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Abstract. Weighted automata are a generalization of nondeterministic automata that
associate a weight drawn from a semiring K with every transition and every state. Their
behaviours can be formalized either as weighted language equivalence or weighted bisimula-
tion. In this paper we explore the properties of weighted automata in the framework of
coalgebras over (i) the category SMod of semimodules over a semiring K and K-linear maps,
and (ii) the category Set of sets and maps. We show that the behavioural equivalences
defined by the corresponding final coalgebras in these two cases characterize weighted
language equivalence and weighted bisimulation, respectively. These results extend earlier
work by Bonchi et al. using the category Vect of vector spaces and linear maps as the
underlying model for weighted automata with weights drawn from a field K. The key step
in our work is generalizing the notions of linear relation and linear bisimulation of Boreale
from vector spaces to semimodules using the concept of the kernel of a K-linear map in
the sense of universal algebra. We also provide an abstract procedure for forward partition
refinement for computing weighted language equivalence. Since for weighted automata
defined over semirings the problem is undecidable in general, it is guaranteed to halt only
in special cases. We provide sufficient conditions for the termination of our procedure.
Although the results are similar to those of Bonchi et al., many of our proofs are new,
especially those about the coalgebra in SMod characterizing weighted language equivalence.

1. Introduction

Bisimulation was introduced by Park and Milner [Par81, Mil89] for characterizing the
equivalence of two processes specified by transition systems or process algebra terms. Over
the years the notion has had an enduring impact on the study of the behaviour of systems,
with ramifications in concurrency, automata theory, modal logic, coalgebras, games and
formal verification. The basic notion of bisimulation for discrete systems has been extended
to probabilistic, quantitative and even continuous systems.

Coalgebras are a category theoretic concept that enable a study of state transition
systems and their behaviours in a unified setting [Rut00, Jac16]. The idea behind a
coalgebraic theory of systems is the following. Given an endofunctor F : C → C on a
concrete category C, a coalgebra f : X → FX represents a transition system on the set of
states X possibly with additional structure. For example, in Set, the category of sets and
maps, a coalgebra for the endofunctor FdX = 2×XA represents a deterministic automaton
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with states X and alphabet A. This is because a coalgebra for Fd can be seen as a map
〈o, δ〉 : X → 2×XA where o : X → 2 is the output map indicating whether a given state is
accepting and δ : X → XA is the transition map where δ(x)(a) is the next state on reading
the letter a in state x. Here 2 = {0, 1} is the set of truth values. Similarly a coalgebra
for the endofunctor Fn(X) = 2× (PωX)A on Set, where PωX is the finite powerset of X,
represents a nondeterministic automaton.

Homomorphisms between coalgebras can be seen as behaviour-preserving maps. A final
coalgebra for the functor F : C → C, if it exists, is the universe of all possible F -behaviours.
The unique arrow from any coalgebra to the final coalgebra maps a state to its behaviour.
The final coalgebra for the functor F naturally induces a notion of F -behavioural equivalence,
denoted by ≈F . Two states are behaviourally equivalent if they are mapped to the same
element in the final coalgebra by the unique arrow. For example, for deterministic automata,
the behaviour of a state is the language accepted by the automaton starting from that
state; two states x and y satisfy x ≈Fd

if and only if they are language equivalent. For
nondeterministic automata, two states are Fn-behaviourally equivalent for the functor Fn
on Set defined above if and only if they are bisimilar. However, if we consider the category
Rel of sets and relations, the behavioural equivalence for a suitable functor coincides with
language equivalence [HJS07] of nondeterministic automata. Thus the notion of behavioural
equivalence for the same computational object is relative to the underlying category and the
associated endofunctor.

In this paper we focus on bisimulation for weighted automata [Buc08]. Weighted
automata were introduced by Shützenburger [Sch61] and have found renewed interest in the
last two decades [DKV09] as they arise in various contexts where quantitative modelling is
involved. Intuitively, weighted automata generalize the notion of nondeterministic automata
where each state and each transition has an associated weight valued in some semiring. Such
a weight could represent a cost, reward or probability, or any other measure of interest.
Like nondeterministic automata, the behaviour of weighted automata have two different
characterizations, in terms of weighted language equivalence and weighted bisimulation.

In [BBB+12] Bonchi et al. have given a comprehensive account of both weighted-language
equivalence and bisimilarity of weighted automata in terms of coalgebras of an endofunctor
L on Vect (the category of vector spaces and linear maps) and an endofunctor W on Set,
respectively. The characterization of weighted language equivalence, is based on an elegant
notion of linear bisimulation given by Boreale [Bor09]. The idea here is that a weighted
automaton is a vector space (of states) over a field K, with two linear maps: the output map
from states to observations valued in K and an A-indexed family of transition maps from
states to states, where A is the set of actions. Then, a linear relation over states is a set of
pairs whose differences form a subspace of the vector space and a linear bisimulation is a
linear relation that preserves the output map and (the corresponding subspace) is invariant
under the transition maps. Boreale showed that this notion of linear bisimulation coincides
with weighted language equivalence. Bonchi et al. [BBB+12] gave a coalgebraic formulation
of these results using an endofunctor L on Vect.

Weighted automata were originally defined over semirings and not fields. Therefore,
it is desirable that the results of Boreale [Bor09] and Bonchi et al. [BBB+12] related to
linear bisimulation and language equivalence be generalized to semimodules over semirings.
This is exactly what we accomplish in this paper, starting with the assumption that K is a
semiring. Bonchi et al. had identified in their work the results which could be extended to
semirings in a straightforward way, and the ones which could not, because the latter involve
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Key Component
Boreale [Bor09] and
Bonchi et al. [BBB+12]

Our work

Domain of weights Field K Semiring K

State space Vector Space V over K Semimodule V over K

Foundation for K-linear
relations

Subspace U of V Linear map f from V

K-Linear Relation R uRv iff u− v ∈ U uRv iff R = ker(f)

Linear extension R` of
relation R

uR`v iff u− v ∈ span(ker(R))
R` = smallest congruence
containing R

Table 1. Correspondence between previous work and ours

the minus operator in fields. These are the the results of Boreale on linear bisimulation
and their coalgebraic formulation which make essential use of the properties of fields and
vector spaces. We show that there is an elegant characterization of these concepts in the
semiring-semimodule setting, by leveraging the concept of kernel of a K-linear map in the
universal algebraic sense, i.e., ker(f) = {(u, v) | f(u) = f(v)} and its universal properties.
We show that in the special case that K is a field, our results are identical to those of [Bor09]
and [BBB+12].

Our coalgebraic characterization of linear bisimulation proceeds as follows. We define a
K-linear relation on a semimodule V over the semiring K as the kernel of a K-linear map
f : V →W with domain V . Clearly, this is an equivalence relation which is a congruence. In
fact any relation R on V can be turned into a K-linear relation by considering the smallest
congruence R` containing R and taking f to the be canonical map V → V/R` that sends
each element to its congruence class. A K-linear bisimulation on a weighted automaton
is then defined as a K-linear relation which preserves the output map of the weighted
automaton and is invariant under the transition map as in [BBB+12]. We show that this
approach leads to all the results of [BBB+12] regarding the functor L and weighted language
equivalence although the proofs are new as we cannot assume the field properties of K, in
particular the existence of the additive inverse. Table 1 is a summary of the correspondence
between the key concepts in [Bor09, BBB+12] and the present work.

We briefly summarize our work highlighting the contributions. After introducing the
basic definitions and notation we recall the notion of a K-weighted automaton (Section 2.4)
and K-weighted bisimulation (Section 2.5). We use the definition of Bonchi et al. [BBB+12]
but assume that the underlying set of weights is a semiring K. We use the terms K-
weighted automaton and K-weighted bisimulation to distinguish our setting from that of
[BBB+12]. The fact that K-weighted automata are W-coalgebras for an endofunctor W on
Set follows, and so does the correspondence between K-weighted bisimulations and kernels
of W-homomorphims (Section 2.6). This result uses our definition of kernels, so there is
some novelty here. The proof that K-weighted bisimilarity ∼w coincides withW-behavioural
equivalence ≈W is the one in [BBB+12] presented in a different way.

The main focus of our work is on the coalgebras of the functor L on SMod, the category
of semimodules over the semiring K. We start by defining the functor L and proceed to
define the notions of K-linear automata as coalgebras for the functor L. We define their
behaviour in terms of weighted languages and present the final L-coalgebra (Section 3.1).
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This part is more or less similar to the treatment in [BBB+12] as it does not rely on any
vector space property not enjoyed by a semimodule. The point of departure in our work
from that of [BBB+12] is the definition of K-linear relations and K-linear bisimulations
(Section 3.2) based on the kernel (in the universal algebraic sense) of K-linear maps as
mentioned above. We prove the correspondence between K-linear bisimulations and kernels
of L-homomorphisms and establish the coincidence of the behavioural equivalence ≈L and
weighted language equivalence ∼l (Section 3.2). Although these results mirror those of
[BBB+12], the proofs, other than the one for the coincidence of ≈L and ∼l, are new and
more general – they truly extend the results from the vector space setting to the semimodule
setting in a non-trivial way. This is where the main contribution of this paper lies.

One desideratum is the existence of a partition refinement algorithm for computing the
weighted language equivalence ∼l for finitely generated semimodules. Unfortunately, the
results from Bonchi et al. [BBB+12] do not carry over to our semimodule setting. First, even
finitely generated semimodules do not have the descending chain property: they can have an
infinite descending chain of submodules. Also, weighted language equivalence is known to be
undecidable for finite-state weighted automata over the tropical semiring [Kro94, ABK20].
Instead, we offer an abstract procedure via the final sequence whose limit exists in SMod.
The limit of the final sequence is shown to be isomorphic to the final coalgebra for the
functor L, essentially following the reasoning in [BBB+12]. It is well-known that if the final
sequence stabilizes at an object that object is isomorphic to the final coalgebra. For any
K-linear weighted automaton there is a cone to the final sequence such that the kernel of
the arrows in the cone constitute a sequence of K-linear relations. We show that these
K-linear relations converge to L-bisimilarity, i.e., language equivalence, in a finite number
of steps in case the state space of the automaton is a finitely generated Artinian semimodule
(those satisfying the descending chain property) as well as when a weaker condition holds
(Section 4.1). Unfortunately, this does not give us an algorithm for computing the bisimilarity
relation in general, as this involves solving K-linear equations. Although this is possible for
specific semirings, such as R, Z and N, the problem is known to be undecidable for certain
semirings [Nar96]. We conclude the paper by comparing our work with the only existing
coalgebraic formulation of partition refinement for weighted automata over semirings, that
of König and Küpper [KK18] (Section 4.2).

2. K-Weighted Automata and K-Weighted Bisimulation

This section is a mild generalization of the coalgebraic characterization of weighted automata
and weighted bisimulation in Bonchi et al. [BBB+12] from the setting of vector spaces to
semimodules. We start by fixing the notation and recalling the basic notions of semimodules
and coalgebras. Then we show how weighted automata over a semiring K can be seen as
a coalgebra over a functor W : Set → Set and characterize weighted bisimilarity ∼w as
the behavioural equivalence ≈W for the functor W. The results and proofs are essentially
identical to those in [BBB+12], as they do not use the additional properties satisfied by
vector spaces. We include them for the sake of completeness. The only exception to this is
the correspondence between K-weighted bisimulation and kernels of W-homomorphisms in
Section 2.6, which uses our definition of kernel and is therefore new.
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2.1. Notation and Preliminaries. We denote sets by capital letters X,Y, Z, . . . and maps
(i.e., functions) by small letters f, g, h, . . .. We denote the identity map on a set X by idX .
Given two maps f : X → Y and g : Y → Z, their composition is denoted g ◦f : X → Z. The
product of two sets is denotedX×Y with the projections π1 : X×Y → X and π2 : X×Y → Y .
The product of two maps f1 : X1 → Y1 and f2 : X2 → Y2 is f1 × f2 : X1 ×X2 → Y1 × Y2
defined by (f1 × f2)(x1, x2) = (f1(x1), f2(x2)). Given maps f : X → Y and g : X → Z,
〈f, g〉 : X → Y × Z is the pairing map defined by 〈f, g〉(x) = (f(x), g(x)). We use N for
the set of natural numbers, Z for the integers, R for the set of reals and R+ for the set of
non-negative reals.

The disjoint union of sets X1 and X2 is X1 +X2 with the injections ι1 : X1 → X1 +X2

and ι2 : X2 → X1 + X2. The sum of two maps f1 : X1 → Y1 and f2 : X2 → Y2 is
f1 + f2 : X1 +X2 → Y1 + Y2 defined by (f1 + f2)(ιi(z)) = ιi(fi(z))) for i = 1, 2. We denote
the set of maps from X to Y by Y X . For a map f : X1 → X2, the map fY : XY

1 → XY
2

is defined by fY (g) = f ◦ g. This defines a functor ( )Y : Set→ Set, called the exponential
functor. The set of all finite subsets of X is denoted by Pω(X). For a finite set of letters A,
A∗ denotes the set of all finite words over A. We denote by ε the empty word, and by w1w2

the concatenation of words w1, w2 ∈ A∗. The length of a word w is denoted by |w|.
If R is an equivalence relation on a set X we denote the set of equivalence classes of

R by X/R and the equivalence class of an element x ∈ X by [x]R. The subscript is often
dropped if the relation R is clear from the context. For a map f : X → Y , the kernel of f is
the equivalence relation ker(f) = {(x1, x2) | f(x1) = f(x2)}. Further, f has a unique (up to
isomorphism) factorization through X/R, f = µf ◦ εf into a surjection εf : X → X/ker(f)
followed by an injection µf : X/ker(f)→ Y defined by εf (x) = [x] and µf ([x]) = f(x).

2.2. Semirings and Semimodules. Semirings and semimodules generalize the notions of
fields and vector spaces, respectively. A semiring (K,+, ., 0, 1) consists of a commutative
monoid (K,+, 0) and a monoid (K, ., 1) such that the product distributes over the sum
on both sides and k.0 = 0.k = 0 for all k ∈ K. We will refer to the semiring K when the
operations are understood. A semiring module, or simply a semimodule V over a semiring
K is a commutative monoid (V,+, 0) together with an action . : K × V → V such that for
all k, k1, k2 ∈ K and v, v1, v2 ∈ V :

(k1 + k2).v = k1.v + k2.v (k1.k2).v = k1.(k2.v) (2.1)

k.(v1 + v2) = k.v1 + k.v2 1.v = v (2.2)

0.v = 0 (2.3)

A K-linear map between two semimodules V and W (over the semiring K) is a map
f : V → W satisfying f(v1 + v2) = f(v1) + f(v2) and f(k.v) = k.f(v) for all v, v1, v2 ∈ V
and k ∈ K.

An equivalence relation R on a semimodule V is called a congruence if all the semimodule
operations are compatible with R, i.e., for all k ∈ K and u1, u2, v1, v2 ∈ V , u1Rv1 and u2Rv2
imply k.u1Rk.u2 and (u1 + u2)R(v1 + v2). It is easy to verify that the quotient V/R has a
semimodule structure given by the operations k.[u] = [ku] and [u] + [v] = [u+ v]. The fact
that these are well-defined, i.e., independent of the choice of representative of an equivalence
class, is a consequence of R being a congruence.

For a K-linear map f : V → W , the kernel of f is the equivalence relation ker(f) =
{(v1, v2) | f(v1) = f(v2)}. It can be shown that ker(f) is a congruence. It follows that
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V/ker(f) is a semimodule. Further, every K-linear map f has a unique (up to isomorphism)
factorization into two K-linear maps, a surjection εf : V → V/ker(f) followed by an injection
µf : V/ker(f)→ W defined by εf (u) = [u] and µf ([u]) = f(u). In the following, when we
refer to the kernel of a K-linear map f , we mean the kernel of f as defined above and not
the set {u | f(u) = 0}. This usage is common in universal algebra [BS81].

Let V be a K-semimodule. A nonempty subset U of V is called a subsemimodule of V if
U is closed under addition and scalar multiplication. The intersection

⋂
i∈I Ui of any family

{Ui}i∈I of subsemimodules of V is clearly a subsemimodule of V . If U is any nonempty
subset of V then the intersection of all subsemimodules of V containing U is called the
subsemimodule generated by U , and is denoted by span(U). It is easy to check that span(U)
is the set of finite linear combinations of elements of U

span(U) = {
n∑
i=1

kiui | n ∈ N, ui ∈ U for 1 ≤ i ≤ n}.

If V = span(U) then U is called a generating set for V . If V has a finite generating set it is
called finitely generated. One can verify that given a K-linear map f : V →W , ker(f) is a
subsemimodule of V × V .

Semimodules over a semiring K and K-linear maps form the category SMod. SMod
has products V ×W , and the set of all maps V A from a set A to a semimodule V has
a natural semimodule structure defined pointwise: for f, g ∈ V A, f + g ∈ V A is defined
by (f + g)(a) = f(a) + g(a) and (k.f)(a) = k.f(a). For a set X, the set of all maps
f : X → K with finite support, i.e., the set {x | f(x) 6= 0} is finite, is denoted K(X). Its
elements are conveniently represented as formal sums

∑
x∈X kx.x by writing kx = f(x).

In other words, K(X) = span(X), where we identify an element x ∈ X with the map
ηX(x) = δx : X → K where δx is the Kronecker delta that maps x to 1 and everything else
to 0. Note that only a finite number of kx are non-zero in the formal sum. K(X) is called
the free semimodule generated by X over K and satisfies the following universal property.
Given any map f : X → V from a set X to a semimodule V there exists a unique K-linear
map f ] : K(X) → V which extends f . The map f ] is just the linear extension of f i.e.,
f ](

∑
x∈X kx.x) =

∑
x∈X kx.f(x). This is shown in the commuting diagram below where

ηX : X → K(X) is the inclusion map.

X K(X)

V

f

ηX

f] (2.4)

2.3. Coalgebras. Given an endofunctor F : C → C on a category C, an F-coalgebra is
a C-object X together with a C-arrow f : X → FX. In many categories the pair (X, f)
represents a transition system such as a deterministic, nondeterministic or probabilistic au-
tomaton [Rut00]. A morphism of F-coalgebras, or an F-homomorphism, between coalgebras
(X, f) and (Y, g) is a C-arrow h : X → Y such that the following diagram commutes.

X Y

FX FY

h

f g

Fh

(2.5)
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Figure 1. Bisimulation quotient of weighted automata over different semir-
ings
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An F-coalgebra (Y, g) is called final is there is a unique F-homomorphism J KFX from any
F-coalgebra (X, f) to (Y, g). The final coalgebra represents the universe of all possible
F-behaviours and the arrow J KFX maps every element (or state) of a coalgebra X to its
behaviour [Rut00]. Two states x1, x2 ∈ X are said to be F-behaviourally equivalent, denoted
≈F , iff Jx1KFX = Jx2KFX .

2.4. K-Weighted Automata. A weighted automaton [DKV09] is a generalization of a
nondeterministic finite automaton where each transition and each state is assigned a weight
in a semiring K. We follow the definition in [BBB+12]. Formally, for a semiring K, a
K-weighted automaton (K-WA in short) with input alphabet A is a pair (X, 〈o, t〉) where X
is a set of states, o : X → K is a output map and t : X → (KX)A is the transition map. The
state x can make a transition to state y on input a ∈ A with weight k ∈ K iff t(x)(a)(y) = k.
A weight of zero means there is no transition. Note that the set of states X may be infinite
in general. We often use X to refer to the K-WA (X, 〈o, t〉) when the output and transition
maps are clear from the context.

2.5. K-Weighted Bisimulation. The notion of weighted bisimulation [Buc08] generalizes
the well-known notion from ordinary transition systems [Mil89] to finite-state weighted
automata. We follow the definition in [BBB+12] which applies to infinite state spaces, but
with finite branching : for all x ∈ X, a ∈ A, t(x)(a)(y) 6= 0 for only finitely many y. In the
following we assume the finite branching condition for weighted automata without stating it
explicitly.

Definition 2.1. Let M = (X, 〈o, t〉) be a K-weighted automaton. An equivalence relation
R on X is a K-weighted bisimulation on M if the following two conditions hold for all
x1, x2 ∈ X:

(1) o(x1) = o(x2), and
(2) for all a ∈ A and y ∈ X,

∑
y′∈[y]R t(x1)(a)(y′) =

∑
y′∈[y]R t(x2)(a)(y′).

The largest K-weighted bisimulation relation on M is called K-weighted bisimilarity,
and is denoted by ∼w. It exists because an arbitrary union of K-weighted bisimulation
relations is a K-weighted bisimulation.
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Example 2.2. This example illustrates bisimulation between weighted automata for different
semirings, and is adapted from [Buc08]. Figure 1(A) shows a K-weighted automaton
M = (XA, 〈oA, tA〉) over the alphabet A = {a, b} and the semiring K = (R+,+, ·, 0, 1). It
has the set of states XM = {x0, x1, x2, x3, x4, x5}, the output map (shown in the figure as
labels of the states when they are non-zero) oA given by {x0 7→ 0, x1 7→ 0, x2 7→ 0, x3 7→
1, x4 7→ 1, x5 7→ 1} and the transition map t shown in the figure by the edges with their
labels. For example, t(x0)(a)(x1) = 1

3 . All missing transitions have weight zero. Let R be
the smallest equivalence relation on XM containing the pairs {(x1, x2), (x3, x5), (x4, x5)}. R
is shown in the figure as the dashed lines, which join states in the same equivalence class.
It is easily checked that R is a bisimulation relation on M , and is in fact the largest such.
The automaton N in Figure 1(B) is the one obtained from M by quotienting by R, where
the quotient operation is defined in Section 2.6. Here the set of states is {y0, y1, y2} and the
output map is given by {y0 7→ 0, y1 7→ 0, y2 7→ 1}.

Now consider a different semiring K ′ = ([0, 1],max, ·, 0, 1) and consider M , the automa-
ton on the left, as a K ′-weighted automaton. The relation R above is again the largest
bisimulation on M , but the quotient automaton P has different weights on transitions, and
is shown in Figure 1(C). Here the set of states is {z0, z1, z2} and the output map is given
by {z0 7→ 0, z1 7→ 0, z2 7→ 1}. Notice the difference in the weights on the edges (y0, y1) and
(z0, z1). The former is obtained by addition whereas the latter by the max operation on the
pair (13 ,

1
3).

2.6. Coalgebraic Model for K-Weighted Automata and K-Weighted Bisimula-
tion. Following [BBB+12], we now exhibit a functorW : Set→ Set such that aW-coalgebra
is just a K-weighted automaton and ≈W is exactly K-weighted bisimilarity.

Definition 2.3. For a semiring K the valuation functor K( ) : Set→ Set is defined by the

mappings X 7→ K(X) on sets X and X
h→ Y 7→ K(X)

K(h)→ K(Y ) on maps, where K(h)
sends

∑
x∈X kxx ∈ K(X) to

∑
y∈Y kyy ∈ K(Y ) with ky =

∑
x∈h−1(y) kx.

Recall that for a given set C, the functor C × : Set → Set sends a set X to C ×X
and a map f : X → Y to the map idC × f . The functor W : Set → Set is defined
by W = K × (K( ))A where ( )A is the exponential functor defined earlier. Thus a W-
coalgebra f : X →WX on a set X constitutes a pair of maps 〈o, t〉 where o : X → K and
t : X → K(X)A. In other words, a W-coalgebra is identical to a K-weighted automaton
(X, 〈o, t〉) and vice versa under the assumption of finite branching, since K(X) is the set of
maps G : X → K with finite support, which means t satisfies the finite branching property.

It is shown in Bonchi et al. [BBB+12] that the functor W, being bounded, has a final
coalgebra (Ω, ω). Moreover, the behavioural equivalence ≈W coincides with K-weighted
bisimilarity ∼w. It is also shown that K-weighted bisimilarity is strictly included in weighted
language inclusion. For completeness we recall the proof by Bonchi et al. of the coincidence
of the two relations ≈W and ∼w.
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Recall that a map h : X → Y is a W-homomorphism between weighted automata, i.e.,
W-coalgebras, (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) when the following diagram commutes.

X Y

K ×K(X)A K ×K(Y )A

h

〈oX ,tX〉 〈oY ,tY 〉

idK×K(h)A

(2.6)

In words, for all x ∈ X, y ∈ Y , a ∈ A

oX(x) = oY (h(x)) and
∑

x′∈h−1(y)

tX(x)(a)(x′) = tY (h(x)(a)(y).

For any W-homomorphism h : (X, 〈oX , tX〉)→ (Y, 〈oY , tY 〉), the equivalence relation ker(h)
is a weighted bisimulation since h(x1) = h(x2) implies

oX(x1) = oY (h(x1)) = oY (h(x2)) = oX(x2)

and for all a ∈ A, for all y ∈ Y∑
x′′∈h−1(y)

tX(x1)(a)(x′′) = tY (h(x1))(a)(y) = tY (h(x2))(a)(y) =
∑

x′′∈h−1(y)

tX(x2)(a)(x′′)

which in turn implies that for all x′ ∈ X∑
(x′,x′′)∈ker(h)

tX(x1)(a)(x′′) =
∑

(x′,x′′)∈ker(h)

tX(x2)(a)(x′′).

Conversely, every K-weighted bisimulation R on (X, 〈oX , tX〉) induces a coalgebra structure
(X/R, 〈oX/R, tX/R〉) on the quotient set X/R where oX/R : X/R → K and tX/R : X/R →
(X/R)A are defined by

oX/R[x] = oX(x) and tX/R[x1](a)([x2]) =
∑
x′∈[x2]

tX(x1)(a)(x′).

As R is a K-weighted bisimulation, both oX/R : X/R→ K and tX/R : X/R→ (X/R)A are
well-defined, i.e., independent of the choice of representative of an equivalence class. Now,
the map εR : X → X/R which sends x to its equivalence class [x]R is a W-homomorphism.
Therefore we have the following commuting diagram, where the dashed arrows constitute
the unique W-homomorphisms to the final coalgebra (Ω, ω).

X X/R Ω

W(X) W(X/R) W(Ω)

εR

J KWX

〈oX ,tX〉 〈oX/R,tX/R〉

J KW
X/R

ω

W(εR)

W(J KWX )

W(J KW
X/R

)

(2.7)

Theorem 2.4. Let (X〈o, t〉) be a weighted automaton. Then for x1, x2 ∈ X, x1 ∼w x2 iff
x1 ≈W x2.
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Proof. The equality of the two relations ∼w and ≈W follows by diagram chasing. By
definition, ≈W= ker(J KWX ) and this is is a K-weighted bisimulation since J KWX is a W-
homomorphism as witnessed by the curved and dashed arrows in the diagram, which implies
≈W⊆∼w. In the other direction,

x ∼w x2
⇒ (x1, x2) ∈ R for a K-weighted bisimulation R

⇒ εR(x1) = εR(x2), since [x1]R = [x2]R

⇒ JεR(x1)KWX/R = JεR(x2)KWX/R
⇒ Jx1KWX = Jx2KWX from the diagram above

⇒ x1 ≈W x2, by definition of ≈W .

We now define K-weighted language equivalence ∼l for K-weighted automata and show
that K-weighted bisimilarity is a refinement of K-weighted language equivalence. The proof
is from [BBB+12].

A K-weighted language over an alphabet A and semiring K is a map σ : A∗ → K that
assigns to each word w ∈ A∗ a weight in K. For a K-WA (X, 〈o, t〉) the map σl : X → KA∗

assigns to each state x ∈ X the K-weighted language recognized by x and is defined by
induction on w as follows.

σl(x)(w) =

{
o(x) if w = ε∑

x′∈X(t(x)(a)(x′)).σl(x
′)(w′) if w = aw′

Two states x1, x2 ∈ X are said to be weighted language equivalent, denoted x1 ∼l x2, if
σl(x1)(w) = σl(x2)(w) for all w ∈ A∗.

Proposition 2.5. For K-weighted automata, ∼w⊆∼l.

Proof. We prove by induction on the length of w that if R is a K-weighted bisimulation on
X then for all x1, x2 ∈ X and all w ∈ A∗, (x1, x2) ∈ R implies σl(x1)(w) = σl(x2)(w). For
the base case w = ε, we have σl(x1)(w) = o(x1) and σl(x2)(w) = o(x2) and o(x1) = o(x2)
since R is a K-weighted bisimulation. For the inductive case, if w = aw′ then

σl(x1)(w) =
∑
x′∈X

(t(x1)(a)(x′)).σl(x
′)(w′)

=
∑

[x′]R∈X/R

((
∑

x′′∈[x′]R

t(x1)(a)(x′′)).σl(x
′)(w′)) since by the induction hypothesis

for all x′′ ∈ [x′]R, σl(x
′′)(w′) = σl(x

′)(w′) and by grouping the states

x′′ ∈ [x′]

=
∑

[x′]R∈X/R

((
∑

x′′∈[x′]R

t(x2)(a)(x′′)).σl(x
′)(w′)) since (x1, x2) ∈ R and R is a K-

weighted bisimulation

= σl(x2)(w) by an argument similar to the first two lines above.

Example 2.6. Figure 3 is an adaptation of a familiar example from the process algebra
literature that shows that K-weighted bisimilarity strictly refines K-weighted language
equivalence. Here K = (R+,+, ·, 0, 1). The states x0 and y0 are language equivalent, since
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Figure 3. Weighted language equivalence and weighted bisimulation

x0

x1 x2

x3 1 x4 1

a, 12 a, 12

b, 1 c, 1

y0

y1

y2 1 y3 1

a, 12

b, 1 c, 1

σl(x0)(ab) = σl(y0)(ab) = 1
2 and σl(x0)(ac) = σl(y0)(ac) = 1

2 and σl(x0)(w) = σl(y0)(w) = 0
for all other words w. But it is easily checked that x0 and y0 are not bisimilar.

3. K-Linear weighted automata as Coalgebras over Semimodules

The goal of this section is to show that there is a functor L : SMod → SMod for which
behavioural equivalence ≈L coincides with weighted language equivalence ∼l of K-linear
weighted automata, extending the results of Bonchi et al. [BBB+12] to the category of
semimodules. Although the functor L appears to be the same as in [BBB+12] the underlying
details are different. The latter are based on a generalization of the notion of a linear
weighted automaton in [Bor09, BBB+12] from the setting of vector spaces to semimodules.
We propose definitions of a K-linear relation and a K-linear bisimulation that generalize the
notions of a linear relation and a linear bisimulation from [Bor09]. This is the central part
of the paper where the definitions and proofs do not mirror those in [Bor09, BBB+12]. In
particular the notion of subspace of a vector space is replaced by that of the kernel (in the
universal algebraic sense) of a K-linear map. But it is remarkable that all proofs go through
and we obtain a true generalization of the concepts from vector spaces to semimodules.

3.1. K-Linear Weighted Automata. The following definition is a generalization of a
linear weighted automaton of [Bor09] from the setting of vector spaces and linear maps
to that of semimodules over a semiring K and K-linear maps. Note that we use the term
“K-linear weighted automaton” to distinguish it from the “linear weighted automaton” of
[Bor09, BBB+12].

Definition 3.1. A K-linear weighted automaton (K-LWA in short) with input alphabet A
over the semiring K is a coalgebra for the functor L = K × ( )A : SMod→ SMod.

A K-LWA can be presented as a pair (V, 〈o, t〉) where V is a semimodule over K whose
elements are called states, o : V → K is a K-linear map assigning an output weight to every
state and t : V → V A is a K-linear transition map that, given a current state v and input a,

assigns a new state t(v)(a). We write v1
a−→ v2 for t(v1)(a) = v2. We often use V to refer

to the K-LWA (V, 〈o, t〉) when the output and transition maps are clear from the context.
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The behaviour of K-LWA is described by weighted languages. The K-linear weighted
language recognized by a state v ∈ V of a K-LWA (V, 〈o, t〉) is the map σl(v) : A∗ → K
defined by induction on words W by:

σl(v)(w) =

{
o(v), if w = ε

σl(t(v)(a))(w′) if w = aw′

Two states v1, v2 ∈ V are said to be weighted language equivalent, denoted v1 ∼l v2, if
σl(v1)(w) = σl(v2)(w) for all w ∈ A∗. Note that we overload the symbol σl to denote weighted
language equivalence for both K-weighted automata and K-linear weighted automata. The
context disambiguates which concept the symbol denotes. Later in this section we show
that σl(v) = JvKLV , the image of v under the unique L-homomorphism from V into the final
L-coalgebra.

Given a K-WA (X, 〈o, t〉) (see Section 2.4), we can construct a K-LWA (K(X), 〈o], t]〉),
where K(X) is the free semimodule generated by X and o] and t] are linear extensions of o
and t. It can be shown that the above K-WA X and the K-LWA K(X) have equivalent
language behaviour, i.e., the corresponding states x and ηX(x) recognize the same weighted
language for all x ∈ X.

Recall that a K-linear map h : V → W is an L-homomorphism between K-LWA
(V, 〈oV , tV 〉) and (W, 〈oW , tW 〉) when the following diagram commutes.

V W

K × V A K ×WA

h

〈oV ,tV 〉 〈oW ,tW 〉

idK×hA

(3.1)

In words, for all v ∈ V , a ∈ A, oV (v) = oW (h(v)) and h(tV (v)(a)) = tW (hv)(a).
For the special case when the K-LWA V = K(X) and W = K(Y ) for given K-WA

X and Y as above, we have the following situation. For a map h : X → Y , the map
K(h) : K(X) → K(Y ) is the unique linear extension of ηY ◦ h : X → K(Y ) and is hence
K-linear. If h is aW-homomorphism between the K-WA (X, 〈oX , tX〉) and (Y, 〈oY , tY 〉) then

K(h) is an L-homomorphism between the K-LWA (K(X), 〈o]X , t
]
X〉) and (K(Y ), 〈o]Y , t

]
Y 〉).

Bonchi et al. [BBB+12] showed that the final L-coalgebra is defined on the set of all
weighted languages KA∗ as follows. Consider the structure (KA∗ , ε, d) with the output
map ε and the transition map d where ε : KA∗ → K, called the empty map, is defined by
ε(σ) = σ(ε) and d : KA∗ → (KA∗)A is defined by d(σ)(a) = σa where σa : A∗ → K is the
a-derivative of σ:

σa(w) = σ(aw).

We first show that the map d is K-linear. If σ1 and σ2 are two weighted languages in KA∗ ,
k1, k2 ∈ K, a ∈ A and w ∈ A∗ then

d(k1σ1 + k2σ2)(a)(w) = (k1σ1 + k2σ2)(aw)

= (k1σ1)(aw) + (k2σ2)(aw)

= k1σ1(aw) + k2σ2(aw)

= k1d(σ1)(a)(w) + k2d(σ2)(a)(w)

as desired. The proof of K-linearity of ε is similar. Hence (KA∗ , ε, d) is a coalgebra in SMod.
We now recall the proof from [BBB+12] that it is the final coalgebra in SMod.
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Theorem 3.2. There exists a unique L-homomorphism from any coalgebra (V, 〈o, t〉) into
the coalgebra (KA∗ , ε, d).

Proof. It is easy to check that the map J KLV = σl : V → KA∗ which maps every state v ∈ V
to the weighted language σl(v) is the only one that makes the following diagram commute
in Set.

V KA∗

L(V ) L(KA∗)

J KLV

〈o,t〉 〈ε,d〉

L(J KLV )

(3.2)

To show that J KLV is K-linear we prove that Jk1v1+k2v2KLV (w) = Jk1v1KLV (w)+Jk2v2KLV (w)
for all w ∈ A∗ by a routine induction on the length of the word w.

It follows that two states v1, v2 ∈ V are L-behaviourally equivalent, i.e., v1 ≈L v2 iff
they recognize the same weighted language.

3.2. K-Linear Bisimulation. In this section we generalize the definition of Boreale’s linear
weighted bisimulation [Bor09] from a field to a semiring K. We show that the two notions
coincide in the special case when K is a field, for example K = R, as in [Bor09]. Starting
with this section almost all the results are our contribution and involve new concepts and
proofs.

Definition 3.3. A binary relation R on a K-semimodule V is K-linear if there exists a K-
semimodule W and a K-linear map f : V →W such that R = kerf = {(u, v) | f(u) = f(v)}.
Such a relation is denoted by Rf for the given f .

It is immediate that a K-linear relation on a K-semimodule V is an equivalence relation
which, in addition, is a congruence. Moreover, there is a canonical way of turning any
relation R on K(X) into a K-linear relation R` as follows. Let R` be the least congruence
relation on V containing R. R` is obtained by taking the intersection of all congruences
on V that contain R and is well-defined since the universal relation is a congruence and
the intersection of any family of congruences is a congruence. The quotient set V/R` has a
K-semimodule structure given by [u] + [v] = [u+ v] and k.[u] = [k.u], which are well-defined
since R` is a congruence. Let f = εR` : X → V/R` be the map which sends any elements
v ∈ V to its equivalence class [v]R` . It is easy to check that f is a K-linear map and
R` = ker(f) by construction. Hence R` is a K-linear relation. The following lemma is an
easy consequence of the definitions.

Lemma 3.4. For any binary relation R on a K-module V , R` is the smallest K-linear
relation containing R.

Note that for a given K-linear relation R there may be two distinct K-linear maps
f, g : V →W with the same codomain such that R = ker(f) = ker(g). On the other hand,
all such maps factor uniquely through the map εf : V → V/kerf that sends v ∈ V to its
equivalence class [v] in kerf . Also, note that for any injective map f : V → W , Rf is the
identity relation on V . For the zero map 0V,W : V →W which maps every element in V to
0, R0V,W is the universal relation on V .
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We are now ready to define a K-linear bisimulation in analogy with linear bisimulation
in [Bor09, BBB+12].

Definition 3.5. Let (V, 〈o, t〉) be a K-LWA, for a semimodule K. A K-linear relation R
on V is a K-linear bisimulation if for all (v1, v2) the following holds:

(1) o(v1) = o(v2), and
(2) ∀a ∈ A, t(v1)(a)R t(v2)(a).

When V is a finite dimensional vector space over the field K the notions of K-linear
relations and the linear relations of Boreale coincide. Consider a linear relation (as defined in
[Bor09]) R over the vector space V = K(X) with basis X where K is a field. By definition,
there exists a subspace U of the vector space V over K such that uRv iff u− v ∈ U . It is
easy to check that the equivalence relation R = RU = {(u, v) | u− v ∈ U} is a congruence.
Then consider the canonical linear map fU : V → V/RU to the quotient space which maps
an element w ∈ V to [w]R. Now w ∈ U iff w = u− v for some u, v ∈ V with uRv. Therefore,
fU (w) = fU (u− v) = fU (u)− fU (v) = 0 since [u] = [v], i.e., fU sends all elements in U to 0.
It follows that u− v ∈ U iff fU (u) = fU (v) and thus R is a K-linear relation. Conversely, if
R is a K-linear relation over V then R = Rf for some f : V →W . Let U = {w | f(w) = 0}.
Clearly U is a subspace of V and u− v ∈ U iff f(u) = f(v), i.e., R is a linear relation. In
addition, when V is a vector space over a field K it is routine to verify that the notions of a
linear weighted bisimulation as in [Bor09, BBB+12] and a K-linear bisimulation coincide,
as the two definitions are identical. Hence, K-linear bisimulation is a more general notion.

The following characterization of K-linear bisimulation is immediate from the definition.

Lemma 3.6. Let (V, 〈o, t〉) be a K-LWA, where V is a K-semimodule and R a K-linear
relation on V . Then R is a K-linear bisimulation iff

(1) R ⊆ ker(o), and
(2) R is ta-invariant, i.e., uRv implies tauRtav, for each a ∈ A.

More generally, the kernel of a L-homomorphism between two K-LWA is a K-linear
bisimulation and conversely, for each K-linear bisimulation R there exists a L-homomorphism
between two K-LWA whose kernel is R. This result mirrors the one in [BBB+12] for linear
weighted bisimulation between linear weighted automata, albeit with a different notion of
kernel.

Proposition 3.7. Let (V, 〈oV , tV 〉) and (W, 〈oW , tW〉) be two K-LWA and h : V → W an
L-homomorphism. Then ker(h) is an K-linear bisimulation on (V, 〈oV , tV 〉). Conversely, if
R is a K-linear bisimulation on (V, 〈oV , tV 〉) then there exists a K-LWA (W, 〈oW , tW 〉) and
a L-homomorphism h : V →W such that R = ker(h).

Proof. Suppose h : V →W is an L-homomorphism between (V, 〈oV , tV 〉) and (W, 〈oW , tW 〉).
We show that ker(h) satisfies clauses (1) and (2) of Lemma 3.6. Take any (v, w) ∈ ker(h).
Since by definition h(v) = h(w), we have oW (h(v)) = oW (h(w)) and tW (h(v))(a) =
tW (h(w))(a) for all a ∈ A. Since h is an L-homomorphism, we have (1) oV (v) =
oW (h(v)) = oW (h(w)) = oV (w), i.e., ker(h) ⊆ ker(oV ) and (2) h(tV (v)(a)) = tW (h(v))(a) =
tW (h(w))(a) = h(tV (w)(a)), which means (tV (v)(a), tV (w)(a) ∈ ker(h) i.e., ker(h) is ta-
invariant.

In the other direction, let R be K-linear bisimulation on (V, 〈oV , tV 〉), where R = Rf
for the map f : V → W . Let f = µf ◦ εf be the unique factorization of f through
εf : V → V/ker(f) that sends each v ∈ V to its equivalence class in ker(f). As we
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observed earlier, W = V/ker(f) can be equipped with a K-LWA structure (W, 〈oW , tW 〉)
as follows. The K-linear map oW : W → K is defined as oW ([v]) = oV (v). The K-linear
map tW : W →WA defined as tW ([v])(a) = tV (v)(a). These two maps are well-defined as
ker(f) is a congruence. It is routine to verify that the K-linear map h = εf : V →W is an
L-homomorphism and ker(h) = ker(εf ), and therefore R = ker(h).

Theorem 3.8. Let (V, 〈o, t〉) be a K-LWA and let J KLV : V → KA∗ be the unique L-
homomorphism into the final coalgebra. Then ker(J KLV ) is the largest K-linear bisimulation
on V .

Proof. By Proposition 3.7, ker(J KLV ) is a K-linear bisimulation. Suppose R is any K-
linear bisimulation. Again by Proposition 3.7, there exists a K-LWA (W, 〈oW , tW 〉) and
a L-homomorphism f : V → W such that R = ker(f). Since (W, 〈oW , tW 〉) is an L-
coalgebra, there exists an L-homomorphism J KLW from W to the final coalgebra KA∗ .

Therefore J KLW ◦ f : V → KA∗ , being the composition of two L-homomorphisms, is an

L-homomorphism. But kerJ KLV is the unique homomorphism from V to KA∗ by the finality

of KA∗ and hence J KLW ◦ f = kerJ KLV . Then R = ker(f) ⊆ ker(J KLW ◦ f) = ker(J KLV ). The
set inclusion above is a consequence of the fact that f(u) = f(v) implies g(f(u) = g(f(v))
for all g composable with f .

Corollary 3.9. The L-behavioural equivalence relation ≈L on a K-LWA V is the largest
K-linear bisimulation.

Proof. By definition, ≈L= {(v, w) | JvKLV = JwKLV } = ker(J KLV ). The result follows from
Theorem 3.8.

To summarize, for K-WA the largest K-weighted bisimulation ∼w is strictly included in
K-weighted language equivalence ∼l as shown in Proposition 2.5. Corollary 3.9 shows that
for K-LWA K-linear language equivalence coincides with the largest K-linear bisimulation.
This raises the question: what is the relationship between K-weighted bisimulation and
K-linear bisimulation? Again, our answer extends that of [BBB+12] to the semimodule
setting.

Proposition 3.10. Let (X, 〈o, t〉) be a K-WA and (K(X), 〈o], t]〉) the K-LWA obtained
from it as in Section 3.1. If R is a K-weighted bisimulation on X then R` is a K-linear
bisimulation on K(X).

Proof. Recall the quotient weighted automaton (X/R, 〈oX/R, tX/R〉) and the map εR : X →
X/R from Section 2. From diagram 2.7 we have εR is aW-homomorphism between (X, 〈o, t〉)
and (X/R, 〈oX/R, tX/R〉). Earlier we have shown that K(h) is an L-homomorphism for every
W-homomorphism h. Therefore, K(εR) : K(X)→ K(X/R) is an L-homomorphism between

(K(X), 〈o], t]〉) and (K(X/R), 〈o]X/R, t
]
X/R〉). By Proposition 3.7, ker(K(εR) is a K-linear

bisimulation on K(X).
It remains to show that ker(K(εR) = R`. Recall that K(εR) : K(X)→ K(X/R) maps

kixi to

(
∑

xj∈[xi]R

ki)[xi]R
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and hence by linearity maps any element u =
∑n

i=1 kixi of K(X) to

n∑
i=1

(
∑

xj∈[xi]R

kj)[xi]R.

Therefore, for any element v =
∑m

i=1 k
′
iyi of K(X), (u, v) ∈ ker(K(εR)) iff for all x ∈ X,∑

xj∈[x]R

kj =
∑

y`∈[x]R

k′`. (3.3)

We show that (u, v) ∈ R` if the same condition holds. First, since R is an equivalence
relation, and R` is the smallest congruence containing R, R` satisfies the following clauses
(i) xRy ⇒ k.xR`k.y for all k ∈ K and (ii) xRy and x′Ry′ ⇒ (k.x+ k′.x′)R`(k.y + k′.y′) for
all k1, k2 ∈ K, and (iii) for any u, v ∈ K(X), uR`v only if it can be derived from the rules
(i) and (ii) above. It follows that for u and v as above, uR`v iff for all x ∈ X, Equation 3.3
holds.

4. K-Linear Partition Refinement

We have shown that weighted language equivalence ∼l coincides with the largest K-linear
bisimulation ≈L on a K-LWA. Now let us turn to the question of computing ∼l, i.e., given
two states v1 and v2 in a K-LWA (V, 〈o, t〉) the problem of deciding whether v1 ∼l v2. For
finite representability we assume that the submodule V is freely generated by a finite set X,
and therefore o and t have finite representations as matrices.

Boreale [Bor09] and Bonchi et al. [BBB+12] had proposed two versions of a partition
refinement algorithm for finding the largest linear weighted bisimulation on a linear weighted
automaton (V, 〈o, t〉). Their algorithms were based on the identification of linear bisimulations
with certain subspaces of the vector space of a linear weighted automaton over a field. Both
algorithms start from the kernel of the output map o represented as a subspace of V ,
and successively obtain smaller and smaller subspaces by requiring invariance under the
transitions until a fixed point is reached. For termination the algorithm relies on the fact
that there can only be a finite descending chain of subspaces for a finite-dimensional vector
space. Moreover, the algorithm computes a a basis for each of the subspaces by solving
systems of linear equations, using the matrix representations of the maps o and t.

Unfortunately, these algorithms cannot, in general, be lifted to the semiring-semimodule
framework even for finitely generated semimodules. First, unlike vector spaces, finitely
generated semimodules are not necessarily Artinian. An Artinian semimodule is one
that satisfies the descending chain property, i.e., there is no infinite descending chain of
subsemimodules ordered by inclusion. For example, the semimodule (N,+, 0) over the
semiring (N,+, ., 0, 1), although finitely generated, is not Artinian since the subsemimodules
2N ⊃ 4N ⊃ 8N . . . form an infinite descending chain. Second, even with an Artinian
semimodule the above procedures are not effective in general, as they depend on solving
linear equations in K, a problem that is undecidable for certain semirings [Nar96]. It is also
known that weighted language equivalence is undecidable for finite-state weighted automata
over the tropical semiring (N ∪ {∞},min,+,∞, 0) [Kro94, ABK20].

But all is not lost as far as partition refinement is concerned. We can generalize the
forward algorithm of [Bor09] and [BBB+12] to a construction of the final coalgebra in
SMod based on a method of of Adámek and Koubek [AK95] that uses the notion of the



Vol. 19:1 COALGEBRAS FOR BISIMULATION 4:17

final sequence (or terminal sequence). In general the construction takes steps indexed by
ordinals that can go beyond ω, although for semimodules no more than ω steps are necessary
as is shown below, the proof being identical to that of [BBB+12]. In special cases, such
as for finite dimensional vector spaces, and the free semimodules Z(X) and N(X) for a
finite set X, the construction terminates after a finite number of steps and the required
operations can be performed effectively. In this case the procedure is the same as the forward
algorithm of [Bor09, BBB+12]. We identify sufficient conditions for the termination of the
final sequence construction. The construction terminates for Artinian semimodules as one
would expect. But we also show that a weaker condition identified in [DK12, KK18] also
suffices. Our presentation below has a lot in common with that of [BBB+12], but also has
major differences due to the less enriched setting of semimodules as compared to vector
spaces.

4.1. The Partition Refinement Procedure. The final sequence of the functor L =
K × ( )A : SMod→ SMod is the countable cochain {Wi}i∈N shown below

W0 = 1
!←W1 = L(1)

L(!)← W2 = L2(1)
L2(!)← . . . .

Here 1 is the terminal object {0} in the category SMod and ! denotes the unique arrow from
L(1) to 1. Li is simply the i-fold composition of L, with L0 being the the identity functor.

Adámek and Koubek [AK95] showed that in a category C with limits of all ordinal
indexed cochains if the final sequence of a functor T : C → C

1
!← T (1)

T (!)← T 2(1)
T 2(!)← . . . .

stabilizes at ordinal k, in the sense that the arrow T k(!) : T k+1(1) → T k(1) in the final
sequence is an isomorphism, then (T k(1), (T k(!))−1) is a final T -coalgebra. Moreover, the
existence of a final coalgebra is sufficient to ensure stabilization of the final sequence. Below
we show that in SMod the final sequence for L stabilizes at or before the index ω by essentially
repeating the proof for vector spaces in [BBB+12].

The objects and arrows in the cochain can be described as follows. Following the steps
in [BBB+12] we can show that for each n ∈ N, Ln(1) is isomorphic to KA∗n , where A∗n is
the set of all words of length less than n. The proof is by induction on n. For n = 1,
L(1) = K × 1A ∼= K ∼= K{ε} = KA∗1 by definition. By the induction hypothesis, we have
that an element 〈k, σ〉 ∈ Ln+1(1) = K ×Ln(1)A ∼= K × (KA∗n)A ∼= K1+A×A∗n can be seen as
a function that maps ε to k and aw to σ(a)(w) for a ∈ A and w ∈ A∗n. Similarly, it can be

shown that the arrow Ln(!) : Ln+1(1)→ Ln(1) maps a function σ ∈ KA∗n+1 to its restriction
σ � A∗n to the subset of words of length less than n. We denote σ � A∗n by σ � n from now on.
Moreover, the limit of this SMod-cochain is KA∗ together with the maps ζn : KA∗ → Ln(1)
that send a weighted language σ : A∗ → K to its restriction σ � n for each n. The limit cone
is shown in the commuting diagram below.

KA∗

1 L(1) L2(1) . . .

ζ0
ζ1

ζ2

! L(!) L2(!)

(4.1)

On the other hand, any K-LWA (V, 〈o, t〉), where V is not necessarily an Artinian
semimodule, defines a cone !n : V → Ln(1) by induction as follows. The map !0 : V → 1 is
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the unique arrow to the terminal object 1, and !n = L(!n) ◦ 〈o, t〉. More concretely, for all
w ∈ A∗,

!n+1(v)(w) =

{
o(v), if w = ε

!n(t(v)(a)(w′)) if w = aw′.
(4.2)

Equation 4.2 says !n(v)(w) = σl(v)(w) for all w with |w| ≤ n, and !n(v)(w) = σl(v)(w|n)
for all w with |w| > n, where w|n is the prefix of w of length n.

It is easily verified that the unique arrow from the cone from V to the limit cone from
KA∗ is the same as the unique L-coalgebra homomorphism J KLV from (V, 〈o, t〉) to the final

coalgebra (KA∗ , ε, d). This is depicted in the following commuting diagram.

KA∗

1 L(1) L2(1) . . .

V

ζ0
ζ1

ζ2

! L(!) L2(!)

!0
!1

!2

J KLV
(4.3)

Recall from Theorem 3.8 and Corollary 3.9 that the L-behavioural equivalence relation
≈L on an (V, 〈o, t〉) is the kernel of J KLV . An abstract procedure for computing the equivalence
≈L would be to iteratively compute the kernel of the arrows !n and terminate (if ever) when
ker(!n+1) = ker(!n). This condition is equivalent to Ln(!) : Ln+1(1) → Ln(1) being an
isomorphism. But first we prove two propositions that justify the abstract procedure. The
second result requires V to be a finitely generated Artinian semimodule.

Proposition 4.1. Let (V, 〈o, t〉) be a K-LWA. Consider the sequence of relations over V
defined inductively by

R0 = ker(o) Ri+1 = Ri ∩
⋂
a∈A
{(u, v) | (t(u)(a), t(v)(a)) ∈ Ri}.

Then for all n, Rn is a linear relation satisfying Rn = ker(!n+1).

Proof. We show that Rn = ker(!n+1) for each n by induction. It follows that Rn is a linear
relation. For the basis, since !1 = o we have R0 = ker(o) = ker(!1). Suppose Rn = ker(!n+1)
for n ≥ 1. Then

Rn+1 = Rn ∩
⋂
a∈A
{(u, v) | (t(u)(a), t(v)(a)) ∈ Rn}

= ker(!n+1) ∩
⋂
a∈A
{(u, v) | (t(u)(a), t(v)(a)) ∈ ker(!n+1)}

= ker(!n+1) ∩
⋂
a∈A

ker(!n+1 ◦ 〈t( )(a), t( )(a)〉)

= ker(〈!n+2) from Equation 4.2

Here we use the following facts that can be easily checked.

(1) ker(g ◦ f) = {(u, v) | (f(u), f(v)) ∈ ker(g)} and
(2) ker(〈f1, f2〉) = ker(f1) ∩ ker(f2).
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It follows from Proposition 4.1 that when V is a finite dimensional vector space then
for some n ∈ N, ker(!n+1) = ker(!n) i.e., the procedure terminates after a finite number of
steps. This is because for vector spaces and linear maps, kernels (in the sense of [BBB+12])
correspond to subspaces and for a finite dimensional space there can only be a finite chain
of subspace containment; see [BBB+12] for the details. For the more general case of finitely
generated Artinian semimodules over a semiring, we can also guarantee stabilization of the
cochain. This is shown in the following proposition.

Proposition 4.2. Let (V, 〈o, t〉) be a K-LWA where V is a finitely generated Artinian
semimodule. Consider the sequence of relations over V defined inductively by

R0 = ker(o) Ri+1 = Ri ∩
⋂
a∈A
{(u, v) | (t(u)(a), t(v)(a)) ∈ Ri}.

Then there is a j such that Rj = Rj+1. The largest K-linear bisimulation ≈L on V is then
identical to Rj.

Proof. We have shown that Rn = ker(!n+1) for each n. Since each Ri is linear it is a
subsemimodule of the product V × V . Since V is Artinian so is V × V as the projection of a
subsemimodule of V × V is a subsemimodule of V . Since Ri ⊇ Ri+1, and we cannot have an
infinite descending chain of subsemimodule inclusions there exists a j such that Rj = Rj+1.

We now show that Rj is a K-linear bisimulation by applying Lemma 3.6. Since
Rj ⊆ R0 = ker(o), condition (1) of the lemma is satisfied. Since Rj = Rj+1, we have
Rj = Rj ∩

⋂
a∈A{(u, v) | (t(u)(a), t(v)(a)) ∈ Rj}, i.e., uRjv implies tauRjtav, for each a ∈ A,

which means condition (2) is also satisfied.
Finally, we must show that any K-linear bisimulation R is included in Rj . We do this

by showing R ⊆ Ri for all i by induction. By Lemma 3.6, R ⊆ ker(o) = R0. Now assume
R ⊆ Ri. By Lemma 3.6 again, uRv implies tauRtav for all a ∈ A and hence, tauRitav for
all a ∈ A. By definition of Ri+1 it follows that uRi+1v and hence R ⊆ Ri+1.

We now show that the termination condition in Proposition 4.2, namely V is Artinian,
can be weakened. This weaker condition is mentioned in [DK12, KK18] but in a somewhat
different setting. To state the condition, let Vn ⊆ V = K(X) for a finite set X be defined by
Vn = {σl( )(w) : X → K | w ∈ A∗n} and let V∗ =

⋃∞
n=0 Vn. Then the following proposition

states that the procedure described in Proposition 4.2 terminates if span(V∗) is a finitely
generated semimodule.

Proposition 4.3. Let (V, 〈o, t〉) be a K-LWA where V = K(X) for a finite set X, such that
span(V∗) is finitely generated. Consider the sequence of relations over V defined inductively
by

R0 = ker(o) Ri+1 = Ri ∩
⋂
a∈A
{(u, v) | (t(u)(a), t(v)(a)) ∈ Ri}.

Then there is a j such that Rj = Rj+1. The largest K-linear bisimulation ≈L on V is then
identical to Rj.

Proof. Suppose span(V∗) is finitely generated. Since Vn ⊆ Vn+1 for all n, and V∗ =
⋃∞
n=0 Vn,

we have, for some j, span(V∗) = span(Vj) = span(Vj+1). Below we show that ker(!j) =
ker(!j+1). It follows from Proposition 4.1 that Rj = Rj+1 The rest of the proof is identical
to the one for Proposition 4.2.

It is immediate from Proposition 4.1 that ker(!j+1) ⊆ ker(!j), as Rj+1 ⊆ Rj . To prove the
containment in the other direction, suppose (u, v) ∈ ker(!j). Then σl(u)(w) = σl(v)(w) for all
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Figure 4. A K-linear weighted automaton over the ring Z

x0

x1 1

a, 1

a, 2

x2

x3 1

x4 1

a, 1

a, 1

a, 2

w ∈ A∗j from Equation 4.2. Now, since span(Vj) = span(Vj+1), any element of Vj+1 is a linear

combination of elements of Vj , i.e., for any w′ ∈ A∗j+1 we have, σl( )(w′) =
∑n

i=1 σl( )(wi)
for some wi ∈ A∗j , 1 ≤ i ≤ n. Therefore,

σl(u)(w′) =

n∑
i=1

σl(u)(wi) for some wi ∈ A∗j , 1 ≤ i ≤ n

=
n∑
i=1

σl(v)(wi) since σl(u)(w) = σl(v)(w) for all w ∈ A∗j

= σl(v)(w′),

i.e., (u, v) ∈ ker(!j+1).

However, even when the final sequence stabilizes after a finite number of steps, in general
there is no effective procedure to compute the kernel of a K-linear map for a semiring K.
This is because unlike in R, Z and N, for semirings in general we do not have a procedure
for linear equation solving; the problem is undecidable for certain semirings [Nar96]. We
conclude this section by presenting a couple of examples from different semimodules to
illustrate how our procedure works.

Example 4.4. Figure 5 shows a K-LWA (V, 〈o, t〉), adapted from [Sak16], over the al-
phabet A = {a}. The semiring K is the ring Z of integers. Here V = Z(X) where
X = {x0, x1, x2, x3, x4}. In the example, the maps o and t are generated from their values
shown against the nodes and edges, respectively, by linear extension. Missing values against
nodes are assumed to be zero. Note that V is not Artinian but span(V∗) is indeed finitely
generated. To see this, V3 consists of the set containing the following maps from X to Z

σl( )(ε) = {x0 7→ 0, x1 7→ 1, x2 7→ 0, x3 7→ 1, x4 7→ 1}
σl( )(a) = {x0 7→ 1, x1 7→ 2, x2 7→ 1, x3 7→ 1, x4 7→ 2}

σl( )(aa) = {x0 7→ 2, x1 7→ 4, x2 7→ 1, x3 7→ 2, x4 7→ 4}.

Now, it is easily seen that for all x ∈ X and n ≥ 2, σl(x)(an) = 2n−2σl(x)(aa). Therefore,
span(V∗) is generated by V3. To apply the partition refinement procedure to this K-LWA,
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Figure 5. A K-linear weighted automaton over the semiring K =
([0, 1],max, ., 0, 1)

x0 1

x1 1 x2 1

b, 1

a, 0.1

a, 0.5

b, 1

b, 1

a, 0.1

we use Propositions 4.1 and 4.3. We have

R0 = ker(o) = {(u, v) |u =

4∑
i=0

cixi, v =

4∑
i=0

dixi, where ci, di ∈ Z for i ∈ [0, 4]

and

c1 + c3 + c4 = d1 + d3 + d4},

as x1 , x3 and x4 are the only states with nonzero weights and all of them have weight one.
In the next iteration, we have

R1 = R0 ∩ {(u, v) | u =
4∑
i=0

cixi, v =
4∑
i=0

dixi, where ci, di ∈ Z for i ∈ [1, 4]

and

c0 + 2c1 + c2 + c3 + 2c4 = d0 + 2d1 + d2 + d3 + 2d4},

as all the edges have weight one except the loops on x1 and x4, which have weight two. It is
clear that R2 = R1, since we take the intersection with the same set in obtaining R1 from
R0 as in obtaining R2 from R1. Therefore, the K-linear bisimilarity relation, i.e., weighted
language equivalence, is given by the set of all pairs (u, v) with u =

∑4
i=0 cixi, v =

∑4
i=0 dixi

satisfying the integer equations

c1 + c3 + c4 = d1 + d3 + d4

c0 + 2c1 + c2 + c3 + 2c4 = d0 + 2d1 + d2 + d3 + 2d4.

When V = Z(X) for a finite set X, it can be shown that the number of iterations of
the loop computing Ri+1 from Ri is bounded by |X| and termination then follows from the
decidability of linear integer arithmetic. A more efficient algorithm for deciding language
equivalence between states in X (and not the entire V (X) as in our case) appears in [BLS05].
In fact, this problem is decidable for any semiring that is a subsemiring of a field [Sak09].

Example 4.5. Figure 5 shows a K-LWA (V, 〈o, t〉), adapted from [KK18], over the alphabet
A = {a, b} and semiring K = ([0, 1],max, ., 0, 1). Here V = K(X) where X = {x0, x1, x2}.
It can be checked that V is not an Artinian semimodule but V∗ is finitely generated. As
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in the example above, we use Propositions 4.1 and 4.3 to apply the partition refinement
procedure. We have

R0 = ker(o) = {(u, v) | u =
2∑
i=0

cixi, v =
2∑
i=0

dixi, where ci, di ∈ [0, 1] for i ∈ {0, 1, 2}

and

max{c0, c1, c2} = max{d0, d1, d2}}.

In the next iteration we have,

R1 = R0 ∩ {(u, v) | u =
2∑
i=0

cixi, v =
2∑
i=0

dixi, where ci, di ∈ [0, 1] for i ∈ {0, 1, 2}

and (t(u)(a), t(v)(a)) ∈ R0

and (t(u)(b), t(v)(b)) ∈ R0}.

In the above expression, t(u)(a) = max{0.1c0, 0.5c1, 0.1c1}, t(v)(a) =
max{0.1d0, 0.5d1, 0.1d1}, t(u)(b) = max{c1, c2} and t(v)(b) = max{d1, d2}. Again, we
can check that R2 = R1. The resulting linear equations over K can be solved by using the
theory of l-monoids and residuation [KK18].

4.2. Related Partition Refinement Algorithms. For specific semirings, algorithms
have been proposed in the case of probabilities [KMO+11], fields [Bor09], rings [DK12],
division rings [FL97] and principal ideal domains [BLS05].

The approach to partition refinement which has some similarity with ours is by König and
Küpper [KK18]. This section is a brief summary of their work followed by a comparison with
the current paper. The paper generalizes the partition refinement algorithm to a coalgebraic
setting, just as this paper. It proposes a generic procedure for language equivalence for
transition systems, of which weighted automata over arbitrary semirings form an important
special case. However, unlike the usual partition refinement approach, [KK18] does not
provide a unique or canonical representative for the weighted language accepted, in general.
The procedure based on the approach is not guaranteed to terminate in all cases, but does
so for particular semirings, just as in our case. It is based on a notion of equivalence classes
of arrows and involves solving linear equations for a given semiring.

In more detail, [KK18] uses M(K), the category of finite sets and matrices over the
semiring K with matrix multiplication as composition, as the base category. This is just
the Kleisli category of the free semimodule monad and is equivalent to the category of free
semimodules over finite sets that we use. The endofunctor F overM(K) defining a weighted
automaton is given by FX = 1 +A×X. This can be seen as being equivalent to our L, as
the paper [KK18] uses matrices as arrows rather than maps.

The paper presents two generic procedures for partition refinement, where the second is
just an optimized version of the first. The basic ingredient in the theory which is new is a
preorder on objects and arrows of a concrete category C. For objects X and Y in C, this is
defined by X ≤ Y if there is an arrow f : X → Y . The relation X ≡ Y holds when X ≤ Y
and Y ≤ X. For arrows f : X → Y and g : X → Z with the same domain, f ≤X g if there
exists an arrow h : Y → Z such that g = h ◦ f . Similarly, f ≡X g if f ≤X g and g ≤X f . It
is easy to check that ≤ and ≤X are preorders and ≡ and ≡X are equivalence relations.
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Given a coalgebra α : X → FX in C and an arrow f : X → Y , f is called a postfixed
point if f ≤X Ff ◦ α. This is equivalent to the existence of a coalgebra β : Y → FY
with f an F -homomorphism by simply taking β as the mediating morphism that witnesses
f ≤X Ff ◦ α. The paper then shows that the largest postfixed point f : X → Y induces
behavioural equivalence: x ≈F y if and only if f(x) = f(y).

The first partition refinement procedure in [KK18], called Procedure A, uses the final
sequence construction to find the largest postfixed point for general coalgebras. The second,
called Procedure B, is an optimized version intended for weighted automata over a semiring.
Both procedures take a coalgebra α : X → FX as input, and if they terminate, return a
coalgebra β : Y → FY along with an F -homomorphism f : X → Y from α to β that induces
behavioural equivalence on X: x ≈F y if and only if f(x) = f(y). Here x and y are elements
of the underlying set of X. Note that β need not be the final coalgebra in general.

Procedure A constructs the arrows !n : X → Fn(1) in the diagram below

1 F (1) F 2(1) . . .

X

! F (!) F 2(!)

!0
!1

!2 (4.4)

by induction as follows: !0 : X → 1 is the unique arrow to the terminal object and !n+1 =
F (!n) ◦ α : X → Fn+1(1). What is novel here is the termination condition for Procedure
A, namely !n ≤X !n+1, i.e., there is an arrow β : Fn(1) → Fn+1(1) such that β◦!n =!n+1.
This condition is equivalent to !n ≡X !n+1, which is weaker than requiring that Fn(!) is an
isomorphism, i.e., the elements of the cochain stabilize at n, as is the case for our procedure.
This can lead to earlier termination for Procedure A. When applied to weighted automata
over a semiring K, the procedure yields for each n, !n+1(x)(w) = σl(x)(w) for w ∈ A∗n,
just as in our case; see Equation 4.2. The termination condition then reduces to checking
whether the semimodule span({σl( )(w) | w ∈ A∗n+1}) equals span({σl( )(w) | w ∈ A∗n}), the
condition in Proposition 4.3, which can be done by solving linear equations in the semiring
K.

Procedure B replaces !n for each n by any en such that !n ≡X en, thus potentially reducing
the search space. The termination depends on the semiring. In particular, termination is
guaranteed when the semimodule K(X) is Artinian, as well as when the weaker condition
mentioned in Proposition 4.3 holds. To summarize, although the termination condition for
the procedures in [KK18] is different from ours and it can lead to more efficiency in principle,
the underlying framework of the final chain is identical to ours. The question whether there
are examples where Procedure A (or B) terminates and our procedure does not is still open.

5. Conclusion

In this paper we have continued the programme in Bonchi et al. [BBB+12] of a coalgebraic
theory of bisimulation of weighted automata. We have generalized the formal framework to
one based on weighted automata on semirings rather than fields. As we have shown, almost
all the results of [BBB+12] continue to hold except for the partition refinement algorithm.
The latter necessarily depends on the specific type of semiring involved. Hence we can only
propose an abstract procedure for partition refinement that may not, in general, halt or
lead to a solution even if it halts, because of the the lack of enough operations. We have
provided sufficient conditions for the procedure to halt. We have also compared our work
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with that in [KK18], which provides another partition refinement algorithm for weighted
automata over semirings in the coalgebraic framework.
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