

• If the open-loop system A is unstable, the system (5) is
exponentially stable for

1

1− γ1/γ2
< r ≤ 1 (7)

where r is the rate of meeting deadline over infinite horizon
and

γ1 = lnλ2
max(A1), γ2 = lnλ2

max(A),

where λmax denotes the eigenvalue of the corresponding
matrix with the maximum absolute value. The above theory
holds for any value of l in (5). For example, suppose
we obtain r = 0.1 for a given choice of parameters in
(5). With l = 1000, the above theorem implies that any
100 samples are allowed to violate their deadlines with
guaranteed exponential stability. On one hand, the above
condition is very relaxed and generic enough to be applied
to any system. On the other hand, such a condition is
not suitable for analyzing performance-critical applications
since it does not guarantee any performance (e.g., guarantee
on settling time). Further, the control law (6) is realizable
if the worst-case delay of a feedback loop is bounded by
one sampling interval. As already mentioned, it might be
complex and over pessimistic to design an architecture with
worst-case delay estimation.

A relatively more structured requirement on stability was
introduced in [16] where the systems are required to be
stable with a desired stability margin. As discussed, not all
feedback messages suffers the worst-case delay. With this
observation, a deadline or threshold delay dth (lesser than the
worst-case delay) is chosen such that it is met by the most of
the feedback messages. For example, one can choose dth = h
in the case shown in Fig. 3(b). The control requirement is
then represented as delay frequency metric which is defined
as follows.

Definition 1 (Delay frequency metric (dth, n)). If every
feedback message with delay larger than dth is followed by
at least n feedback messages with delay no more than dth,
the delay frequency metric is said to be (dth, n).

For the delay frequency metric with n = 3, every sample
that violates deadline (which has a system matrix A) is
followed by at least three samples (which have system
matrix Ac) where deadline is respected. Hence, the overall
system can be represented as follows,

x[k + 2 + ni + nj] = AAni
c ×AAnj

c x[k], (8)

where ni, nj ≥ 3. The stability is assured with a given sta-
bility margin by showing the existence of common quadratic
Lyapunov function (CQLF) [17] between systems AAni

c and
AAni

c for all combinations of ni and nj .

B. Performance-based requirements

In a flurry of recent works [13], [14], [15], the control
requirements are specified using a notion of exponential
stability,

‖x[k + l]‖

‖x[k]‖
< ǫ, (9)

where ‖.‖ denotes 2-norm. That is, to ensure that the plant
remains exponentially stable, any error must be reduced by at
least by a factor of ǫ in l sampling periods, i.e., l × h time.

For example, l = 5, ǫ = 0.75 means that any error signal
must be reduced by at least 25% in five samples to maintain
exponential stability of the system. It should be noted that the
above notion of exponential stability is stronger compared to
its definition found in control theory literature [18].

Coming back to the control requirement on exponential
stability (9) and considering the closed-loop system (5), we
obtain the following relation,

xk+l = Aσk+l
· · ·Aσk

xk,

⇒
‖xk+l‖

‖xk‖
≤

∥

∥Aσk+l
· · ·Aσk

∥

∥

⇒
∥

∥Aσk+l
· · ·Aσk

∥

∥ < ǫ. (10)

In other words, the exponential stability requirement can be
re-written as follows (see [14], [13], [15]),

ES(l, ǫ) = {σi ∈ {o, c}ω :
∥

∥Aσk+l
· · ·Aσk+1

∥

∥ < ǫ∀k ∈ N
}

,

which essentially is the language of strings σ over the
alphabet {o, c} corresponding to switching patterns of A and
Ac that ensure that a possible error in the system is reduced
by at least factor ǫ in l sampling periods. The works in [14],
[13] construct a Büchi automaton to represent this language.

Hence, the control requirement on exponential stability
boils down to a set of acceptable patterns of occurrence of
A and Ac that meets the condition (10). The computation
of such a set of acceptable patterns can be done by a brute-
force search as in [14], [13], but it becomes tedious to verify
them pattern-by-pattern. To avoid this, a deadline constrain
is introduced in [15]:

Definition 2 ((f,H)-firm deadline). A stream of control
messages is said to fulfill the (f,H)-firm with respect to
period h if at least f out of any H consecutive samples
meet their deadline.

The idea is that among all possible patterns, one can rule
out all the unacceptable ones by a combination of (f,H)-
firm deadlines. For example, one can evaluate all the patterns
and separate those that do not fulfill ES(5, 0.75) in the
above example. Further, one can exclude all the patterns by
requiring the system to be both (1,2)-firm and (3,5)-firm with
respect to its period. That is, in any two samples at most one
message, and in any five samples at most two messages can
have delay τ > h (Case II in Fig. 3(b)). Therefore, the set
of all acceptable patterns is represented by number of such
(f,H)-soft deadlines where H ≤ l.

V. ARCHITECTURE MODELING AND VERIFICATION

Once the allowable feedback signal drop pattern has been
quantified, the next step is to capture the timing character-
istics or behaviors of the implementation platform, followed
by checking if these behaviors constitute a subset of the
behaviors that may be tolerated by the controller. This then
determines whether the controller may be implemented on
this platform.

A. Timing properties of architectures

Towards characterizing timing behaviors of the architec-
tures, various techniques have been proposed in the real-time
and embedded systems, as well as in the formal methods
literature. Analyzing embedded platforms in the particular
context of implementing distributed controllers have been

S3 S2 S1

FlexRay bus CAN busECU

A3 A2 A1

Fig. 4. Example architecture.

studied in [15], [16]. In [16], the Real-Time Calculus [19]
modeling formalism has been combined with the Uppaal [20]
modeling and verification environment. Real-Time Calculus
relies on specifying upper and lower bounds on the number
of messages that might arrive at a communication resource
over different time interval lengths. Let these be denoted by
αu(∆) and αl(∆) respectively. Similarly, the communication
resource is modeled using upper and lower bounds on the
number of messages it can transmit; let these be denoted
by βu(∆) and βl(∆) respectively. These bounds may then
used to compute the worst-case delays suffered by messages,
in addition to properties like buffer requirements. Exactly
similar techniques also apply to computation (rather than
communication) resources and number of task executions
(rather than messages).

When multiple message streams are to be scheduled on a
communication resource, scheduling or resource arbitration
policies like TDMA, fixed priority or EDF may also be mod-
eled using Real-Time Calculus, where the service bounds
βu(∆) and βl(∆) for the entire resource are transformed
into similar bounds for each message stream (see [19] for
details). Fig. 4 shows an architecture where sensor readings
are transmitted over a FlexRay bus to a controller imple-
mented on the ECU. Control messages are then transmitted
over the CAN bus to actuators. The sensor-to-actuator delay
experienced by the individual messages certainly influence
the stability and QoC of the controller. In order to compute
this end-to-end delay, the service bounds of the individual
architectural components (FlexRay and CAN buses and the
ECU) need to be composed in order to obtain the service
bound of the overall architecture. This is given by:

βend-to-end = βFR ⊗ βECU ⊗ βCAN, (11)

where ⊗ is the convolution operation as defined in Real-
Time Calculus [19]. In order to estimate not only the
maximum delay suffered by control messages, but also
the frequency with which messages violate their deadline
(derived from control-theoretic analysis, as described in the
previous section) constraints, in [16] the service bounds or
timing behaviors of the resource were transformed to a timed
automata model in Uppaal.

A similar technique was adopted in [15], where a com-
munication resource was modeled using a Time-Stamped
Event Count Automata (TS-ECA). An Event Count Automata
(ECA) [21] is given by the tuple

A = (S, sin, X, Vin, Inv, ρ,→) (12)

where

• S is a set of states and sin is the initial state

• X is a set of count variables
• Vin is the initial valuation of the count variables.
• Inv : S → Φ(X) is the Invariant Constraint Function

where

Φ(X) = x ≤ c|x < c|x ≥ c|x > c|ϕ1 ∧ ϕ2

It assigns invariance constraints to the states.
• ρ : S → N × N is the rate function. Every state is

assigned an interval for the arrival or service rate in
that state:

ρ(s) = [l, u]

• →⊂ S × Φ(X)× 2X × S is the transition relation.

The language of ECAs are strings of integers that in our
setting denote the arrival patterns of control messages or
sensor readings. For example, in the case of an arrival ECA,
201... denotes an arrival pattern with two messages arriving
in the first time interval, no messages in the second time
interval and one message in the third interval. In the case
of a service ECA representing a communication resource,
it may denote the number of control messages transmitted
during three consecutive time intervals. It has been shown in
[21] that bounds on message arrivals and resource availability
(i.e., α(∆) and β(∆) respectively) as used in Real-Time
Calculus can also be represented as corresponding ECAs.

A
[0, 1]

B
[0, 1]

C
[0, 0]

x← 0 x ≤ 1 x = 1

x← 0

Fig. 5. Periodic with jitter arrival ECA (p = 3, j = 2)

An ECA starts in the configuration (sin, Vin) – an initial
state and an initial valuation of all the count variables. In the
case of an ECA representing the arrival pattern of a message
stream which is periodic and has some jitter (see Fig. 5), this
corresponds to state A and the only count variable x = 0.

From there the ECA can make moves of the form (s, V)
k
⇒

(s′, V ′). To make such a move, there needs to be a transition
from s to s′ and V ′ = (V +k) has to be in accordance with
the rate intervals of the state (here ρ(A) = [0, 1]), the guards
on the transition (x ≤ 1), and possible invariant conditions
(none in the states of the ECA in Fig. 5). Additionally, some
count variables may have to be reset (such as x when moving
from C to A). Transitions are considered urgent, i.e., they
have to be taken if possible.

A string σ = n1n2 . . . nk ∈ [0, ρmax]
ω is accepted if and

only if the automaton can produce a sequence (s0, V0)
n1⇒

(s1, V1)
n2⇒ (s2, V2) Our example ECA in Fig. 5 accepts

strings that have one event occurring in either state A or B.
This results in a jitter of j = 2 and a period of p = 3. No
events can occur in C and the the guard x = 1 on transition
(B,C) guarantees that it occurred beforehand. For a more
rigorous description of ECA semantics, please refer to [21].

While ECAs as described were augmented with time
stamps in [15] – with the resulting model being referred to
as Time-Stamped Event Count Automata – in order to keep
track of the delays suffered by individual messages.

B. Control/Architecture Co-Verification

As seen in the previous subsections, the timing behav-
iors of an implementation platform or architecture may be
modeled as an automaton. In particular, the language of
such automata – as seen with the example from ECAs –
represent different timing behaviors of the architecture. The
next question that needs to be answered is how can we check
whether these behaviour constitute a subset of the behaviors
that may be tolerated by the controller in order to meet given
stability and QoC constraints?

There are two broad categories of approaches towards this.
The first follows conventional the model checking approach
[22]. Here, the automaton corresponding to the implementa-
tion platform is model-checked to verify whether it violates
any of the acceptable behaviors of the controller (in terms
of feedback signal drop patterns). Such acceptable behav-
iors of the controller were transformed to Linear Temporal
Logic (LTL) formula in [15], followed by checking whether
the TS-ECA corresponding to the architecture satisfies this
formula (using model checking in SAL). [16] avoided the
explicit transformation into LTL but instead used an observer
automaton to check for timing property violations in the
architecture model.

The second category of approaches rely on interface
theories [23], [24]. Here, all possible signal drop patterns that
still satisfy stability and control performance constraints may
be represented as a language, say Lcontroller. Similarly, the
timing behaviors of the implementation platform – capturing
sequences of messages that are delivered within the specified
deadline, as described above – may be represented by the
language Larchitecture. These two languages constitute the
interfaces of the controller and the architecture. Checking the
compatibility of these two interfaces now boil down to the
problem of checking for language inclusion, i.e., whether
Larchitecture ⊆ Lcontroller. Satisfaction of this inclusion
implies that the controller may be implemented on the given
architecture. The work reported in [13], [14] followed this
line of approach, but did not explicitly model the timing
properties of the architecture. It rather characterized the
stability properties of the controller in language-theoretic
terms.

The complexity of the above-mentioned co-verification
problem heavily depends on the exact characterization of
the feedback signal drop patterns that were discussed in
Section IV. The characterization defined by Theorem 1
requires checking the satisfaction of the inequality (7) over
an infinite horizon and hence cannot be realized by an
automaton with finitely many states. On the other hand, the
tighter characterization as defined by inequality (9) – that
takes into account control performance in addition to stability
– requires a check over a bounded horizon and is therefore
easier from the perspective of verification.

VI. CONCLUDING REMARKS

In this paper, we have studied different characterizations of
feedback signal drop patterns in embedded control systems.
We then looked at how the timing behaviors of implemen-
tation architectures can be modeled and finally we briefly
discussed different possibilities of checking whether the
architecture timing behaviors match those allowed by the
controller subject to satisfaction of stability and performance
constrains.

REFERENCES

[1] H. Y. G. C. Walsh and L. G. Bushnell, “Stability analysis of networked
control systems,” IEEE Trans. on Control System Technology, vol. 10,
no. 3, pp. 438–446, 2002.

[2] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” Automatica, vol. 21, p. 8499, 2001.

[3] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The wireless
control network: A new approach for control over networks,” IEEE

Transactions on Automatic Control, vol. 56, no. 10, pp. 2305–2318,
2011.

[4] R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss,
“Compositional modeling and analysis of multi-hop control networks,”
IEEE Transactions on Automatic Control, vol. 56, no. 10, pp. 2345–
2357, 2011.

[5] P. Naghshtabrizi and J. Hespanha, “Analysis of distributed control
systems with shared communication and computation resource,” in
ACC, 2009.

[6] X. Wang and M. Lemmon, “Event-triggering in distributed networked
control systems,” IEEE Transactions on Automatic Control, vol. 56,
no. 3, pp. 586–601, 2011.

[7] S. Tatikonda and S. K. Mitter, “Control under communication con-
straints,” IEEE Trans. Automat. Contr., vol. 49, no. 7, pp. 1056–1068,
2004.

[8] ——, “Control over noisy channels,” IEEE Trans. Automat. Contr.,
vol. 49, no. 7, pp. 1196–1201, 2004.

[9] D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of Cyber-
Physical Systems via controllers with flexible delay constraints,” in
Asia and South Pacific Design Automation Conference (ASP-DAC),
2011.

[10] H. Voit, R. Schneider, D. Goswami, A. Annaswamy, and
S. Chakraborty, “Optimizing hierarchical schedules for improved
control performance,” in International Symposium on Industrial Em-

bedded Systems (SIES), 2010.
[11] S. Samii, P. Eles, Z. Peng, and A. Cervin, “Design optimization and

synthesis of FlexRay parameters for embedded control applications,”
in DELTA, 2011.

[12] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and
S. Chakraborty, “Constraint-driven synthesis and tool-support for
FlexRay-Based automotive control systems,” in International Con-

ference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2011.
[13] R. Alur and G. Weiss, “Regular specifications of resource requirements

for embedded control software,” in IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2008.
[14] G. Weiss and R. Alur, “Automata based interfaces for control and

scheduling,” Hybrid Systems: Computation and Control (HSCC), 2007.
[15] M. Kauer, S. Steinhorst, D. Goswami, S. Reinhard, M. Lukasiewycz,

and S. Chakraborty, “Formal verification of distributed controllers
using time-stamped Event Count Automata,” in Asia and South Pacific

Design Automation Conference (ASP-DAC).
[16] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka,

and L. Thiele, “A hybrid approach to cyber-physical systems verifica-
tion,” in Design Automation Conference (DAC). ACM, 2012.

[17] O. Mason and R. Shorten, “On common quadratic Lyapunov func-
tions for stable discrete-time LTI systems,” IMA Journal of Applied

Mathematics, vol. 69, no. 3, pp. 271–283, 2002.
[18] R. C. Dorf and R. H. Bishop, Modern Control Systems. Addison

Wesley, 1995.
[19] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework

for analysing system properties in platform-based embedded system
designs,” in DATE, 2003.

[20] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” STTT,
vol. 1, no. 1-2, pp. 134–152, 1997.

[21] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan, “Event count
automata: A state-based model for stream processing systems,” in 26th

IEEE Real-Time Systems Symposium (RTSS), 2005, pp. 87–98.
[22] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,

2008.
[23] L. de Alfaro and T. A. Henzinger, “Interface-based design,” in

Engineering Theories of Software-intensive Systems, Marktoberdorf

Summer School, NATO Science Series, 2004.
[24] ——, “Interface theories for component-based design,” in EMSOFT,

2001, pp. 148–165.

