
Reconfigurable Communication Middleware for
FlexRay-based Distributed Embedded Systems

Diptesh Majumdar∗, Licong Zhang†, Purandar Bhaduri∗, and Samarjit Chakraborty†
∗Department of Computer Science and Engineering, IIT Guwahati, India

{diptesh, pbhaduri}@iitg.ernet.in
†Institute for Real-Time Computer Systems, TU Munich, Germany

{licong.zhang, samarjit}@tum.de

Abstract—In this paper we consider the case of a network of
Electronic Control Units (ECUs) connected through a FlexRay
bus in the automotive domain. Multiple distributed applications
can run on this underlying architecture, each partitioned into
tasks that are mapped on different ECUs. These applications
can often be executed in different functional modes with different
requirements on the communication resources in terms of data
size and sampling period. Moreover, new applications can be
deployed on to the ECUs at run-time. To efficiently utilize the
communication resources and accommodate new applications,
a certain flexibility in reallocation of the resource is neces-
sary. However, the FlexRay bus requires static configuration
of schedules and data mapping in order to guarantee a more
deterministic system behavior, allowing little room for flexibility.
In order to address this problem, we propose a reconfigurable
communication middleware that lies between the application
layer and the communication controller layer, which maps
messages onto FlexRay schedules, and can be reconfigured at
runtime. The configuration is synthesized and deployed online,
allowing a certain reallocation of communication resources to
applications. In this paper, we describe the design of such a
reconfigurable communication middleware and demonstrate its
function with an implementation using industry-strength FlexRay
design tools.

I. INTRODUCTION

In modern vehicles, increasingly more complicated software
applications are developed to help control the vehicle, assist
the driver and offer more comfortable driving experience. This
development has led to an increase in the scale and complexity
of the Electrical/Electronic architecture, and also imposes
more load on the existing communication buses. As the com-
munication resources have become more scarce and valuable,
an efficient utilization of the bandwidth has become a problem
of great interest. Furthermore an application can sometimes
run in different operation modes, offering different levels of
performance. Each mode may be characterized by a different
algorithm or sampling period of tasks, data size, period of
the messages sent over communication bus, etc.. An example
of this is a control application (e.g., engine control), where
different environment conditions or driving patterns might
require different modes. If a vehicle runs in a difficult terrain
like paths on a mountain, it requires a better performance
compared to driving on a city street with moderate speed,
thus requiring better control and more data sent on the in-
vehicle network. Another example can be an object detection
and collision warning driver assistance system. If the vehicle
is driving at lower speed, the safe distance could be shorter, in
which case less data needs to be processed and communicated.
A safe design paradigm for this case is over-provisioning of
resources for the applications so that they always have enough
resources to run in the most demanding mode. However, there
can be a waste of valuable computation and communication

Fig. 1: The proposed communication middleware.

resources whenever the applications are not required to run
in the best possible mode. Moreover, it is difficult in this
case to accommodate Plug-and-Play applications, i.e., new
applications deployed onto the vehicle while it is in use,
which is an emerging trend in the automotive domain. In
addition, in the automotive context, the case of inadequate
communication resources is more likely to happen, due to the
constantly increasing number of applications and size of data.
In this case, a likely scenario is that not all applications can
run simultaneously in their best mode. Thus the ability of the
system to allow resource sharing so that the applications can
switch between different operation modes at run time is quite
important. However, to enable this, a certain flexibility of the
system is necessary. Furthermore, the support for future Plug-
and-Play ability of the vehicles also requires some flexibility
and scalability of the underlying embedded system. But the
design and implementation of current automotive bus systems
does not allow much flexibility. Let us consider FlexRay for
example, which is a typical automotive communication bus
system usually used for the safety critical applications. The
FlexRay clusters are often designed and configured offline and
there is little room for an online reconfiguration of the system
on the protocol level.

Towards addressing this problem, in this paper we propose
a communication middleware for FlexRay-based distributed
embedded systems, enabling a certain reallocation of the
communication resources within an ECU. In this middleware,
we introduce a data mapping component that casts messages
of applications into FlexRay frames with a specific schedule
based on a configuration. We use additional software
components to synthesize the configuration of both the
application mode and the data mapping in order to deploy the
new configuration and to safely reconfigure the system. This
communication middleware will enable a reconfiguration of
the communication on a FlexRay bus and facilitate the online
change of application modes and activation of newly deployed

applications. The experimental results have shown that the
proposed middleware can be implemented in a FlexRay based
ECU system using a commercial off-the-shelf tool-chain.

Related work: Mundhenk et al. [1] have introduced a
virtual event-triggered communication layer on top of a
time-triggered communication infrastructure to flexibly
schedule policy-based messages. At run-time, event-triggered
messages with assigned priorities are sorted in the virtual
layer to produce wrapper Protocol Data Units (PDUs) that
fill the entire static slot. However, the message mapping is
based on a pre-defined policy and the change in the period
of messages according to change in mode of applications
has not been considered. For the multi-mode applications,
Phan et al. [2] presented a Mode Change Protocol (MCP)
to express the system behavior during mode transitions
in multi-mode real time systems. Each MCP model is a
finite state automaton, represented as a DAG where each
node captures the system tasks during a mode transition
and each edge specifies a buffer update and a timing/buffer
condition between two intermediate transitional stages. Sha
et al. [3] proposed a mode change protocol supporting mode
changes in the context of common preemptive scheduling
algorithms for periodic tasks. A comprehensive survey of
mode change protocols for real-time systems can be found
in [4]. Also, the construction of multi-mode schedules by
extension of a single mode scheduler has been demonstrated
in [5]. However, these works do not address the problem of
FlexRay communication, while in this work, we focus on
the scheduling at the communication level instead. A method
to reconfigure a FlexRay network in order to increase fault
tolerance has been proposed in [6]. This approach is mainly
targeted at the event of a node failure since it uses redundant
slots in the schedule which again under-utilizes the bandwidth
of communication in normal circumstances, a condition we
aim to improve in the present work.

Our contribution: In this paper we demonstrate a method
that allows reconfiguration of applications and allocation
of communication resources within an ECU. In order to
perform this reconfiguration, we propose a communication
middleware layer between the application layer and the
operating system and communication controller layer. This
middleware layer allows an online calculation of configuration
and deployment of the new configuration on a reconfiguration
request. The calculation involves generation of a feasible
mode combination of the currently running applications along
with new schedules for periodic messages while maximizing
the overall system performance level. Based on the newly
generated configuration, the middleware allows re-mapping
of messages onto underlying static communication resources.

The rest of this paper is organized as follows. In Section II
we present the problem formulation including the architectural
setting we are considering including the FlexRay communica-
tion protocol. The proposed communication middleware layer,
its components and their function are explained in Section III.
Section IV shows the experimental results, where a case study
is used to demonstrate the online reconfiguration of appli-
cations of the proposed middleware using industry-strength
FlexRay desgin tools, before we conclude in Section V.

II. PROBLEM FORMULATION

A. Architectural Setting
In this paper we consider a distributed embedded system

consisting of multiple ECUs connected by a common FlexRay
bus. We denote the set of ECUs as E = {E1, ..., ENe}, where
Ne is the number of ECUs in the system. We assume that
a set of applications are running in the system, denoted by
A = {a1, ..., aNa}. An application ai is a collection of tasks
and messages that performs an independent function. The tasks
in an application can be mapped on different ECUs and the
data between them are sent on the FlexRay bus as messages.

We denote a task as τj and the set of tasks belonging to an
application ai as Ti. A message contains the actual data that
needs to be sent on the communication medium. It can be
characterized by a tuple mj = (wj , pj ,Θj), where wj and pj
denote respectively the data size per message and the period at
which the message needs to be sent. Θj represent the FlexRay
schedule for the message, which will be explained later. Here
we differentiate between a message and a frame. A message
is a certain amount of raw data that needs to be packed into
a FlexRay frame to be transmitted on the bus.

An application can have different pre-programmed opera-
tion modes. Each mode is a customization of the application,
offering a different level of functional performance. Depending
on the performance to provide, it could require different
amount of data to be sent on the bus. This variation could lie
in the data size or the period of the message. Furthermore, the
tasks of the application might also have a different period or
algorithm implementation for a different mode. An application
mode is also associated with a specific performance value,
where usually a higher performance value requires more
resources i.e. more data size per message and (or) greater
sending frequency. This performance value is usually specified
by the application designer and can possibly be derived from
the characteristics of the tasks and messages. Here we char-
acterize an application as ai(αi) = (Ti(αi),Mi(αi), Ji(αi)),
where αi ∈ Gi denotes the mode and Gi is the set of pre-
defined operation modes of the application ai. Ti and Mi

denote respectively the set of all the tasks and messages in the
application. Ji ∈ Ji is the corresponding performance value of
mode αi. We can reasonably assume that all characteristics of
Ti andMi as well as Ji for all modes are known beforehand,
which is provided by the application designer and stored in the
manifest of the application in the ECUs that the application is
mapped on. In terms of Mi, the corresponding requirements
of data size and period should be specified.

B. FlexRay Communication Protocol
FlexRay [7] is a communication protocol commonly found

in the automotive domain and is suitable for safety critical
application clusters. As a hybrid protocol, it offers both
time-triggered and event-triggered communication services.
FlexRay is organized as a series of periodic communication
cycles, which we denote here as Tbus. Each cycle has two
major components, the static segment (ST) and the dynamic
segment (DYN), where the time-triggered and event-triggered
mechanisms are respectively applied. Every 64 communication
cycles constitute a periodic sequence of bus cycles, as shown
in Fig. 2. The static segment of a communication cycle follows
the TDMA approach, where the whole segment is partitioned
into a number of static slots of equal length ∆. We denote the
static slots in a communication cycle as SST = {1, ..., SLs}.

cycle

slot
0

1

2

3

4

5

62

63

. .
 .

1 2 3 4 5 6 7 8 9

ST DYN

Communication Cycle

Fig. 2: An Example of FlexRay schedules: Θ1 = (2, 0, 2),
Θ2 = (4, 1, 4), Θ3 = (9, 1, 2).

A frame can be assigned to one static slot. It does not matter
whether there is data to be sent or not in a communication
cycle, the static slot will always be occupied. The dynamic
segment employs the Flexible-TDMA (FTDMA) approach. In
the context of this paper, we only consider the case where data
are sent on the static segment.

Here we can divide the concept of a communication sched-
ule for FlexRay into two different layers. Schedule on the
communication layer, or protocol layer represents the actual
timing when the FlexRay frame is sent on the bus, i.e., the slot
where the frame is assigned to. Schedule on the application
layer represents the mapping of messages onto frames. The
schedule on the two layers together constitute the schedule
of a message. Here we first define the FlexRay schedule
on the communication layer. As explained above, FlexRay
is organized as a periodic sequence of 64 communication
cycles, with each communication cycle indexed by a cycle
counter. The cycle counter increments from 0 to 63 and is
then reset to 0. Therefore to fully characterize a FlexRay
schedule on the communication layer, we can define a schedule
as Θi = (Si, Bi, Ri), where Si represents the slot number, Ri

represents the repetition rate and Bi represents the base cycle.
The repetition rate is the number of communication cycles
that has to elapse between two consecutive transmission of
the frame and can take the value Ri ∈ {2n|n ∈ {0, ..., 6}}.
The base cycle indicates the cycle offset in the 64 cycles.
Fig. 2 shows an example of FlexRay schedules. Multiple slots
can be assigned to a specific ECU and additionally a slot can
have multiple FlexRay schedules through slot multiplexing.
On the application layer, a message needs to be packed into
FlexRay frames, which is essentially a mapping of messages
on FlexRay schedules.

C. Constrained Communication Resources

In an automotive setting, we often face a case of constrained
communication resources, where a common bus is shared by
many ECUs. This is especially true in the case of a FlexRay-
based system, where during the incremental design a FlexRay
cluster configuration is often inherited from previous designs
while more ECUs and applications are mapped onto the sys-
tem. Therefore, over-provisioning communication resources
for applications is not an efficient design paradigm. In this
paper, we consider the case that for a specific ECU Ei, a
set of static slots Sj ∈ S(Ei) are already assigned. We try

to reallocate the underlying static communication resources
available to the applications at run time.

Note that the requirement for computation resource often
also varies with application modes. For example, if an ap-
plication switches to different modes, the task period, the
execution time and schedules can also change. This problem
of task scheduling in the case of multi-mode applications is
fortunately well studied, as mentioned in the related work [2],
[3], [4], [5]. In this paper, we assume the scheduling problem
at the task-level can be solved by existing methods and focus
on the scheduling at the communication level instead.

III. PROPOSED COMMUNICATION MIDDLEWARE

A. Motivational Example
Let us illustrate the problem with a concrete example.

Consider the case of a subsystem consisting of two ECUs, E1

and E2, which is a part of a whole ECU network. There are
currently applications a1, a2 and a3 partitioned and mapped on
both ECUs. Each application has one task mapped on E1 and
a following task mapped on E2. Periodic messages m1, m2

and m3 are sent from E1 to E2. The application manifest for
messages is shown in Table I. Let us assume that the duration
of one communication cycle of the FlexRay bus is Tbus and
a static slot can accommodate a maximal payload of 8 bytes.
Two static slots S1 and S2 are assigned to E1.

We have a case of a constrained communication resources
here, since the available static slots assigned can not accom-
modate all three applications to operate in their best mode,
i.e., mode 1. Therefore, some of the applications can only
run in modes with lower performance. Assume the overall
performance value of the system is a weighted sum of the
performance values of all applications with equal weights,
Table II shows some combination of modes with better overall
performance values. In the conventional design, one of these
combinations is statically configured and the system can only
run as such. For example, if we choose combination 1 here,
then it is not possible for application a3 to switch to mode
1 at run time. Even when the ECU allows the tasks of the
applications to switch at runtime, no sufficient communica-
tion resources can be allocated. The only way is to over-
provision the communication resources to accommodate all
the applications in their best mode. But if it is not necessary
for applications to run in the best mode, this will be a waste
of valuable communication resources. Consider a second case,
where three applications are running in the system and a fourth
application a4 is deployed on E1 and E2. The application can
not be activated since there is no communication resources
assigned to it and the application will not be able to transmit
any data on the bus, even though it is theoretically possible
to map the message of a4 on top of combination 1. In this
case, even over-provisioning does not help since it may not
be possible to know at design time the manifest of the new
application and the system will not be able to transmit the data
due to lack of necessary configuration of the extra message.

To enable the mode switch of the applications and accom-
modation of messages of new applications on the FlexRay
bus at runtime, we need more flexibility in the FlexRay
communication to allow a certain degree of reallocation of
communication resources at runtime. A clear interface to the
applications is also important so that a newly developed appli-
cation just needs a manifest for the FlexRay communication
to reconfigure to accommodate the new messages.

a1 a2 a3 a4
α1 w1 p1 J1 α2 w2 p2 J2 α3 w3 p3 J3 α4 w4 p4 J4
1 8 Tbus 100 1 4 2Tbus 100 1 8 Tbus 100 1 4 2Tbus 100
2 4 Tbus 80 2 4 4Tbus 80 2 4 Tbus 80 Off 0
3 4 2Tbus 50 3 4 8Tbus 50 3 4 2Tbus 50
Off 0 Off 0 Off 0

TABLE I: Communication manifest of the applications in the motivational example.

index a1 a2 a3 Joverall index a1 a2 a3 Joverall
1 1 1 2 280 4 2 2 1 260
2 2 1 1 280 5 1 1 3 250
3 1 2 2 260 6 3 1 1 250

TABLE II: Combination of application modes with better
performance levels.

B. Software Architecture

In this paper, we propose a communication middleware
architecture that enables online reconfiguration of FlexRay
communication. As shown in Fig. 1, the proposed middleware
consists mainly of five software components: (i) data mapping,
(ii) state management, (iii) deployment management, (iv) re-
configuration request and (v) configuration calculation.

Before describing each software component, we first explain
the concept of configuration considered in this paper. We
divide the configuration of the system into two parts. The first
part is the configuration of applications, which is essentially
a list of active applications and their operating modes. This
can be characterized by a set Ca = {αi|ai ∈ A}, where A is
the set of applications considered. Based on αi, application ai
can adjust, for example, the algorithms and the schedules of
the tasks and the amount of data that needs to be transmitted.
The second part is the configuration for data mapping, i.e.,
it decides which message is packed into a frame with a
specific FlexRay schedule. We denote this configuration as
Cc = {Mi|ai ∈ A}. For each message mj ∈ Mi involved,
a mapping mj → Θj is obtained. The data size wj and
period pj are obtained from the manifest and the mode of
the applications. The configuration Cc can also be seen as a
lookup table for data mapping.

The data mapping component is responsible for mapping
messages of different applications to the available FlexRay
slots. The state management takes care of the safe state
transition of the whole system in the re-configuration process.
The deployment management component deploys the new
configuration to the relevant software components and man-
ages the reconfiguration of the applications and the mapping
component. The reconfiguration request component negotiates
the reconfiguration request and sends it to the configuration
calculation component, which calculates the suitable new
configuration and passes it onto the deployment management
module. The interfaces and interaction between the compo-
nents are shown in Fig. 3. When there is no reconfiguration
request, the applications and data mapping component work
normally based on an available configuration.

C. Data Mapping

The data mapping component maps application data into
the corresponding FlexRay slot according to the configuration
Cc. On the sender side, it packs the messages into the
slots and on the receiver side it retrieves the messages and
passes them onto the corresponding application tasks. We
consider a set of static slots Si assigned to ECU Ei. For
each Sj ∈ Si, there could be multiple FlexRay schedules

Applications

Data
Mapping

Deployment
Management

State
Management

Configuration
Calculator

Reconfiguration
Request

reconfigurable part

FlexRay Communication Controller

enable
configure

new
configuration

new configuration
ready

request
reconfiguration

configure

configure

send receive
configuration

cycle counter

Fig. 3: Interface between the software components.

Header Trailer

Payload

Index field Data field

Sender
ECU

Receiver
ECU

App1 App3 App4

1

m1

Data Mapping

App2

m3 m4

0 1 1 0

Data Mapping

Config

Config

m1 m3 m4 Frame

m1 m3 m4

App1 App3 App4App2

Fig. 4: Data mapping component and the message to frame
mapping.

for the slot depending on the repetition rate and base cycle
of the schedule. In the conventional design paradigm, the
messages are statically mapped to frames, which has a FlexRay
schedule. Therefore, it is not possible to reconfigure the system
when new data or different data are sent. Towards tackling
this problem, in the middleware proposed, we assign a base
schedule Θj,base = (Sj , 0, 1) to each slot and assign a frame
with maximum payload allowed for the slot, i.e., a longest
possible frame is sent every communication cycle on the
slot. The data mapping component is then responsible to cast
the messages into the payload of the frames according to a
mapping table, which can be reconfigured online. In this paper,
we consider the case where every ECU is synchronized to
the FlexRay controller and the FlexRay communication cycle
counter needs to be known to the middleware.

As shown in Fig. 4, the application data are packed into and
unpacked out of the frame by the data mapping component.
The payload of a frame can be divided into two fields, the
index field - which identifies the applications whose data are
packed into the current frame - and the data field - which
holds the actual messages. If the index field is used, the
length of the index field depends on the maximal number of
applications that can be considered. One bit is assigned to
each application. In this case, no configuration Cc needs to
be deployed for a receiver ECU since it can determine which
message is packed into the frame based on the index field and
manifest of the application. Alternatively, the configuration Cc

can be deployed and stored on the receiver ECU, in which case

an index field is not necessary. The mapping component on
the sending side packs the messages of applications into the
frame according to Cc. It sets the index field (if applied) to
indicate the application whose message is contained in this
frame. Then it casts the messages into the data field of the
payload, ordered according to the index of the applications.
To keep the problem simple, if multiple messages are sent
by an application, we put the messages together as a large
single message. On the receiving side, it receives the frame
and reads first the index field to know the messages of which
applications have been sent on the frame. Then it cast the data
field into the messages based on the application manifest and
forward the them to the corresponding applications. Casting
of the data field requires the knowledge of configuration Ca,
which along with the manifest lets the receiver know of the
expected width and type of the incoming data. Note that if
the index field is applied, the configuration Cc is indicated
through the index field and thus does not need to be deployed
on the receiving side. Alternatively the configuration Cc can
first be deployed on the receiving side and the data mapping
component can then cast the payload into messages according
to Cc. In that case, an index field is not necessary. Here we
only described the sending and receiving side behavior of
the data mapping component. If an ECU is simultaneously
a sender and a receiver, the data mapping component will
contain the function of both sides.

D. Configuration Deployment
The configuration deployment management component is

responsible for the deployment of the configuration. Its func-
tion can be divided into two phases: (i) sending the config-
uration to all relevant ECUs and (ii) actual reconfiguration
of the application tasks and the data mapping component of
the middleware. For phase (i), we introduce an additional
configuration deployment application acd, which is associated
with a message mcd, which will be broadcast from the ECU
hosting the configuration calculator to all the relevant ECUs.
This message contains Ca and Cc, which can be cast into
a specific data type, possibly a bit stream. If the message is
longer than the maximal payload allowed, it can be segmented
and transmitted on multiple frames and a signal is introduced
to specify the start and end of the configuration transmission.
This message can be mapped on a reserved static slot with
any valid repetition rate and can also share a slot with other
messages using slot multiplexing. Once the ECUs receive the
configuration Ca and Cc (if Cc is necessary), it is stored and
the ECUs wait for the synchronized reconfiguration time point.
Until then, the ECUs continue the communication according to
the previous configuration. Once they reach the reconfiguration
time point, i.e., in phase (ii), applications are switched to
the new Ca, the current configuration at the data mapping
component is overwritten with new Cc and the ECUs resume
their communication according to the new configuration.

E. State Transition
In order to ensure safe functioning of the applications, espe-

cially during reconfiguration, we propose a state management
component to monitor and control the states of the whole
system. The whole system can be described by one of the
following states:
• Normal Operation (NO): The whole system runs nor-

mally with current configuration deployed both for the

Normal
Operation

Configuration
Calculation

Configuration
Deployment

Wait for
Reconfiguration

reconfiguration
request

reconfiguration finished

configuration
deployment

finished

new
configuration

ready

request
denial

Fig. 5: State transition diagram.

… … … … … … …

K - 1 K K + m K + m + 1

reconfiguration
request

new
configuration
ready

configuration
deployment

ready

reconfiguration
finished

NO CC CD WR NO

old config new config

system
state

config
applied

actions

Fig. 6: Timing diagram for state transition.

applications and the middleware layer. No reconfiguration
request has been made.

• Configuration Calculation (CC): A reconfiguration re-
quest has been triggered by a certain event and sent to
the configuration calculator. The calculator is currently
synthesizing the new configuration. The applications and
the data mapping component run normally with current
configuration.

• Configuration Deployment: (CD): A valid new con-
figuration has been calculated and passed on to the
deployment management components of the relevant
ECUs. During configuration deployment, the applications
and mapping component function according to the old
configuration.

• Wait for Reconfiguration (WR): The deployment man-
ager of all relevant ECUs now hold the new valid con-
figuration. All ECUs waits for the time point to perform
a synchronized reconfiguration.

Fig. 5 demonstrates the state transition diagram where the
transitions are labeled by actions triggering a change of state.
Fig. 6 shows the state transition during a reconfiguration
process aligned with the FlexRay communication cycles. As
already mentioned, we consider the case where each ECU is
synchronized to the FlexRay controller and the middleware can
thus obtain the FlexRay cycle counter. Once a reconfiguration
request is triggered, the configuration calculator takes the
request and starts to calculate a valid new configuration. The
process of synthesizing this new configuration may take a
considerable amount of time, much larger compared to the
FlexRay communication cycles. Let us assume that a new
configuration is synthesized and available sometime in the
(K−1)th 64-cycle sequence. Then the ECU where the calcu-
lator is mapped will start transmitting the new configuration as
a message to all relevant ECUs from the Kth sequence. We
consider the case where m sequences are necessary for the
transmission of the full configuration. Once this transmission
is finished, the system waits for the (K + m)th sequence to
finish. At the beginning of the (K + m + 1)th sequence of
64-cycle, all relevant ECUs will simultaneously use the new
configuration and the whole system goes into the (NO) state.

F. Reconfiguration Request
There could be multiple reasons for a reconfiguration re-

quest. One example is that a newly installed application or an
inactive application needs to be activated online and therefore
the system needs to allocate communication resources online.
Conversely, a currently active application can be switched
off and the resources can be utilized by other applications
to achieve better performance. Another example is that a
currently active application needs to be switched to a mode
offering higher performance. In all such cases, an event would
trigger the reconfiguration request manager to send a request
to the configuration calculator and the calculator will then
start synthesizing the new configuration based on the request
and the manifest of the applications. Such a request contains
information about which applications should be active, and the
requested mode, if an application is requested to switch to a
specific mode.

G. Configuration Calculation
The configuration calculator is a software component that

computes the configuration Ca and Cc using a mathematical
model of the mapping problem. Once the calculator receives
the request for a reconfiguration, it will start computing the
configuration according to the request and the application
manifest. If a new valid configuration is obtained, it will pass
this to the deployment management component and deploy
the new configuration. If the new configuration is identical
to the old one or no valid configuration can be obtained,
no reconfiguration process will take place. This component
can be implemented as a task which can be mapped on any
ECU, provided the ECU can accommodate the transmission
of the configuration. But this task usually takes much longer
than application tasks and can last for a number of FlexRay
communication cycles or application periods. Depending on
the operating system used (e.g., an non-preemptive operating
system), complications may arise when this task interferes
with other application tasks. In that case, the configuration
calculator can be mapped on a separate ECU.

Mathematical modeling: Since the mapping of messages
to communication resources is independent for each ECU, the
whole problem can be divided into subproblems for each sin-
gle sending ECU. Without loss of generality, we describe only
the modeling of the problem for a specific ECU. We consider
that a set of applications ai ∈ A are sending messages. Then
Ca can be defined as Ca = {αi|ai ∈ A}. As discussed in
the subsection of data mapping, we put all messages of one
application together into a large message, Cc can be defined
as Cc = {mi(αi)|ai ∈ A}, where mi = (wi, pi, (Si, Bi, Ri)).
Since pi can be reasonably assumed to be a multiple of the
communication cycle, so pi = RiTbus. Therefore we can
simplify the Cc into Cc = {wi, Si, Bi, Ri}. Additionally, wi

and pi (thus Ri) will be obtained from manifest once αi

is known. The input of the problem include (i) underlying
communication resources, i.e., Sj ∈ S , where S denotes
the set of static slots assigned to the ECU, (ii) the active
applications and the requested mode if any, (iii) the application
manifest. This problem can be solved using either an Integer
Linear Programming (ILP) formulation or a simple linear
search method.

ILP formulation: The problem of an ILP formulation to
pack messages in to FlexRay slots is a well-studied subject.
[8] has transformed this problem into a bin packing problem

and provided an ILP formulation for it. However, here we need
to consider the case of multi-mode problem, where the data
size and repetition rate of messages depend on the mode and
thus is difficult for linear formulation. Therefore we divide
the problem into two layers. In the upper layer, we traverse
possible mode combinations, which are determined by the
active applications and mode request. Here we consider a set
of mode combinations, where the kth mode combination can
be represented as Ca,k = {αi}k ∈ Ca. The corresponding
data width {wi}k, repetition rate {Ri}k and performance value
{Ji}k can be obtained from the manifest. We consider the total
performance of a mode combination to be Jtotal,k =

∑
λiJi,

where λi is the weight of ai. In the lower layer, for each mode
combination, we will use the bin-packing problem according
to [8] to solve for feasible schedules. The lower layer ILP
problem can be formulated as follows. The size of a bin is
the same as the size of one static slot: W × H , where W
is the payload length of a slot and H = 64 is the number of
communication cycles in a sequence. The transformation from
slot-packing to a bin-packing problem [8] converts a message
mi into a rectangular element of size hiwi. The height of
each message is related to the repetition rate as: hi = H/Ri.
If yi is the offset of this message on the y-axis of the bin,
the level of the message is given by li = yi/hi. In contrast
to a common bin packing problem, the above transformation
has some additional constraints: height of all elements are a
power of two, height of the bin is at least the maximal height
of all elements and each element can be placed only on a
multiple of its height on the y-axis, i.e., yi = lihi. A set of
binary variables {γi,s,l} denoting mi is mapped on slot s and
at level l are introduced. The constraints of the problem can
be formulated as

∀ai ∈ A,
∑

s∈S,l∈{0,...,Ri−1}

γi,s,l = 1 (1)

∀s ∈ S, y ∈ {0, ...,H − 1}
∑
ai∈A

wiγi,s,
⌊

y
hi

⌋ ≤W (2)

where constraint (1) forces each message to occur exactly once
among all bins (static slots) and constraint (2) ensures that each
bin is not overloaded. Here, instead of minimizing the slots
used, we only need a feasible schedule. If a feasible schedule
for the kth mode combination exists, the solver will return
values of slot Si and level li for each message and Bi can be
obtained from li. If the kth mode combination does not allow
a feasible schedule, the corresponding performance value is
set to zero, i.e., Jtotal,k = 0. The mode combination Ca with
highest performance and its corresponding Cc is returned as
the output of this component.

Linear search: Alternatively, the lower layer ILP formula-
tion can be replaced by a linear search method, where for
each possible mode combination, the values of Si and Bi is
generated and checked for compliance with the constraints
and the combination is considered feasible if a valid Cc =
{wi, Si, Bi, Ri} can be obtained.

It should be mentioned that in both cases the computation
time will increase greatly as the size of the problem increases.
However, as mentioned above, this packing problem is well-
studied and more efficient algorithm to solve this problem and
the optimization of the computation time is not the focus of
this paper.

a1 a2 a3 a4
α1 w1 p1 J1 α2 w2 p2 J2 α4 w3 p3 J3 α4 w4 p4 J4
1 16 Tbus 100 1 8 Tbus 100 1 16 Tbus 100 1 8 Tbus 100
2 16 2Tbus 50 2 8 2Tbus 56 2 8 Tbus 50 2 8 2Tbus 56
3 8 2Tbus 25 3 8 4Tbus 34 3 4 Tbus 25 3 8 4Tbus 34
Off 0 Off 0 Off 0 Off 0

TABLE III: Communication manifest of the applications in the case study.

IV. EXPERIMENTAL RESULTS

A. Case Study
In this section, we use a case study to demonstrate the

communication middleware proposed in this paper. We first
explain the system setup, how the performance values can
be obtained and then a series of steps of reconfiguration
requests to be triggered. In the case study, we consider a
synthetic system consisting of four applications a1 to a4
mapped on two ECUs, E1 and E2. Each application has three
different modes. Table III shows the communication manifest
of the applications, containing the data size per message in
bytes, message period and the performance value for each
mode. All messages are sent from E1 to E2. We consider
equal weights for performance values of all applications. If
multiple mode combinations have the best performance, the
calculator chooses one of them. FlexRay is configured to have
a communication cycle of Tbus = 10ms. Two static slots with
a maximal payload of 16 bytes, represented here as s1 and s2,
are assigned to E1 statically.

Performance: The performance value of each mode should
be specified by the application designer. Here we illustrate how
a set of performance values can be obtained. We consider in
this case application a2 and a4 as control applications and
application a1 and a3 as realtime applications. The perfor-
mance for control applications is measured by the control
performance and we assume that the performance of the
realtime applications are directly proportional to the average
amount of data transmitted per FlexRay communication cycle.
Then we normalize the performance according to a scale
of 100. For the control applications we consider a feedback
control system with one sampling period delay. The discrete
control system with one sample delay can be represented as

x[k + 1] = Ax[k] +Bu[k], (3)
where x[k] is the feedback states of the plant and u[k] =
Kx[k − 1] + Fr is the control input for one sample delay.
Here r is the reference value, K and F are respectively the
feedback and feed forward gain. y[k] = Cx[k] represents
the output. Here we consider the integral square error as the
control performance, which can be represented as [9]

J =
∑
||y[k]− r||2. (4)

The reciprocal of this performance is taken to represent the
performance of the control applications. Here we use a DC
motor speed control plant model in the case of step response
to reference r. The control gains are designed using the method
discussed in [10]. We assume that the sensor task is mapped on
one ECU while the controller and actuator tasks are mapped on
the other. The sensor data are transmitted on the FlexRay bus.
For each sampling period, we find a set of gains that optimizes
the performance. The performance of each application with
respect to the mode obtained through simulation is shown in
Fig. 7. In the experiment we will use these performance values.

Reconfiguration requests: Here we demonstrate the function
of the proposed middleware by injecting a series of pre-

Modes
1 2 3 0ff

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

0

20

40

60

80

100
Perf of a

2
, a

4

Perf of a
1
, a

3

Fig. 7: Performance of the applications for all modes.

programmed reconfiguration requests, as shown in Table IV,
and show the results of the reconfiguration.

B. Hardware Implementation
The case study is implemented in a hardware system using

three EB6120 ECUs [11]. Here we use two ECUs to serve
as E1 and E2. Since we use a non-preemptive operating
system, in order to prevent interference on the schedules of
application tasks on E1 and E2, the configuration calculator
is mapped on an extra ECU E3. The software including
a prototype of the proposed communication middleware, is
developed using a COTS tool chain - Matlab/Simulink and
SIMTOOLS/SIMTARGET toolbox [12]. In this tool chain,
software for application tasks are developed using Simulink
blocks and the SIMTOOLS/SIMTARGET toolbox is used
to provide interfaces between the application software and
the underlying operating system and the FlexRay communi-
cation. These interfaces include the schedules of tasks, the
mapping of signals onto FlexRay frames, etc.. The FlexRay
communication is configured using the SIMTOOLS blocks.
Then SIMTARGET is used to generate binary files for the
ECUs from the Simulink models. The middleware for the case
study is implemented with Simulink blocks including Matlab
embedded function blocks. The configuration calculator is
implemented according to the linear search method and for
the framing in the data mapping component, we adopted the
alternative without the index field.

C. Results and Discussions
Table IV shows the reconfiguration of the system according

to the series of request steps. The performance values of
applications for each step are shown in Fig. 8. From this
table and figure, we can observe the application mode switch
in the whole series of reconfiguration steps. From step 1 to
step 3, a1 to a3 are incrementally switched on. In step 1 and
step 2, the assigned slots can accommodate the applications
in their best mode and the overall performance value rises.
In step 3, when a3 is switched on, not all applications can
run in their best mode due to inadequate resources. Therefore
the configuration calculator has synthesized a configuration
placing a1, a2 and a3 respectively in modes 1, 1 and 2.

Steps Request a1 a2 a3 a4 System
α {S,B,R} J α {S,B,R} J α {S,B,R} J α {S,B,R} J Jtotal Javg.

0 off 0 off 0 off 0 off 0 0 0
1 a1 → on 1 {s1, 0, 1} 100 off 0 off 0 off 0 100 100
2 a2 → on 1 {s2, 0, 1} 100 1 {s1, 0, 1} 100 off 0 off 0 200 100
3 a3 → on 1 {s2, 0, 1} 100 1 {s1, 0, 1} 100 2 {s1, 0, 1} 50 off 0 250 83
4 α3 → 1 3 {s2, 0, 2} 25 1 {s2, 0, 1} 100 1 {s1, 0, 1} 100 off 0 225 75
5 a4 → on 3 {s1, 1, 2} 25 1 {s1, 0, 1} 100 1 {s2, 0, 1} 100 2 {s1, 0, 2} 56 281 70
6 α4 → 1 3 {s1, 1, 2} 25 2 {s1, 0, 2} 56 1 {s2, 0, 1} 100 1 {s1, 0, 1} 100 281 70
7 a3 → off 1 {s2, 0, 1} 100 1 {s1, 0, 1} 100 off 0 1 {s1, 0, 1} 100 300 100
8 a3 → on 3 {s1, 1, 2} 25 1 {s1, 0, 1} 100 1 {s2, 0, 1} 100 2 {s1, 0, 2} 56 281 70

TABLE IV: Synthesized configuration and performance values for the reconfiguration request steps in the case study.

In step 4, a3 is forced to run in mode 1, and taking this
into account, a1 is switched down to mode 3 to release
resources for a3. Note that in this case, the overall performance
value drops from 250 in step 3 to 225. This is because the
configuration synthesized here is not the one with the best
overall performance, since it is constrained that a3 has to run
in mode 1. Then when additionally a4 is activated and the
condition for a3 is removed, the whole system switched to a
case where the four applications run respectively in mode 3,
1, 1, 2, which offers the best overall performance value when
all 4 applications are active. Similar to step 4, in step 6, a4 is
forced to run in mode 1, and to reallocate the communication
resources for this, a2 is switched down to a mode with lower
performance. Step 7 demonstrates the behavior of the system
when an application is deactivated. When a3 is switched off,
the rest of the applications would be able to switch to their best
mode. Note that here the overall performance is better than in
step 5 and step 6. This is because such a mode combination
is not available for step 5 and 6, since there all 4 applications
need to be active. In the final step, when a3 is switched on
again, the whole system returns to the configuration in step 5,
where the requirement is identical. Fig. 9 shows the average
time taken on hardware to calculate the configuration for each
reconfiguration step based on our implementation. Step 5 and
8 takes considerably longer because the the calculator has to
go through all combinations of 4 applications. But it can be
observed that the configuration can be calculated online within
a reasonable amount of time for all steps in the case study.

In this case study, the communication resources available
for the four applications are not sufficient for all applications
to run in their best mode. From the experimental results, we
can see that the proposed communication middleware can
be reconfigured to reallocate the communication resources
within an ECU to enable resource sharing between multi-
mode applications in a FlexRay-based distributed system at
runtime. The configuration can be synthesized and deployed
according to a request and optimize the overall performance
while complying to the constraints specified in the request.

V. CONCLUDING REMARKS

This paper demonstrates a middleware layer and its im-
plementation using commercial tools, that allow a dynamic
reconfiguration of applications whose messages are scheduled
on the static segment of FlexRay. Future work may generalize
this idea by extending the middleware layer to accommodate
scheduling of application data on the underlying bus following
any communication protocol. This will allow selection of the
type of communication medium used by an application at run-
time, which will increase the fault-tolerance of the medium
along with better optimization of the performance of appli-
cations. Furthermore, we would explore more computational
efficient algorithms for the online configuration calculation.

Reconfiguration steps
Init 1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

0

50

100

150

200

250

300

350

400
Perf a

1

Perf a
2

Perf a
3

Perf a
4

Perf total
Perf avg.

Fig. 8: Performance value of each application and the overall
performance in all reconfiguration steps.

Reconfiguration Steps
1 2 3 4 5 6 7 8

C
al

cu
la

ti
o

n

 T
im

e[
m

s]

0

5

10

15

20

Fig. 9: Average time for configuration calculation on hardware
for all reconfiguration steps.

REFERENCES

[1] P. Mundhenk, F. Sagstetter, S. Steinhorst, M. Lukasiewycz, and
S. Chakraborty, “Policy-based message scheduling using flexray,” in
CODES+ISSS, 2014, pp. 1–10.

[2] L. T. Phan, I. Lee, and O. Sokolsky, “A semantic framework for mode
change protocols,” in RTAS, 2011, pp. 91–100.

[3] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode change
protocols for priority-driven preemptive scheduling,” Real-Time Systems,
vol. 1, no. 3, pp. 243–264, 1989.

[4] J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,” Real-time systems, vol. 26, no. 2, pp.
161–197, 2004.

[5] G. Fohler, “Changing operational modes in the context of pre run-time
scheduling,” IEICE Transactions on Information and Systems, vol. 76,
no. 11, pp. 1333–1340, 1993.

[6] K. Klobedanz, A. Koenig, and W. Mueller, “A reconfiguration approach
for fault-tolerant flexray networks,” in DATE, 2011, pp. 1–6.

[7] “Flexray communications system protocol specification, version 2.1,”
www. flexray. com, 2005.

[8] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “Flexray schedule
optimization of the static segment,” in CODES+ISSS, 2009, pp. 363–
372.

[9] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and
S. Chakraborty, “Constraint-driven synthesis and tool-support for
flexray-based automotive control systems,” in CODES+ISSS, 2011, pp.
139–148.

[10] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay
constraints in distributed embedded controllers,” IEEE Trans. Contr. Sys.
Techn., vol. 22, no. 6, pp. 2337–2345, 2014.

[11] Elektrobit. www.elektrobit.com.
[12] SIMTOOLS/SIMTARGET. www.simtools.at.

