Time-triggered Scheduling for Multiprocessor
Mixed-criticality Systems

Lalatendu Behera and Purandar Bhaduri

Indian Institute of Technology Guwahati 781039, India
{lalatendu,pbhaduri}@iitg.ernet.in

Abstract. Real-time safety-critical systems are getting more complex
by integrating multiple applications with different criticality levels on
a single platform. The increasing complexity in the design of mixed-
criticality real-time systems has motivated researchers to move from
uniprocessor to multiprocessor platforms. In this paper, we focus on the
time-triggered scheduling of both independent and dependent mixed-
criticality jobs on an identical multiprocessor platform. We show that
our algorithm is more efficient than the Mixed criticality Priority Im-
provement (MCPI) algorithm, the only existing such algorithm for a
multiprocessor platform.

1 Introduction

A mized-criticality real-time system (MCRTS) [1,2] has two or more distinct
levels of criticality, such as, safety-critical, mission-critical, non-critical, etc. For
example in the domain of unmanned aerial vehicles (UAV’s) [3,2] the func-
tionalities are classified into two levels of criticality, viz., mission-critical (e.g.,
capturing and transmitting images) and flight-critical (e.g., safe operation of the
UAV). The flight-critical functionality, due to its safety critical nature, is subject
to certification by a certification authority (CA). The CAs are very conservative,
using tools and techniques that estimate more pessimistic worst-case execution
times (WCET) than that of the system designers. On the other hand, the CAs
are not concerned with the mission-critical functionalities. The system designers
are interested in both flight-critical and mission-critical functionalities but their
tools are less conservative in estimating the WCETs.

The challenge in scheduling such mixed critical systems is to find a single
scheduling policy so that the requirements of both the system designers and
the CAs are met. This means that in a scenario where all the jobs complete
their executions by their LO-criticality WCETSs, they must all be scheduled
correctly. On the other hand, in a scneario where the execution time of any one
HI-criticality job exceeds its LO-criticality WCET, then all the HI-criticality
jobs need to meet their deadlines assuming their Hl-criticality WCET to satisfy
the CAs.

In this paper, we describe an approach to find a preemptive, global, time-
triggered schedule of mixed-criticality, non-recurrent task systems on identical

multiprocessor platforms that can satisfy the assumption of both the CAs and
SDs. We show that the worst-case time complexity of our proposed algorithm
is better than the existing algorithm in [4], the only existing time-triggered
algorithm for such systems.

2 System Model

A mixed-criticality system consists of n jobs {ji,j2,...,jn}, each with a crit-
icality level. Here we focus on dual-criticality jobs, i.e., LO-criticality and
Hl-criticality. A job j; is characterized by a 5-tuple of parameters: j; =
(ai, di, xi, Ci(LO), C;(HI)), where

— a; € N denotes the arrival time, a; > 0.

— d; € NT denotes the absolute deadline, d; > aj;.

— xi € {LO, HI} denotes the criticality level.

— C;(LO) € N* denotes the LO-criticality worst-case execution time.
— C;(HI) € N denotes the Hl-criticality worst-case execution time.

We assume that the system is preemptive and C;(LO) < C;(HI) for 1 <i < n.
Note that in this paper, we consider arbitrary arrival times of jobs. An instance
of mixed-criticality job set can be defined as a finite collection of mixed-criticality
jobs, i.e., I = {j1,42,...,Jn}. Generally, a job in the instance I is available for
execution at time a; and should finish its execution before d;. The job j; must
execute for ¢; amount of time which is the actual execution time between q;
and d;, but this can be known only at the time of execution. The collection of
actual execution times (¢;) of the jobs in an instance I at run time is called
a scenario. Scenarios in our model can be of two types, i.e., LO-criticality
scenarios and HI-criticality scenarios. When each job j; in instance I executes
¢; units of time and signals completion before its C;(LO) execution time, it is
called a LO-criticality scenario. If any job j; in instance I executes ¢; units of
time and doesn’t signal its completion after it completes the C;(LO) execution
time, then this is called a HI-criticality scenario. Now we define a schedulability
condition for a mixed-criticality instance I.

Definition 1: A scheduling strategy is feasible or correct if and only if the
following conditions are true:

1. If all the jobs finish their C;(LO) units of execution time on or before their
deadlines.

2. If any job doesn’t declare its completion after executing its C;(LO) units of
execution time, then all the HI-criticality jobs must finish their C;(HI) units
of execution time on or before their deadlines.

Here we focus on the time-triggered schedule [5] of MC instances on a
multiprocessor system with identical processors. We will construct two tables
Sur and Spo for each processor for a given instance I for use at run time. The
length of the tables is the length of the interval [min;,er{a;}, max;,er{d;}]. The
rules to use the tables Sy; and Spo at run time, (i.e., the scheduler) are as
follows:

The criticality level indicator I is initialized to LO.

While (I = LO), at each time instant t the job available at time t in the
table St,0 for processor P; will execute on P;.

If a job executes for more than its LO-criticality WCET without signaling
completion in any processor P;, then I is changed to HI.

While (I" = HI), at each time instant t the job available at time t in the
table Syp for processor P; will execute on P;.

3 Related Work

Most research on mixed-criticality systems focuses on the uniprocessor case (see
for example, [2,6]). The increasing functionalities in mixed-criticality systems
motivate researchers to turn to multiprocessor systems (see [7-10,4]). Among
the above cited work only [5,6] focus on a time-triggered scheduling algorithm
for uniprocessor systems and [4] introduces a time-triggered scheduling algo-
rithm for multiprocessor systems. To the best of our knowledge, there has not
been any other work studying time-triggered mixed-criticality scheduling for
multiprocessor systems.

Socci et al. [4] proposed the Mixed criticality Priority Improvement (MCPI)
algorithm to schedule jobs with precedence constraints. In this algorithm, they
construct a priority order of jobs from the support algorithm (i.e., a multi-
processor algorithm for non-critical jobs) which is used to find a table for the
LO-scenario and the support algorithm is used to schedule the Hl-criticality jobs
in Hl-scenarios. They showed the worst-case time complexity of the algorithm
to be O(n? + mn?logn) for independent jobs, where n is the number of jobs in
the instance I and m is the number of processors.

4 The proposed algorithm

In this section, we propose an algorithm for mixed-criticality jobs on multipro-
cessor systems which not only schedules the same set of instances as the existing
algorithm [4] but also has a better worst-case time complexity.

The time-triggered scheduling approach to mixed-criticality jobs [4] con-
structs two scheduling tables St,o and Syr to schedule a dual-criticality instance.
Since we consider mixed-criticality jobs for a multiprocessor system, we need two
separate scheduling tables for each processor. The schedule constructed by our
algorithm is a global one, i.e., a job can be preempted in one processor and
resume its execution in another processor. Here we assume that the system is
a closely coupled synchronous homogeneous multiprocessor system with shared
last level cache and the job context switch time is negligible. We also assume
that the cache miss penalty is negligible.

Algorithm 1 determines a priority order, which is used to construct the
scheduling tables for all the processors, in steps 1 to 11. First, our algorithm
finds the LO-scenario deadline (d,;A) of each job. For the LO-criticality jobs
diA = d;, but for Hl-criticality ones dZ-A < d;. Then the algorithm starts to

Algorithm 1 LoCBP (LO-criticality based Priority)

Notation:

I ={j1,42, ., jn}, where j; =< a;, d;, x4, Ci(LO), C;(HI) >.
Input : I

Output : Priority Order (¥) of Instance I

Assume the earliest arrival time is 0.

1: Compute the LO-scenario deadline (d;2) of each job j; as d;® = d; — (C;(HI) — C;(LO));

2: while I is not empty do

3: Assign a LO-criticality latest deadline! job j; as the lowest priority job if j; can finish its

execution in the interval [a;, d,-A} after all other jobs finish their execution in LO-scenario
under the global EDF scheme;

4: If any LO-criticality job cannot be given a lowest priority then a HI-criticality latest

deadline! job j; is assigned as the lowest priority job if j; can finish its execution in the

interval [a;, diA} after all other jobs finish their execution in LO-scenario under the global

EDF scheme;

if No job is assigned a lowest priority then
Declare FAIL and EXIT;
else
Add job j; to the priority order ¥;
Remove job j; from the instance and continue;
end if

: end while

: Construct table St,o for each processor using the priority order;

1 if anyHIscenarioFailure(SyLo,I,¥) then

return FAIL and EXIT;

: end if

: The same order as Sp,o is followed to allocate the jobs in Syr;

. After a Hl-criticality job j; is allocated its C; (LO) execution time in Syy, C;(HI)—C;(LO)
units of execution time of job j; is allocated after the rightmost segment of job j; in S10o
without disturbing the priority order ¥ and overwriting LO-criticality jobs in the process,
if any;

= b e
NOUAWLNROPRIDN

assign the lowest priority jobs from the instance I. It always selects the latest
deadline job to be assigned as the lowest priority job, but LO-criticality jobs
are considered before the Hl-criticality jobs. A job j; can be assigned the lowest
priority if and only if all other jobs ji finish their executions when run according
to the global EDF algorithm and there remains sufficient time for j; to complete
its C;(LO) units of execution time before d;?. After job j; is assigned the lowest
priority, it is removed from the instance, and the remaining jobs are considered
for priority assignment. If at any step a job cannot be assigned a priority, the al-
gorithm declares failure. In step 10, the algorithm constructs table S;,o. In steps
11 to 13, it checks for any possible Hl-criticality scenario failure. The subroutine
anyHI scenarioFailure(Spo, I, ¥) checks if at least one job runs at its C;(HI)
execution time, then all Hl-criticality jobs must complete their Hl-criticality ex-
ecution before their deadline. If it doesn’t find a HI-criticality scenario failure
from the subroutine anyHI scenarioFailure(Syo,I,¥), then the priority order
constructed by Algorithm 1 can successfully schedule the instance I. Algorithm 1
constructs table Sp,o for each processor. Then Table Sy is constructed for each
processor by allocating the remaining C;(HI) — C;(LO) units of execution time
of each HI-criticality job after its C;(LO) units of execution time in Sy using

! The original deadline and not the LO-scenario one.

the same priority order and also a HI-criticality job is given higher priority over

LO-criticality jobs. This means a Hl-criticality job can overwrite a LO-criticality

job in the process of allocating its C;(HI) — C;(LO) units of execution time.
We illustrate the operation of this algorithm by an example.

Example 1: Consider the mixed-criticality instance given in Table 1 to be sched-
uled on a multiprocessor system having two identical processors Py and P;.

Table 1. The instance for Example 1

Job|Arrival time|Deadline|Criticality|C;(LO)|C; (HI)
Ji 1 5 LO 3 3
72 0 8 LO 1 1
s 0 7 HI 3 5
ja 0 1 HI 2 2

Now we construct a priority order using our algorithm. The LO-scenario
deadlines diA of jobs j1, jo2, j3, ja are 5,8, 5, 4 respectively. Now we start assigning
priorities to each job.

— The job jo is the latest LO-criticality deadline job. If jo is assigned the lowest
priority, then j3 and j4 can run simultaneously in Py and P; over [0, 3] and
[0, 2] respectively. Then j; will run over [2,5] in P;. So j2 can execute its 4
units of execution time in Py over [3,7] to finish by its deadline. Now we can
assign job jo the lowest priority. We remove job jo and consider {j1, js, ja}
to find the next lowest priority job.

— If j; is assigned the lowest priority, then j3 and j4 can run simultaneously on
Py and P; over [0, 3] and [0, 2] respectively. Then j; will run over [2,5] in P;.
So j1 can execute its 3 units of execution time in P; over [2, 5] to finish by
its deadline. Now we can assign job j; the lowest priority. Next, we remove
the job j; and consider {js, j4} to assign the next lowest priority.

— Since there are two jobs and two processors, any job can be given lower
priority among the two. But our algorithm assigns the latest deadline job as
the lowest priority job. So job j3 is given the lowest priority.

Finally, the priority order of the jobs in instance I is j4 b j3 > j1 > jo. Now
Algorithm 1 constructs the table Si,o for each processor using the above priority
order. The table S0 for each processor is given in Fig. 1.

Then the anyHIscenarioFailure(Syo, I, W) subroutine checks for all pos-
sible Hl-criticality scenarios. We can check that all Hl-criticality scenarios are
schedulable using the priority order {j4, js, j1, j2} of I. Finally, table Spr is con-
structed for each processor by allocating the remaining C;(HI) — C;(LO) units
of execution time of each Hl-criticality job after its C;(LO) units of execution
time in Spy using the same priority order, where a Hl-criticality job is given
higher priority over LO-criticality jobs. The table Sy for each processor is given

in Fig. 2.

O

P s I J2 I P, J3
Py| 7a | J1 | SHIPO Ja J1

Srd

Fig. 1. Table Spo for processor Py and Fig. 2. Table Sur for processor Py and
P1 Pl

4.1 Correctness Proof

For correctness, we have to show that if our algorithm finds a priority order for
instance I and the anyHI scenarioFailure(Spo,I) subroutine doesn’t fail, then
the scheduling tables Spo and Sy will give a correct scheduling strategy. We
start with the proof of some properties of the schedule.

Lemma 1: If Algorithm 1 doesn’t declare failure and finds a priority order, then
each job j; receives C;(LO) units of execution time in S, and each HI-criticality
job ji receives Ci(HI) units of execution time in Spy.

Proof. First, we show that any job j; receives C;(LO) units of execution time
in Sp,o. This follows directly from the algorithm as each job j; must finish its
C;(LO) units of execution time before d;? < d; to be assigned the lowest priority
job.

Next we show that any HI-criticality job jj receives Ci(HI) units of exe-
cution time in Syr. We construct the table Sy according to the same priority
order. Since anyHIscenarioFailure(Syo, I,) subroutine doesn’t find any HI-
criticality scenario failure, so all the HI-criticality jobs have received their C;(HI)
units of execution time. O

Lemma 2: At any time t, if a job j; is present in Sy but not in Sp,o, then the
job j; has finished its execution in Sy,o.

Proof. We use the same order of jobs in S1o to construct Sui. Whenever a job j;
has executed for time ¢; < C;(LO) at time t, then it is present in both the tables
Spo and Sgr. We know the HI-criticality jobs are allocated their C; (HI)—C; (LO)
units of execution time after the allocation of C;(LO) units of execution time in
both Sy and Spo. In Syp, the Hl-criticality jobs are higher priority job than
LO-criticality jobs. When a job j; is present in Sy and not in Spo at time t, it
means this has already completed its execution in Si,o. O

Lemma 3: At any time t, when a mode change occurs, each Hl-criticality job
still has C;(HI) — ¢; units of execution time in Sy after time ¢ to complete its
execution, where ¢; is the execution time already completed by job j; before time
t in SLO-

Proof. Let a mode change occur at time t. This means that the following state-
ments hold: (i) all the HI-criticality jobs other than the current job, or none

of them has completed their C;(LO) units of execution time at time t, (ii) the
current Hl-criticality job is the first one to complete its C;(LO) units of execu-
tion time without signaling its completion. We know that all the Hl-criticality
jobs are allocated their C;(HI) — C;(LO) units of execution time in Sy after
the completion of their C;(LO) units of execution time in both Spo and Sgy. If
a job j; has already executed its C;(LO) units of execution time in S, then
it requires C;(HI) — C;(LO) units of time to be completed in Sy;. When job j;
initiates the mode change, this is the first job which doesn’t signal its completion
after completing its C;(LO) units of execution time. Before time t, the sched-
uler uses the table S1,0 to schedule the jobs, while subsequently the scheduler
uses table Sy due to the mode change. If a job j; has already executed its ¢;
units of execution time in Sy,o, then it requires C;(HI) — ¢; units of time to be
completed its execution in Sy;. We know that the tables Sy; and Spo have the
same order and according to Lemma 1 and 2, each job will get sufficient time to
complete its C;(HI) units of execution time. Hence, each Hl-criticality job will
get C;(HI) — ¢; units of time in Sy; to complete its execution after the mode
change at time t. O

Theorem 1: If the scheduler dispatches the jobs according to Spo and Swr,
then it will be a correct scheduling strategy.

Proof. For the LO-criticality scenarios, all the jobs can be correctly scheduled
by the table Spo as proved in Lemma 1. Now, we need to prove that in a HI-
criticality scenario, all the Hl-criticality jobs can be correctly scheduled by the
table Syr. In Lemma 1, we have already proved that all the HI-criticality jobs
get sufficient units of time to complete their execution in Syi. In Lemma 3, we
have proved that when the mode change occurs at time t, all the Hl-criticality
jobs can be scheduled without missing their deadline. So from Lemma 1 and
Lemma 3, it is clear that if the scheduler uses tables S0 and Sy to dispatch
the jobs then it will be a correct scheduling strategy. O

4.2 Comparison with MCPI algorithm

Theorem 2: An instance I is schedulable by the MCPI algorithm [4] if and only
if it is schedulable by our algorithm.

Proof. (=) The MCPI algorithm generates a priority order for an instance I
which is used to find table S;,0. When a mode change occurs, it uses a support
algorithm to schedule the Hl-criticality jobs of instance I. We need to show that if
MCPI generates a priority order for an instance I, then our algorithm will always
find a priority order for instance I and the anyHIscenarioFailure(Sro,I,¥)
subroutine will not fail.

Suppose the MCPI algorithm finds a priority order for an instance I. Now
the least priority job of the priority order (according to the MCPI algorithm)
can be either a LO-criticality or Hl-criticality job. First, we consider the case
where a job is of LO-criticality. Let j; be the lowest priority job and its criticality

be low. So at the time of construction of the table Sy o, every higher priority job
Jji finishes its Cx(LO) units of execution time and there remains sufficient time
for the lowest priority job j; to finish its C;(LO) units of execution time in the
interval [a;, d;]. So this condition is the same as our proposed algorithm.

Let job j; be the lowest priority job and its criticality be high. Since MCPI
successfully finds the priority order, it must have checked all the scenarios and
didn’t find any failure. Now after every higher priority job jj finishes its Cj(LO)
units of execution time, there remains sufficient time for the lowest priority job j;
to finish its C;(LO) units of execution time in the interval [a;, d#']. Unlike the LO-
criticality job, the HI-criticality jobs need to finish their LO-criticality execution
on or before d2. So this condition is the same as our proposed algorithm.

Then j; is removed from the instance and the next priority can be assigned
from the remaining jobs. We can argue in the same way for the remaining jobs.
From the above argument, it is proved that our proposed algorithm finds the
same priority order for instance I as the MCPT algorithm. Since the priority order
is the same and the MCPI algorithm doesn’t find any Hl-scenario or LO-scenario
failure, the anyHIscenarioFailure(Spo,I,¥) subroutine in our algorithm will
not fail as well. Thus, for a MCPI schedulable instance, our algorithm can also
construct priority tables S0 and Syj.

(«<=) Our algorithm generates a priority order for an instance I which is used
to find the table Sy 0. When a mode change occurs, our algorithm uses the table
Sui to schedule the HI-criticality jobs which is constructed from the job ordering
in Sp,o. We need to show that if our algorithm generates a priority order for an
instance I, then the MCPI algorithm will always find a priority order and the
anyHIScenarioFailure(PT,T) subroutine will not fail.

Suppose our algorithm finds a priority order for an instance I. The least
priority job assigned by our algorithm can be either a Hl-criticality or a LO-
criticality job. First, we consider the case where the lowest priority job is LO-
criticality. Let j; be the lowest priority job and its criticality be LO which means
the job j; finishes its execution between its arrival time and deadline after all
other jobs finish their execution. So according to the priority table (SPT) of
MCPI, job j; can be given the lowest priority among the LO-criticality jobs.
Since the job can meet its deadline after all other jobs finish their execution, the
PullUp() subroutine [4] will pull up the HI-criticality jobs upward in the priority
tree. So according to the MCPI algorithm the job j; is the lowest priority job
among the Hl-criticality jobs as well. This shows that the job j; is the lowest
priority job according to the MCPI algorithm.

Now assume j; is the lowest priority job and its criticality is HI which means
the job j; can finish its execution between its arrival time and deadline after all
other jobs finish their execution. Since our algorithm prefers LO-criticality jobs
to assign the lowest priority over Hl-criticality jobs, there are no LO-criticality
jobs available which can be assigned the lower priority. As in the previous case,
job j; is the lowest priority job in theSPT priority table of the MCPI algorithm.
Since no LO-criticality job can finish its execution after the execution of job j;,
the PullUp() subroutine will not be able to pull up the HI-criticality job upward

in the priority tree. So job j; is the lowest priority job according to the MCPI
algorithm.

So both the algorithms generate the same priority order for in-
stance I. Since our algorithm doesn’t find any Hl-scenario failure in the
anyHI scenarioF ailure(Syo, I, ¥) subroutine, the MCPT algorithm also doesn’t
find any HI-scenario failure in its anyH I scenarioF ailure() subroutine. 0

Theorem 3: The computational complexity of LoBCP is O(mn?), where n is
the number of jobs in an instance I and m is the number of processors.

Proof. Line 1 takes O(n) time. In lines 3 and 4, finding the latest deadline job
takes O(nlogn) time, simulation of global EDF on m processors takes O(mn?)
times [11]. So the total time taken by lines 3 and 4 is O(nlogn + mn?). Lines
5 to 10 take O(1) time. Since the while loop in line 2 runs n times, line 3 to 10
require a total of O(n?logn + mn3) time, i.e., O(mn?). Lines 12, 13 to 15, 16
and 17 takes O(mn?) time each. So the overall time complexity of our algorithm
is O(mn?). O

This is in contrast to MCPI [4], the only existing time-triggered scheduling
algorithm for mixed-criticality systems on multiprocessors, whose complexity is
O(mn3logn).

5 Extension for Dependent Jobs

In previous sections, we have discussed instances with independent jobs. Now,
we discuss the case of the dual-criticality instances with dependent jobs. In this
section, we modify the algorithm given in Section 4 to find the scheduling tables
such that if the scheduler discussed in Section 2 dispatches the jobs according
to these scheduling tables then it will be a correct online scheduling strategy
without disturbing the dependencies between them. There exists an algorithm [4]
which can schedule the jobs of an instance I with dependencies with worst-case
time complexity O(En? + mn3logn), where n is the number of jobs, E the
number of edges in the DAG and m the number of processors. We claim that our
algorithm has a better worst-case time complexity than the existing algorithm.

5.1 Model

We use the same model as discussed in Section 2. Additionally, an instance of a
mixed-criticality system containing dependent jobs can be defined as a directed
acyclic graph (DAG). An instance I is represented in the form of I(V, E), where
V' represents the set of jobs, i.e., {j1,j2,...,Jn} and E represents the edges
which depict dependencies between jobs. We assume that a Hl-criticality job can
depend on a LO-criticality job only if the HI-criticality job depends upon another
HI-criticality job. This means, there are some instances where an outward edge
from a LO-criticality job j; becomes an inward edge to a Hl-criticality job jp,
with another inward edge from a Hl-criticality job jp to job jn;.

Definition 2: A dual-criticality MC instance I with job dependencies is said to
be time-triggered schedulable on a multiprocessor system if it is possible to
construct the two scheduling tables S0 and Sy for each processor of instance I
without violating the dependencies, such that the run-time algorithm described
in Section 2 schedules I correctly.

5.2 The Algorithm

Here we propose an algorithm which can construct two scheduling tables S0
and Syp for a dual-criticality instance with dependent jobs. A DAG of mixed-
criticality jobs is MC-schedulable if there exists a correct online scheduling policy
for it. Our algorithm finds a LO-criticality priority order for the jobs of instance
I which is used to construct the table Spo. Then the same job allocation or-
der of Spo is used to construct the table Syr, where HI-criticality jobs have
greater priority than LO-criticality jobs, and the Hl-criticality jobs are allocated
their C;HI units of execution time in Sy without violating the dependency con-
straints. The priority between two jobs j; and ji is denoted by j; > ji, where j;
is higher priority than ji. This priority ordering must satisfy two properties:

— If a node j; is assigned higher priority than node ji (i.e., j; > ji), then there
should not be a path in the DAG from node jj to node j;.

— If the DAG is scheduled according to this priority ordering then each job j;
of the DAG must finish its C;(LO) units of execution time before d4.

Now we present the algorithm DP_LoCBP which finds a priority order for mixed-
criticality dependent jobs.

Algorithm 2 finds a priority order which is used to construct the scheduling
tables for all the processors in steps 1 to 11. First, our algorithm finds the LO-
scenario deadline (d,;A) of each job. For the LO-criticality jobs d;* = d;, but
d;? < d; for the HI-criticality jobs. Then the algorithm starts to assign the
lowest priority jobs from the instance I. It always selects the latest deadline job
which doesn’t have an outward edge as the lowest priority job, but LO-criticality
jobs are considered before the HI-criticality jobs. A job j; can be assigned the
lowest priority if and only if all other jobs ji finish their execution and there
remains sufficient time for j; to complete its C;(LO) units of execution time
before d;°. After a job j; is assigned the lowest priority, it is removed from
the instance and added to the priority order ¥. Then the remaining jobs are
considered for priority assignment. If at any step a job cannot be assigned a
priority, the algorithm declares failure. In step 12, the algorithm constructs the
table Spo. In steps 13 to 15, it checks for any possible HI-criticality scenario
failure. If it doesn’t find a Hl-criticality scenario failure, then the priority order
constructed by Algorithm 2 can successfully schedule the instance I. Then the
table Sy is constructed for each processor by allocating C; (HI) units of execution
time of each HI-criticality job using the same order of allocated jobs as Sipo
where a Hl-criticality job is given higher priority over LO-criticality jobs. In Sy
each Hl-criticality job is allocated its C;(LO) units of execution time without

Algorithm 2 DP_LoCBP

Notation:

I ={j1,52, .., jn}, where j; =< a;, di, xi, Ci(LO), C;(HI) >.
Input : [

Output : Tables Sy,0 and Suy

Assume earliest arrival time is 0.

1: Compute the LO-scenario deadline (d;?) of each job j; as d;2 = d; — (C;(HI) — C;(LO));

2: while I is not empty do

3 Assign a LO-criticality latest deadline job j; which doesn’t have an outward edge as the
lowest priority job if j; can finish its execution in the interval [a;, diA] after all other jobs
finish their execution in LO-scenario under the global EDF scheme;

4: If any LO-criticality job with no outward edge cannot be given the lowest priority then
a HI-criticality latest deadline job j; which doesn’t have an outward edge is assigned as
the lowest priority job if j; can finish its execution in the interval [a;, diA] after all other
jobs finishes their execution in LO-scenario under the global EDF scheme;

5 if No job is assigned a lowest priority then

6 Declare FAIL and EXIT;

7. else

8 Add the job j; to the priority order ¥.

9 Remove job j; from the instance and continue;

10 end if

11: end while

12: Construct table St for each processor P; using the priority order ¥;

13: if anyHIscenarioFailure(Syo, I, ¥) then

14 return FAIL and EXIT;

15: else

16 Construct table Syy for each processor P; using the same order of allocated jobs in St,0.

17 The same order as Sr,o is followed to allocate the jobs in Syr;

18 After a HI-criticality job j; is allocated its C;(LO) execution time in Sy, C;(HI) —
C;(LO) units of execution time of job j; is allocated after the rightmost segment of job j;
in S1,0 without violating the dependency constraints and without disturbing the priority
order ¥,

19: end if

violating the dependency constraints. Once the C;(LO) units of execution time
are allocated for HI-criticality jobs in Sy, the remaining C; (HI)—C;(LO) units of
execution time are allocated immediately without disturbing the priority order ¥
and without violating the dependency constraints. At each instant, the allocation
is done without violating the dependency constraints.

We illustrate the operation of this algorithm by an example.

Example 2: Consider the mixed-criticality instance given in Table 3 which is
going to be scheduled on a multiprocessor system having two homogeneous pro-
cessors, i.e., Py and P;. The corresponding DAG is given in Fig. 4.

Now we construct a priority order using our proposed algorithm. The LO-
criticality scenario diA of the jobs j1, j2, j3, ja.J5 are 3,3, 3, 2, 4 respectively. Next
we start assigning priorities to each job.

— We start with a node having no outward edges from it. The only such node
is job j5. So Algorithm 2 assigns job js the lowest priority. If js is assigned
the lowest priority, then j; and j, can run simultaneously in Py and P; over
[0,1] and [0, 1] respectively. Then j3 and j4 can run over [1,2] in Py and
P respectively. Then j5 can easily execute its 1 unit of execution on either

Fig. 3. Instance for Example 2

Job|Arrival time|Deadline|Criticality|C; (LO)|C;(HI)
J1 0 3 LO 1 1
J2 0 3 LO 1 1
Js 0 3 LO 1 1
ja 0 1 HI 1 3
75 1 6 HI 1 3

Fig. 4. A DAG showing job dependency among the jobs
given in Table 3

Py or P; over [2,3] to finish by its LO-scenario deadline (d#). Now we can
assign job js the lowest priority job.

We remove job j5 and consider {j1, jo, j3, j4} to find the next lowest priority job.

— Since the LO-criticality jobs are given the lowest priority by the proposed
algorithm, it is easy to verify that the successive lowest priority jobs will be
J1,J2 and j3 respectively. Finally, j4 is the highest priority job.

So the final priority order of jobs in instance I is j4 > j3 I j2 > j1 > j5. The table
Sro for each processor is given in Fig. 5.

Now the anyHI scenarioF ailure(Syo, I, ¥) subroutine checks for all possible
HI-criticality scenarios. We can check that all HI-criticality scenarios are schedu-
lable using the priority order js > j3 > jo I j1 I j5 of the instance I. Finally, the
table Sy is constructed for each processor by allocating C;(HI) units of exe-
cution time of each Hl-criticality job using the same order of allocated jobs in
Sro where a Hl-criticality job is given higher priority over a LO-criticality job.
On processor Py, the job order of Syr remains the same as in Spo. Job j4 is
a HI-criticality job and doesn’t depend on any other job, so it is allocated its
C;(LO) units of execution time over [0,1] and the remaining C;(HI) — C;(LO)
units of execution time are allocated in the interval [1,3]. Job j5 is allocated
in the interval [2, 3] in table S0 of Py. But js is allocated in the interval [3, 6]
due to dependency constraints which doesn’t affect the scheduling after a mode
change. On processor Pp, job j3 and jo (LO-criticality) which don’t depend on
any other jobs, are allocated their one unit of execution time in the intervals [0, 1]
and [1, 2] respectively. The table Syr for each processor is given in Fig. 6. O

s P | 73|72 g P |Js
LO HI -
Po|ja|g|Js Py Ja | Js

[

J2

Fig. 5. Table Sio for processor Py and Fig. 6. Table Sur for processor Py and
P1 Pl

5.3 Comparison with MCPI algorithm

Theorem 4: An instance I is schedulable by the MCPI algorithm [4] if and only
if it is schedulable by our algorithm.

Proof. = We need to show that if MCPI generates a priority order for an instance
I, then our algorithm will always find a priority order for instance I and the
anyHI scenarioF ailure(Syo, I, ¥) subroutine will not fail.

Suppose the MCPI algorithm finds a priority order for instance I. Now the
lowest priority job of the priority order (according to the MCPI algorithm) can
be either a LO-criticality or Hl-criticality job. First, we prove the case where a
job is LO-criticality and then Hl-criticality. Let j; be the lowest priority job and
its criticality be LO which means no other job depends on j;. So at the time
of construction of table Spo, every higher priority job ji finishes its Cj(LO)
units of execution time without violating the dependency constraints and there
remains sufficient time for the lowest priority job j; to finish its C;(LO) units
of execution time in the interval [a;, (d2)]. So this condition is the same as our
proposed algorithm.

Let job j; be the lowest priority, and its criticality be HI which means no
other job depends on j;. Since MCPI successfully finds the priority order, it must
have checked all the scenarios and doesn’t find any failure in the HI-scenario sit-
uations. After every higher priority job jj finishes its Cy(LO) units of execution
time, there remains sufficient time for the lowest priority job j; to finish its
C;(LO) units of execution time in the interval [a;, d'] without violating the de-
pendency constraints. The Hl-criticality jobs need to finish their LO-criticality
execution on or before d2* in LO-scenario, so that they have sufficient time to
finish their remaining C;(HI) — C;(LO) units of execution time before their dead-
line d;. This condition doesn’t violate the dependency constraints as it is the job
which doesn’t have an outward edge from it. So this condition is the same as
our proposed algorithm.

Then j; is removed from the instance I and the next priority can be assigned
from the remaining jobs. We can argue in the same way for the remaining jobs.
From the above argument, it is proved that our proposed algorithm finds the
same priority order, for instance I as the MCPI algorithm. Since the priority
order is the same and MCPI doesn’t find any HI-scenario or LO-scenario failure,
anyHI scenarioF ailure(Spo, I,¥) subroutine in our algorithm will not fail as
well. Thus, for a MCPI schedulable instance, our algorithm can also construct
priority tables Sp,o and Syy.

(<) Our algorithm generates a priority order for instance I which is used
to find the table Spo. When a mode change occurs, our algorithm uses the
table Sy; which is constructed from the job ordering in St to schedule the
HI-criticality jobs. We need to show that if our algorithm generates a priority
order for instance I, then the MCPI algorithm will always find a priority order
and the anyHIScenarioFailure(PT,T) subroutine will not fail.

Suppose our algorithm finds a priority order, for instance I. The lowest prior-
ity job assigned by our algorithm can be either a Hl-criticality or a LO-criticality
job. First, we consider the case where a job is LO-criticality. Let j; be the low-
est priority job, and its criticality be LO which means the job j; can finish
its execution between its arrival time and deadline after all other job finishes
their execution without violating the dependency constraints. So according to
the priority table (SPT') of MCPI, job j; can be given the lowest priority among
the LO-criticality jobs. Since the job can meet its deadline after all other jobs
finished their execution, the PullUp() subroutine will pull up the HI-criticality
jobs upward in the priority tree. So according to the MCPI algorithm, the job j;
is the lowest priority job among the Hl-criticality jobs as well. This shows that
the job j; is the lowest priority job according to the MCPI algorithm.

Let j; be the lowest priority job, and its criticality be HI which means the job
ji can finish its execution between its arrival time and deadline after all other
job finishes their execution without violating the dependency constraints. Since
our algorithm prefers LO-criticality jobs to assign the lowest priority over HI-
criticality jobs, there are no LO-criticality jobs available which can be assigned
lower priority than job j;. Our algorithm chooses the job with no outward edges
which means no job depends on the lowest priority job. So due to the dependency
constraints, all the LO-criticality jobs finish before job j;. Since no LO-criticality
job can finish its execution after the execution of job j;, the PullUp() subroutine
will not be able to pull up the Hl-criticality jobs upward in the priority tree. So
job j; is the lowest priority job according to the MCPI algorithm.

In the same way, we argue for the next priority assignment of jobs of instance
1. O

Theorem 5: The computational complexity of DP-LoCBP (Algorithm 2 on
page 11) is O(nE + mn?®), where n is the number of jobs, E the dependency
relations among the jobs in the instance I and m the number of processors in
the system.

Proof. Line 1 takes O(n) time. In lines 3 - 4, traversing each edges takes O(F)
time, simulation of global EDF on m processors takes O(mn?) times [12]. So
the total time taken by lines 3 and 4 is O(E + nlogn +mn?). Lines 5 to 9 take
O(1) time in each execution of the loop body. Since the while loop in line 2
runs n times, lines 3 to 9 require a total of O(nE + n?logn + mn?) time, i.e,
O(nE +mn?) time each. Lines 12, 13 to 14, 16 and 17 to 18 takes O(mn?) time
each. So the overall time complexity of our algorithm is O(nE + mn?). O

This is in contrast to the MCPT algorithm [4], the only existing time-triggered
scheduling algorithm for the dependent jobs of mixed-criticality systems on mul-
tiprocessors is O(n?E + mn®logn).

6 Results and Discussion

In this section, we present the experiments conducted to evaluate the LoCBP
algorithm for the dual-criticality case. The experiments compare the running
times of LoCBP and MCPI. The comparison is done over numerous instances
with randomly generated parameters.

The job generation policy may have significant effect on the experiments.
The details of the job generation policy are given below.

— The utilization (u;) of the jobs of instance I are generated according to the
Staffords randfixedsum algorithm [13].

— We use the exponential distribution proposed by Davis et al [14] to generate
the deadline (d;) of the jobs of instance I.

— The C;(LO) units of execution of the jobs are calculated by u; x d;.

— The C;(HI) units of execution of the jobs are calculated as C;(HI) = CF x
C;(LO) where CF is the criticality factor which varies between 2 and 6 for
each HI-criticality job j; in our experiments.

— Each instance I contains at least one HI-criticality job and one LO-criticality
job. We have generated random instances for 2, 4, 8 and 16 processors, where
each instance has atleast m+ 1 number of jobs. Each instance is LO-scenario
schedulable. We have used an intel core 2 duo processor machine with speed
of 2.3 Ghz to conduct the experiments.

In the first experiment, we fix the number of processors to 2 and let the
deadline of the jobs vary between 1 and 2000. The graph in Fig. 7 shows the time
consumption by each schedulable instances from different numbers of randomly
generated instances.

From the graph in Fig. 7, it is clear that our algorithm consumes significantly
less time than the MCPI algorithm. As can be seen from Fig. 7, for a multipro-
cessor with two processors the time consumption by MCPI is much higher than
our algorithm. The ratio of time consumed also increases with the increase of
number of jobs per instance and is close to five for 1000 jobs. In another exper-
iment, we have shown that the time consumption decreases for m = 4, but the
ratio of time consumed by our algorithm in comparison to the MCPI algorithm
is very much similar to the case m = 2, as can be seen in Fig. 8.

7 Conclusion

In this paper, we proposed a new algorithm for time-triggered scheduling of
mixed-criticality jobs for multiprocessor systems. We proved that our algorithm
has a better worst-case time complexity than the previous algorithm (MCPI). We

120 70

MCPI Algorithm —+— MCPT Algorithm —+—
LoCBP Algorithm LoCBP Algorithm
100 60 -
£ £
o o 40
3 8
E 60 £
E 5
2 2 30
8 8
g ® g 20
IS / =
20 10
0 / i i i i 0 / I I I I
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of jobs per instance Number of jobs per instance
Fig. 7. Comparison of time consump- Fig. 8. Comparison of time consump-
tion of MC-schedulable instances for tion of MC-schedulable instances for
m=2 m=4

also proved the correctness of our algorithm. Then we extended our algorithm for
dependent jobs and compared the worst-case time complexity with the existing
algorithm. We examined the theoretical result by comparing the actual time
consumption between LoCBP and MCPI.

References

1. S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In 28th IEEE International Real-Time Systems Sym-
posium, 2007. RTSS 2007., pages 239-243, Dec 2007.

2. S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs. IEEE
Transactions on Computers, 61(8):1140-1152, Aug 2012.

3. Kimon P Valavanis. Advances in unmanned aerial vehicles: state of the art and
the road to autonomy, volume 33. Springer Science & Business Media, 2008.

4. D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-critical
scheduler on single and multi-processor platforms. In HPCC / CSS /ICESS, pages
684-687, Aug 2015.

5. Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In 32nd IEEE Real-Time Systems Symposium
(RTSS), pages 3-12. IEEE, 2011.

6. D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest deadline
first. In 2013 25th Euromicro Conference on Real-Time Systems, pages 93—102,
July 2013.

7. Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-
criticality scheduling on multiprocessors. Real-Time Systems, 50(1):142-177, 2014.

8. G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping mixed-
criticality applications on multi-core architectures. In Design, Automation Test
in Europe Conference Ezhibition (DATE), pages 1-6, March 2014.

9. G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling of mixed-
criticality applications on resource-sharing multicore systems. In Proceedings of
the Eleventh ACM International Conference on Embedded Software, EMSOFT ’13,
pages 17:1-17:15. IEEE Press, 2013.

10

11.

12.

13.

14.

R. M. Pathan. Schedulability analysis of mixed-criticality systems on multiproces-
sors. In 24th Euromicro Conference on Real-Time Systems, pages 309—-320, July
2012.

WA Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21(1):177-185, 1974.

Houssine Chetto, Maryline Silly, and T Bouchentouf. Dynamic scheduling of real-
time tasks under precedence constraints. Real-Time Systems, 2(3):181-194, 1990.
Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis
of multiprocessor tasksets. In proceedings 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010),
pages 6-11, 2010.

Robert I. Davis, Attila Zabos, and Alan Burns. Efficient exact schedulability tests
for fixed priority real-time systems. IEEE Transactions on Computers,, 57(9):1261—
1276, 2008.

