces essentially
are ω-languages, finite state machines (FSM) are an obvious
formalism on which interface-based tools can be constructed.
We construct for a given real-time model an FSM that rep-
resents all possible behaviour of the system with respect to
the underlying architecture. Then it is checked whether this
behaviour satisfies all given timing requirements, which are
given in terms of contracts. If this holds, the resulting FSM
represents an interface of the real-time model that satisfies the
given contract.

The following presentation concentrates on the construction
principles while omitting implementation details.

A. Finite State Transducers and System Composition

In the following we consider systems that are composed
from sets of so-called transducers, which are finite state ma-
chines operating on distinct input and output ports. Transduc-
ers are a well-established formalism with Moore- and Mealy-
machines [14], [15] as their most common representatives.
We assume a global non-empty finite set P = {p1, ..., pn}
of ports, and alphabets Σp for all p ∈ P . We require a special
symbol ε ∈ Σp for each p ∈ P . This symbol serves as a
don’t care indicator. In contrast to the earlier sections now all
components of a system will be defined over the same alphabet
ΣP = Σp1 × . . .× Σpn . A component that does not act on a
particular port shows only ε symbols on that port. Note that ε
has the same meaning as the symbol 0 before, but ε is used
in the following for better readability.

For σ = (σ1, . . . , σn) ∈ ΣP and Q ⊆ P , we define
projection of σ to Q as σ|εQ = (σ̃1, . . . , σ̃n), where σ̃i = σi
if i ∈ Q and σ̃i = ε otherwise. We extend projection
to sequences ω|εQ, and to languages L|εQ. We also define
ΣP |εQ = {σ|εQ | σ ∈ ΣP }.

We further define a composition operation on events. Let σ
be an event from an alphabet Σ. Then the empty event ε is an
identity element with respect to the composition operation ⊗,
i.e., σ⊗ ε = ε⊗σ = σ. In fact we consider σ⊗σ′ only being
defined if either σ or σ′ is ε. Event composition is extended to
events from the global alphabet as follows: Let σ and σ′ be two
events from ΣP . We define σ⊗σ′ = (σp1⊗σ′p1 , . . . , σpn⊗σ

′
pn)

as the pair-wise composition of σ and σ′. Again, σ ⊗ σ′ is
defined only if all σpi ⊗ σ′pi are defined.

A finite state transducer (FST) is a tuple F =
(ΣP , P in, P out, S, s0, T,G) where
• P in ⊆ P is a set of input ports,

Fig. 3: Port Composition

• P out ⊆ P is a set of output ports s.t. P in ∩ P out = ∅,
• S is a finite set of states, and s0 ∈ S is the initial state,
• T ⊆ S × ΣP |εP in × S is a set of transitions,
• G : S → ΣP |εP out is the output function of F .

We say F is closed if P in = ∅, that is F has no input ports.
A run of F is an infinite sequence s0σ0s1σ1 . . . such that

(si, σi|εP in , si+1) ∈ T and σi = σi|εP in⊗G(si) for all i ∈ N.
Each run s0σ0s1σ1 . . . of F induces a trace σ0σ1 . . .. The
language L(F ) is the set of all possible traces of F .

For a subset Q ⊆ P , we define the FST F |εQ =
(ΣP , P in

′, P out
′, S, s0, T

′, G′) where P in
′ = P in ∩ Q,

P out
′ = P out ∩Q, and

(s, σ|εP in′ , s′) ∈ T ′ ⇐⇒ (s, σ, s′) ∈ T,
G′(s) = σ|εP out′ ⇐⇒ G(s) = σ.

A system is a set S = {F1, . . . , Fm} of FSTs such that
for all Fi = (ΣP , P ini, P outi, Si, si,0, Ti, Gi) and Fj =
(ΣP , P inj , P outj , Sj , sj,0, Tj , Gj) with i 6= j the relation
P ini ∩ P inj = P outi ∩ P outj = ∅ holds. Composition of
S is the FST FS = (ΣP , P in, P out, S, s0, T,G) where
• P out =

⋃
j∈{1,...,m} P outj

• P in =
⋃
j∈{1,...,m} P inj \ P out

• S = S1 × . . .× Sm, with Sj being the states of FST Fj
• s0 = (s1,0, . . . , sm,0)
• G(s1, . . . , sm) = G1(s1)⊗ . . .⊗Gm(sm)
• ((s1, . . . , sm), σ1 ⊗ . . . ⊗ σm, (s′1, . . . , s′m)) ∈ T ⇐⇒
∀j ∈ {1, . . . ,m} : (sj , σj , s

′
j) ∈ Tj ∧ σj |εP out =

G(s1, . . . , sm)|εP inj
A system S is closed if FS is closed. Intuitively, FS

synchronises the transitions of all FSTs of S with the last
output of all FSTs. Output function G of the composed FST
is well-defined as we require the output ports of the involved
FSTs to be pair-wise disjoint. Hence the composed output is
the output of each FST involved in the composition. Also
the transition symbols σ1 ⊗ . . . ⊗ σm are well-defined as we
require the input ports of the involved FSTs to be pair-wise
disjoint. Synchronisation of the individual FSTs is ensured by
the requirement σj |εP out = G(s1, . . . , sm)|εP inj . It states that
the transition of an FST can be taken only if each input port
of the FST is either not connected to an output port of another
FST, or the output event of a connected FST, projected to the
input port, matches the input event. In the former case the
event is not restricted. Figure 3 depicts the relationship.

A naive implementation of the composition operation re-
quires a preliminary construction of the FSTs for all compo-
nents. Since composition typically “cuts away” large portions
of those local state spaces (actually all states that are not
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reachable), preliminary construction of local state spaces for
each component would result in large overheads. Hence, we
aim at performing composition in an iterative process:

Algorithm 1 (Iterative FST Composition): Let S be a
closed system. The FST FS is constructed as follows:
1) Initially the state set of FS is S = {(s1,0, . . . , sm,0)}.
2) We define set Sch of changed states. Initially Sch = S.
3) While Sch 6= ∅, do

a) Take a state (s1, . . . , sm) ∈ Sch, removing it from Sch.
b) Compute G(s1, . . . , sm) = G1(s1)⊗ . . .⊗Gm(sm).
c) For each Fi, given its current state si, determine

successor states S′i reachable by G(s1, . . . , sm)|εP ini .
d) For each element (s′1, . . . , s

′
m) ∈ S′1 × ...× S′m:

Add ((s1, . . . , sm), G(s1, . . . , sm), (s′1, . . . , s
′
m)) to T .

If (s′1, . . . , s
′
m) 6∈ S, then add it to the sets Sch and S.

B. FST Generators

Instead of defining complex components, such as a resource
scheduler executing sets of real-time tasks, directly as FSTs,
it is much more convenient to define them over states that
represent sets of variables v1, . . . , vn from a finite domain
D = D1×. . .Dn. This allows us to define states that represent,
for example, (bounded) integer values and buffer contents.
Evolution of such a component is defined by two functions:
m : D × ΣP |εP in → 2D defines a set of possible successor
states reachable within a single time step for a given state
and an input event; and g : D → ΣP |εP out maps local states
to output events. To generalise this idea, we define an FST
generator as a tuple M = (ΣP , P in, P out,D, v0,m, g) where
v0 ∈ D is the initial local state. Every generator M uniquely
identifies an FST FM = (ΣP , P in, P out, S, s0, T,G) where
• S such that |S| = |D|, and ν : S → D is a bijective

mapping where ν(s0) = v0,
• (s, σ, s′) ∈ T ⇐⇒ ν(s′) ∈ m(ν(s), σ),
• G(s) = σ ⇐⇒ g(ν(s)) = σ.
This allows us to directly apply FST generators to Algo-

rithm 1. For each step of the algorithm, mapping ν identifies
the corresponding state of the generator. Mapping m ensures
that successor states and transitions can be obtained, and
mapping g provides the output events for the respective states.

C. State Space Construction

Definition 9: Let A = (TN,R,Ξ) be a real-time model
where TN = (Σ, P,Φ, T ). We define the real-time system
SA = (P,ΣP ,FM) where FM = {FM |M ∈M}, and:
• ΣP = Σp1 × . . .×Σpn such that Σp = Σ(p)∪{ε,⊥} for

all p ∈ P ,
• M =MΦ ∪MR, where MΦ = {Mφ | φ ∈ Φ} is a set

of event source generators, and MR = {Mr | r ∈ R} is
a set of resource generators. �

Recall that the task network TN is closed by definition.
Hence, SA is also closed. The construction of FST generators
for event sources is straightforward. It is in fact a discretised
version of the automaton templates defined by Hendriks and
Verhoef in [10]. The FST constructed for a simple periodic

(a) FST for φ = (Pφ, ρ, ρ, 0)
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(b) Resource State Example

Fig. 4: State representation for event sources and resources

event source φ = (Pφ, ρ, ρ, 0) is depicted in Figure 4a.
The first event, which belongs to Σ(Pφ), is emitted non-
deterministically within the first ρ steps. Afterwards they are
emitted each ρ steps.

Figure 4b depicts the general encoding of a state of a
resource generator. Each allocated task is represented by a data
structure as shown at the bottom left of the figure. Activation
events for the task are stored in a buffer together with a
response time counter. In Figure 4b, task τ1 has been activated
by an event a, followed by an activation due to event b. An
additional counter stores the elapsed execution time of the
current activation. At each step all response time counters are
incremented. Incoming activations are stored in the respective
buffers, as shown for an activation of task τ2 by event c.
According to the scheduling strategy, the execution counter
of the currently active task is incremented. In Figure 4b this
is for task τ1 as it has higher priority. Calculation of successor
states includes the decision whether tasks are completed. In
Figure 4b, task τ1 has execution time between 4 and 6. Hence
two successor states exist. The first possible outcome is that
τ1 is still executed. Otherwise it is finished, and a completion
event f is sent.

This encoding allows for efficient calculation of local re-
sponse times. As each resource state that is constructed during
system composition is reachable, it is sufficient to traverse all
states once only in order to obtain the worst-case response
time for all tasks allocated to the resource. This can be done
separately for each resource as resource states are kept local.
Linking between the states of the composed FST and local
resource states is obtained by the mappings νj . For a state
(s1, . . . , sm) of the composed FST, the local state vj of
resource Rj is given by νj(sj).

Calculation of end-to-end response times for task chains
involves breadth-first search (BFS) on the composed system
FST. At each of the states where a task in the chain is
completed, the algorithm starts a BFS to find the longest path
to completion of the successor task in the chain. Note that the
longest path has length equal to the worst-case response time
of the respective task.

IV. EVALUATION

To evaluate the feasibility of our approach we compare
the analysis results of our implementation (in the following
denoted RTANA2) with other performance analysis frame-
works, based on a set of benchmarks published in [16].
The authors studied the influence of different abstraction
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Fig. 5: Specification of Benchmark 1

techniques for analysis of real-time systems, and compared
four analysis frameworks. MAST [9] represents the class of
holistic analysis. It is based on a notion of transactions that, in
case of task dependencies, are propagated through the system.
The two well established tools SymTA/S [18], [17] and MPA-
RTC [6] represent compositional techniques. While SymTA/S
is based on fixed point calculation of event streams, MPA-
RTC is based on real-time calculus. Finally, the framework
of Hendriks and Verhoef [10] (in the following abbreviated
as HV) performs analysis based on timed automata, where
systems are translated to UPPAAL.

We consider the HV approach as litmus test for comparison
as it is assumed to provide exact results. Only if the results
of our implementation coincide with the results of the HV ap-
proach we claim correctness for the given set of benchmarks.

Benchmark 1: Complex Activation Pattern: This bench-
mark confronts the analysis frameworks with complex task
activation patterns, which cannot be precisely described by
standard event models consisting of the three parameters
period, jitter and minimum interarrival time. Figure 5 shows
the specification of Benchmark 1. Four tasks are allocated
to two CPUs, each of which hosts two tasks. Note that for
this and the following benchmarks all CPUs execute tasks
following a preemptive fixed priority scheduling strategy. Each
analysis framework is set up to determine the worst case
latency of task T3, while gradually increasing the period of the
input event stream I3. The activation pattern of T3 is complex
because task T1 may preempt task T2.

Benchmark 2: Variable Feedback: This benchmark con-
fronts the analysis frameworks with a feedback loop, and
the resulting correlations between activations of tasks on that
feedback path. Figure 6 shows the specification of Benchmark
2. Four tasks are allocated to two CPUs, each of which hosts
two tasks. Each analysis framework is set up to determine the
worst case latency from I2 to O2, while gradually increasing
the execution time of task T3. The input event stream I2 is
sequentially processed by three tasks, which form a feedback
loop between the two CPUs.

Benchmark 3: Cyclic Dependencies: This benchmark
confronts the analysis frameworks with a cyclic dependency.
Figure 7 shows the specification of Benchmark 3. Three
tasks are allocated to two CPUs. We only consider Scenario
2 as described in [16], as Scenario 1 does not exhibit a

Fig. 6: Specification of Benchmark 2

Fig. 7: Specification of Benchmark 3, Scenario 2

cyclic dependency and gives rise to the same phenomenon as
Benchmark 2. Since task T3 has higher priority than T1, there
is a cyclic dependency between them. This is because task T1
indirectly causes activation of T3, but task T3 preempts T1.
Each analysis framework is set up to determine the worst case
latency from I1 to O1, while gradually increasing the jitter of
the input event stream I1.

Benchmark 4: Data Dependencies: This benchmark con-
fronts the analysis frameworks with a data dependency be-
tween tasks allocated to the same CPU. Figure 8 shows the
specification of Benchmark 4. Three tasks are allocated to a
single CPU. Tasks T2 and T3 have a data dependency, as
T3 is activated by T2. Each analysis framework is set up
to determine the worst case latency from I2 to O2, while
gradually increasing the execution time of task T1.

Evaluation Results: The evaluation of the four bench-
marks showed that the analysis results of our approach per-
fectly match those of the HV approach. In Figure 9 the results
are depicted as presented in [16]. For each benchmark the
graphs show the performance characteristic depending on the
parameter variance considered for the particular benchmark.
Not surprisingly, the results determined by the analysis ap-
proaches based on analytical methods are over-approximations
of the exact performance characteristic. This is due to the

Fig. 8: Specification of Benchmark 4

8



Fig. 9: Result Comparison

B1 B2 B3 B4
HV (UPPAAL) 5...22 < 1 0.1...1 < 1
RTANA2 < 1 < 1 0.1...5.5 < 1

TABLE I: Runtime Comparison (sec.)

abstraction of analytical approaches because of the inevitable
limited accuracy of the underlying formalisms to capture
complex dependencies between different events. On the other
hand analysis approaches based on model-checking like the
HV approach and the approach presented in this paper, are able
to capture those event dependencies while constructing the
state-space of the system. However, there is no free lunch as
model-checking suffers from potential state-space explosion.

Although performance comparison is not in the focus of our
evaluation, we conclude the section with some runtime results.
All measurements have been performed at the same machine,
thanks to the fact that all benchmark models of the HV
approach are publicly available. As shown in Table I, runtimes
for both approaches are below 1s for benchmarks 2 and 4. To
our own surprise, the runtimes of the remaining benchmarks
do not show significant better performance of one of the
tools. We expected to see that our explicit state representation
will generally impose larger runtimes than UPPAAL using a
symbolic state representation, which is obviously not the case.
However, as interfaces are defined by ω-languages, FSMs are
the natural formalism to capture behaviour for the considered
class of systems. Performance improvements by exploiting
more compact state representations is a part of future work.

V. CONCLUSION

The paper revisits an existing notion of real-time inter-
faces and extends it with ports characterising events for task
activations and completions, and by allowing us to express
executions on multiple resources. These extensions enable
the interface notion for more complex designs such as with
task dependencies and distributed architectures, while pre-
serving desired properties such as proper composition and
refinement operations. It also paves the way for combination
with contract-based design methods as it allows for a tighter
integration of both formalisms.

The paper presents an initial implementation of the ap-
proach, which performs holistic response-time analysis for
a particular class of real-time interfaces. Feasibility of the
implementation has been shown by a set of small benchmarks.

A possible future research direction concerns more efficient
state representations and operations. More important however
is the extension towards compositional reasoning and refine-
ment checks as intended by the definition of the interface
formalism. Supporting compositional reasoning would also
help in partly mitigate the state-space explosion problem.
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