
Time-triggered Scheduling for Multiprocessor
Mixed-criticality Systems

Lalatendu Behera and Purandar Bhaduri

Indian Institute of Technology Guwahati 781039, India
{lalatendu,pbhaduri}@iitg.ernet.in

Abstract. Real-time safety-critical systems are getting more complex
by integrating multiple applications with different criticality levels on
a single platform. The increasing complexity in the design of mixed-
criticality real-time systems has motivated researchers to move from
uniprocessor to multiprocessor platforms. In this paper, we focus on the
time-triggered scheduling of both independent and dependent mixed-
criticality jobs on an identical multiprocessor platform. We show that
our algorithm is more efficient than the Mixed criticality Priority Im-
provement (MCPI) algorithm, the only existing such algorithm for a
multiprocessor platform.

1 Introduction

A mixed-criticality real-time system (MCRTS) [1, 2] has two or more distinct
levels of criticality, such as, safety-critical, mission-critical, non-critical, etc. For
example in the domain of unmanned aerial vehicles (UAV’s) [3, 2] the func-
tionalities are classified into two levels of criticality, viz., mission-critical (e.g.,
capturing and transmitting images) and flight-critical (e.g., safe operation of the
UAV). The flight-critical functionality, due to its safety critical nature, is subject
to certification by a certification authority (CA). The CAs are very conservative,
using tools and techniques that estimate more pessimistic worst-case execution
times (WCET) than that of the system designers. On the other hand, the CAs
are not concerned with the mission-critical functionalities. The system designers
are interested in both flight-critical and mission-critical functionalities but their
tools are less conservative in estimating the WCETs.

The challenge in scheduling such mixed critical systems is to find a single
scheduling policy so that the requirements of both the system designers and
the CAs are met. This means that in a scenario where all the jobs complete
their executions by their LO-criticality WCETs, they must all be scheduled
correctly. On the other hand, in a scneario where the execution time of any one
HI-criticality job exceeds its LO-criticality WCET, then all the HI-criticality
jobs need to meet their deadlines assuming their HI-criticality WCET to satisfy
the CAs.

In this paper, we describe an approach to find a preemptive, global, time-
triggered schedule of mixed-criticality, non-recurrent task systems on identical

multiprocessor platforms that can satisfy the assumption of both the CAs and
SDs. We show that the worst-case time complexity of our proposed algorithm
is better than the existing algorithm in [4], the only existing time-triggered
algorithm for such systems.

2 System Model

A mixed-criticality system consists of n jobs {j1, j2, . . . , jn}, each with a crit-
icality level. Here we focus on dual-criticality jobs, i.e., LO-criticality and
HI-criticality. A job ji is characterized by a 5-tuple of parameters: ji =
(ai, di, χi, Ci(LO), Ci(HI)), where

– ai ∈ N denotes the arrival time, ai ≥ 0.
– di ∈ N+ denotes the absolute deadline, di ≥ ai.
– χi ∈ {LO,HI} denotes the criticality level.
– Ci(LO) ∈ N+ denotes the LO-criticality worst-case execution time.
– Ci(HI) ∈ N+ denotes the HI-criticality worst-case execution time.

We assume that the system is preemptive and Ci(LO) ≤ Ci(HI) for 1 ≤ i ≤ n.
Note that in this paper, we consider arbitrary arrival times of jobs. An instance
of mixed-criticality job set can be defined as a finite collection of mixed-criticality
jobs, i.e., I = {j1, j2, . . . , jn}. Generally, a job in the instance I is available for
execution at time ai and should finish its execution before di. The job ji must
execute for ci amount of time which is the actual execution time between ai
and di, but this can be known only at the time of execution. The collection of
actual execution times (ci) of the jobs in an instance I at run time is called
a scenario. Scenarios in our model can be of two types, i.e., LO-criticality
scenarios and HI-criticality scenarios. When each job ji in instance I executes
ci units of time and signals completion before its Ci(LO) execution time, it is
called a LO-criticality scenario. If any job ji in instance I executes ci units of
time and doesn’t signal its completion after it completes the Ci(LO) execution
time, then this is called a HI-criticality scenario. Now we define a schedulability
condition for a mixed-criticality instance I.

Definition 1: A scheduling strategy is feasible or correct if and only if the
following conditions are true:

1. If all the jobs finish their Ci(LO) units of execution time on or before their
deadlines.

2. If any job doesn’t declare its completion after executing its Ci(LO) units of
execution time, then all the HI-criticality jobs must finish their Ci(HI) units
of execution time on or before their deadlines.

Here we focus on the time-triggered schedule [5] of MC instances on a
multiprocessor system with identical processors. We will construct two tables
SHI and SLO for each processor for a given instance I for use at run time. The
length of the tables is the length of the interval [minji∈I{ai},maxji∈I{di}]. The
rules to use the tables SHI and SLO at run time, (i.e., the scheduler) are as
follows:

– The criticality level indicator Γ is initialized to LO.
– While (Γ = LO), at each time instant t the job available at time t in the

table SLO for processor Pi will execute on Pi.
– If a job executes for more than its LO-criticality WCET without signaling

completion in any processor Pi, then Γ is changed to HI.
– While (Γ = HI), at each time instant t the job available at time t in the

table SHI for processor Pi will execute on Pi.

3 Related Work

Most research on mixed-criticality systems focuses on the uniprocessor case (see
for example, [2, 6]). The increasing functionalities in mixed-criticality systems
motivate researchers to turn to multiprocessor systems (see [7–10, 4]). Among
the above cited work only [5, 6] focus on a time-triggered scheduling algorithm
for uniprocessor systems and [4] introduces a time-triggered scheduling algo-
rithm for multiprocessor systems. To the best of our knowledge, there has not
been any other work studying time-triggered mixed-criticality scheduling for
multiprocessor systems.

Socci et al. [4] proposed the Mixed criticality Priority Improvement (MCPI)
algorithm to schedule jobs with precedence constraints. In this algorithm, they
construct a priority order of jobs from the support algorithm (i.e., a multi-
processor algorithm for non-critical jobs) which is used to find a table for the
LO-scenario and the support algorithm is used to schedule the HI-criticality jobs
in HI-scenarios. They showed the worst-case time complexity of the algorithm
to be O(n2 +mn3 log n) for independent jobs, where n is the number of jobs in
the instance I and m is the number of processors.

4 The proposed algorithm

In this section, we propose an algorithm for mixed-criticality jobs on multipro-
cessor systems which not only schedules the same set of instances as the existing
algorithm [4] but also has a better worst-case time complexity.

The time-triggered scheduling approach to mixed-criticality jobs [4] con-
structs two scheduling tables SLO and SHI to schedule a dual-criticality instance.
Since we consider mixed-criticality jobs for a multiprocessor system, we need two
separate scheduling tables for each processor. The schedule constructed by our
algorithm is a global one, i.e., a job can be preempted in one processor and
resume its execution in another processor. Here we assume that the system is
a closely coupled synchronous homogeneous multiprocessor system with shared
last level cache and the job context switch time is negligible. We also assume
that the cache miss penalty is negligible.

Algorithm 1 determines a priority order, which is used to construct the
scheduling tables for all the processors, in steps 1 to 11. First, our algorithm
finds the LO-scenario deadline (di

∆) of each job. For the LO-criticality jobs
di
∆ = di, but for HI-criticality ones di

∆ ≤ di. Then the algorithm starts to

Algorithm 1 LoCBP (LO-criticality based Priority)
Notation:
I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.
Input : I
Output : Priority Order (Ψ) of Instance I
Assume the earliest arrival time is 0.

1: Compute the LO-scenario deadline (di
∆) of each job ji as di

∆ = di − (Ci(HI)−Ci(LO));
2: while I is not empty do
3: Assign a LO-criticality latest deadline1 job ji as the lowest priority job if ji can finish its

execution in the interval [ai, di
∆] after all other jobs finish their execution in LO-scenario

under the global EDF scheme;
4: If any LO-criticality job cannot be given a lowest priority then a HI-criticality latest

deadline1 job ji is assigned as the lowest priority job if ji can finish its execution in the
interval [ai, di

∆] after all other jobs finish their execution in LO-scenario under the global
EDF scheme;

5: if No job is assigned a lowest priority then
6: Declare FAIL and EXIT;
7: else
8: Add job ji to the priority order Ψ ;
9: Remove job ji from the instance and continue;

10: end if
11: end while
12: Construct table SLO for each processor using the priority order;
13: if anyHI scenarioFailure(SLO, I, Ψ) then
14: return FAIL and EXIT;
15: end if
16: The same order as SLO is followed to allocate the jobs in SHI;
17: After a HI-criticality job ji is allocated its Ci(LO) execution time in SHI, Ci(HI)−Ci(LO)

units of execution time of job ji is allocated after the rightmost segment of job ji in SLO
without disturbing the priority order Ψ and overwriting LO-criticality jobs in the process,
if any;

assign the lowest priority jobs from the instance I. It always selects the latest
deadline job to be assigned as the lowest priority job, but LO-criticality jobs
are considered before the HI-criticality jobs. A job ji can be assigned the lowest
priority if and only if all other jobs jk finish their executions when run according
to the global EDF algorithm and there remains sufficient time for ji to complete
its Ci(LO) units of execution time before di

∆. After job ji is assigned the lowest
priority, it is removed from the instance, and the remaining jobs are considered
for priority assignment. If at any step a job cannot be assigned a priority, the al-
gorithm declares failure. In step 10, the algorithm constructs table SLO. In steps
11 to 13, it checks for any possible HI-criticality scenario failure. The subroutine
anyHI scenarioFailure(SLO, I, Ψ) checks if at least one job runs at its Ci(HI)
execution time, then all HI-criticality jobs must complete their HI-criticality ex-
ecution before their deadline. If it doesn’t find a HI-criticality scenario failure
from the subroutine anyHI scenarioFailure(SLO, I, Ψ), then the priority order
constructed by Algorithm 1 can successfully schedule the instance I. Algorithm 1
constructs table SLO for each processor. Then Table SHI is constructed for each
processor by allocating the remaining Ci(HI) − Ci(LO) units of execution time
of each HI-criticality job after its Ci(LO) units of execution time in SHI using

1 The original deadline and not the LO-scenario one.

the same priority order and also a HI-criticality job is given higher priority over
LO-criticality jobs. This means a HI-criticality job can overwrite a LO-criticality
job in the process of allocating its Ci(HI)− Ci(LO) units of execution time.

We illustrate the operation of this algorithm by an example.

Example 1: Consider the mixed-criticality instance given in Table 1 to be sched-
uled on a multiprocessor system having two identical processors P0 and P1.

Table 1. The instance for Example 1

Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 1 5 LO 3 3

j2 0 8 LO 4 4

j3 0 7 HI 3 5

j4 0 4 HI 2 2

Now we construct a priority order using our algorithm. The LO-scenario
deadlines d∆i of jobs j1, j2, j3, j4 are 5, 8, 5, 4 respectively. Now we start assigning
priorities to each job.

– The job j2 is the latest LO-criticality deadline job. If j2 is assigned the lowest
priority, then j3 and j4 can run simultaneously in P0 and P1 over [0, 3] and
[0, 2] respectively. Then j1 will run over [2, 5] in P1. So j2 can execute its 4
units of execution time in P0 over [3, 7] to finish by its deadline. Now we can
assign job j2 the lowest priority. We remove job j2 and consider {j1, j3, j4}
to find the next lowest priority job.

– If j1 is assigned the lowest priority, then j3 and j4 can run simultaneously on
P0 and P1 over [0, 3] and [0, 2] respectively. Then j1 will run over [2, 5] in P1.
So j1 can execute its 3 units of execution time in P1 over [2, 5] to finish by
its deadline. Now we can assign job j1 the lowest priority. Next, we remove
the job j1 and consider {j3, j4} to assign the next lowest priority.

– Since there are two jobs and two processors, any job can be given lower
priority among the two. But our algorithm assigns the latest deadline job as
the lowest priority job. So job j3 is given the lowest priority.

Finally, the priority order of the jobs in instance I is j4 . j3 . j1 . j2. Now
Algorithm 1 constructs the table SLO for each processor using the above priority
order. The table SLO for each processor is given in Fig. 1.

Then the anyHI scenarioFailure(SLO, I, Ψ) subroutine checks for all pos-
sible HI-criticality scenarios. We can check that all HI-criticality scenarios are
schedulable using the priority order {j4, j3, j1, j2} of I. Finally, table SHI is con-
structed for each processor by allocating the remaining Ci(HI) − Ci(LO) units
of execution time of each HI-criticality job after its Ci(LO) units of execution
time in SHI using the same priority order, where a HI-criticality job is given
higher priority over LO-criticality jobs. The table SHI for each processor is given
in Fig. 2.

SLO

P1

P0

j3 j2

j4 j1
0 2 3 5 7 8

Fig. 1. Table SLO for processor P0 and
P1

SHI

P1

P0

j3

j4 j1
0 2 5 8

Fig. 2. Table SHI for processor P0 and
P1

4.1 Correctness Proof

For correctness, we have to show that if our algorithm finds a priority order for
instance I and the anyHI scenarioFailure(SLO, I) subroutine doesn’t fail, then
the scheduling tables SLO and SHI will give a correct scheduling strategy. We
start with the proof of some properties of the schedule.

Lemma 1: If Algorithm 1 doesn’t declare failure and finds a priority order, then
each job ji receives Ci(LO) units of execution time in SLO and each HI-criticality
job jk receives Ck(HI) units of execution time in SHI.

Proof. First, we show that any job ji receives Ci(LO) units of execution time
in SLO. This follows directly from the algorithm as each job ji must finish its
Ci(LO) units of execution time before di

∆ ≤ di to be assigned the lowest priority
job.

Next we show that any HI-criticality job jk receives Ck(HI) units of exe-
cution time in SHI. We construct the table SHI according to the same priority
order. Since anyHI scenarioFailure(SLO, I, Ψ) subroutine doesn’t find any HI-
criticality scenario failure, so all the HI-criticality jobs have received their Ci(HI)
units of execution time.

Lemma 2: At any time t, if a job ji is present in SHI but not in SLO, then the
job ji has finished its execution in SLO.

Proof. We use the same order of jobs in SLO to construct SHI. Whenever a job ji
has executed for time ci ≤ Ci(LO) at time t, then it is present in both the tables
SLO and SHI. We know the HI-criticality jobs are allocated their Ci(HI)−Ci(LO)
units of execution time after the allocation of Ci(LO) units of execution time in
both SHI and SLO. In SHI, the HI-criticality jobs are higher priority job than
LO-criticality jobs. When a job ji is present in SHI and not in SLO at time t, it
means this has already completed its execution in SLO.

Lemma 3: At any time t, when a mode change occurs, each HI-criticality job
still has Ci(HI) − ci units of execution time in SHI after time t to complete its
execution, where ci is the execution time already completed by job ji before time
t in SLO.

Proof. Let a mode change occur at time t. This means that the following state-
ments hold: (i) all the HI-criticality jobs other than the current job, or none

of them has completed their Ci(LO) units of execution time at time t, (ii) the
current HI-criticality job is the first one to complete its Ci(LO) units of execu-
tion time without signaling its completion. We know that all the HI-criticality
jobs are allocated their Ci(HI) − Ci(LO) units of execution time in SHI after
the completion of their Ci(LO) units of execution time in both SLO and SHI. If
a job ji has already executed its Ci(LO) units of execution time in SLO, then
it requires Ci(HI) − Ci(LO) units of time to be completed in SHI. When job ji
initiates the mode change, this is the first job which doesn’t signal its completion
after completing its Ci(LO) units of execution time. Before time t, the sched-
uler uses the table SLO to schedule the jobs, while subsequently the scheduler
uses table SHI due to the mode change. If a job ji has already executed its ci
units of execution time in SLO, then it requires Ci(HI) − ci units of time to be
completed its execution in SHI. We know that the tables SHI and SLO have the
same order and according to Lemma 1 and 2, each job will get sufficient time to
complete its Ci(HI) units of execution time. Hence, each HI-criticality job will
get Ci(HI) − ci units of time in SHI to complete its execution after the mode
change at time t.

Theorem 1: If the scheduler dispatches the jobs according to SLO and SHI,
then it will be a correct scheduling strategy.

Proof. For the LO-criticality scenarios, all the jobs can be correctly scheduled
by the table SLO as proved in Lemma 1. Now, we need to prove that in a HI-
criticality scenario, all the HI-criticality jobs can be correctly scheduled by the
table SHI. In Lemma 1, we have already proved that all the HI-criticality jobs
get sufficient units of time to complete their execution in SHI. In Lemma 3, we
have proved that when the mode change occurs at time t, all the HI-criticality
jobs can be scheduled without missing their deadline. So from Lemma 1 and
Lemma 3, it is clear that if the scheduler uses tables SLO and SHI to dispatch
the jobs then it will be a correct scheduling strategy.

4.2 Comparison with MCPI algorithm

Theorem 2: An instance I is schedulable by the MCPI algorithm [4] if and only
if it is schedulable by our algorithm.

Proof. (⇒) The MCPI algorithm generates a priority order for an instance I
which is used to find table SLO. When a mode change occurs, it uses a support
algorithm to schedule the HI-criticality jobs of instance I. We need to show that if
MCPI generates a priority order for an instance I, then our algorithm will always
find a priority order for instance I and the anyHI scenarioFailure(SLO, I, Ψ)
subroutine will not fail.

Suppose the MCPI algorithm finds a priority order for an instance I. Now
the least priority job of the priority order (according to the MCPI algorithm)
can be either a LO-criticality or HI-criticality job. First, we consider the case
where a job is of LO-criticality. Let ji be the lowest priority job and its criticality

be low. So at the time of construction of the table SLO, every higher priority job
jk finishes its Ck(LO) units of execution time and there remains sufficient time
for the lowest priority job ji to finish its Ci(LO) units of execution time in the
interval [ai, di]. So this condition is the same as our proposed algorithm.

Let job ji be the lowest priority job and its criticality be high. Since MCPI
successfully finds the priority order, it must have checked all the scenarios and
didn’t find any failure. Now after every higher priority job jk finishes its Ck(LO)
units of execution time, there remains sufficient time for the lowest priority job ji
to finish its Ci(LO) units of execution time in the interval [ai, d

∆
i]. Unlike the LO-

criticality job, the HI-criticality jobs need to finish their LO-criticality execution
on or before d∆i . So this condition is the same as our proposed algorithm.

Then ji is removed from the instance and the next priority can be assigned
from the remaining jobs. We can argue in the same way for the remaining jobs.
From the above argument, it is proved that our proposed algorithm finds the
same priority order for instance I as the MCPI algorithm. Since the priority order
is the same and the MCPI algorithm doesn’t find any HI-scenario or LO-scenario
failure, the anyHI scenarioFailure(SLO, I, Ψ) subroutine in our algorithm will
not fail as well. Thus, for a MCPI schedulable instance, our algorithm can also
construct priority tables SLO and SHI.

(⇐) Our algorithm generates a priority order for an instance I which is used
to find the table SLO. When a mode change occurs, our algorithm uses the table
SHI to schedule the HI-criticality jobs which is constructed from the job ordering
in SLO. We need to show that if our algorithm generates a priority order for an
instance I, then the MCPI algorithm will always find a priority order and the
anyHIScenarioFailure(PT, T) subroutine will not fail.

Suppose our algorithm finds a priority order for an instance I. The least
priority job assigned by our algorithm can be either a HI-criticality or a LO-
criticality job. First, we consider the case where the lowest priority job is LO-
criticality. Let ji be the lowest priority job and its criticality be LO which means
the job ji finishes its execution between its arrival time and deadline after all
other jobs finish their execution. So according to the priority table (SPT) of
MCPI, job ji can be given the lowest priority among the LO-criticality jobs.
Since the job can meet its deadline after all other jobs finish their execution, the
PullUp() subroutine [4] will pull up the HI-criticality jobs upward in the priority
tree. So according to the MCPI algorithm the job ji is the lowest priority job
among the HI-criticality jobs as well. This shows that the job ji is the lowest
priority job according to the MCPI algorithm.

Now assume ji is the lowest priority job and its criticality is HI which means
the job ji can finish its execution between its arrival time and deadline after all
other jobs finish their execution. Since our algorithm prefers LO-criticality jobs
to assign the lowest priority over HI-criticality jobs, there are no LO-criticality
jobs available which can be assigned the lower priority. As in the previous case,
job ji is the lowest priority job in theSPT priority table of the MCPI algorithm.
Since no LO-criticality job can finish its execution after the execution of job ji,
the PullUp() subroutine will not be able to pull up the HI-criticality job upward

in the priority tree. So job ji is the lowest priority job according to the MCPI
algorithm.

So both the algorithms generate the same priority order for in-
stance I. Since our algorithm doesn’t find any HI-scenario failure in the
anyHI scenarioFailure(SLO, I, Ψ) subroutine, the MCPI algorithm also doesn’t
find any HI-scenario failure in its anyHIscenarioFailure() subroutine.

Theorem 3: The computational complexity of LoBCP is O(mn3), where n is
the number of jobs in an instance I and m is the number of processors.

Proof. Line 1 takes O(n) time. In lines 3 and 4, finding the latest deadline job
takes O(n log n) time, simulation of global EDF on m processors takes O(mn2)
times [11]. So the total time taken by lines 3 and 4 is O(n log n + mn2). Lines
5 to 10 take O(1) time. Since the while loop in line 2 runs n times, line 3 to 10
require a total of O(n2 log n + mn3) time, i.e., O(mn3). Lines 12, 13 to 15, 16
and 17 takes O(mn2) time each. So the overall time complexity of our algorithm
is O(mn3).

This is in contrast to MCPI [4], the only existing time-triggered scheduling
algorithm for mixed-criticality systems on multiprocessors, whose complexity is
O(mn3 log n).

5 Extension for Dependent Jobs

In previous sections, we have discussed instances with independent jobs. Now,
we discuss the case of the dual-criticality instances with dependent jobs. In this
section, we modify the algorithm given in Section 4 to find the scheduling tables
such that if the scheduler discussed in Section 2 dispatches the jobs according
to these scheduling tables then it will be a correct online scheduling strategy
without disturbing the dependencies between them. There exists an algorithm [4]
which can schedule the jobs of an instance I with dependencies with worst-case
time complexity O(En2 + mn3 log n), where n is the number of jobs, E the
number of edges in the DAG and m the number of processors. We claim that our
algorithm has a better worst-case time complexity than the existing algorithm.

5.1 Model

We use the same model as discussed in Section 2. Additionally, an instance of a
mixed-criticality system containing dependent jobs can be defined as a directed
acyclic graph (DAG). An instance I is represented in the form of I(V,E), where
V represents the set of jobs, i.e., {j1, j2, . . . , jn} and E represents the edges
which depict dependencies between jobs. We assume that a HI-criticality job can
depend on a LO-criticality job only if the HI-criticality job depends upon another
HI-criticality job. This means, there are some instances where an outward edge
from a LO-criticality job jl becomes an inward edge to a HI-criticality job jh1
with another inward edge from a HI-criticality job jh to job jh1.

Definition 2: A dual-criticality MC instance I with job dependencies is said to
be time-triggered schedulable on a multiprocessor system if it is possible to
construct the two scheduling tables SLO and SHI for each processor of instance I
without violating the dependencies, such that the run-time algorithm described
in Section 2 schedules I correctly.

5.2 The Algorithm

Here we propose an algorithm which can construct two scheduling tables SLO

and SHI for a dual-criticality instance with dependent jobs. A DAG of mixed-
criticality jobs is MC-schedulable if there exists a correct online scheduling policy
for it. Our algorithm finds a LO-criticality priority order for the jobs of instance
I which is used to construct the table SLO. Then the same job allocation or-
der of SLO is used to construct the table SHI, where HI-criticality jobs have
greater priority than LO-criticality jobs, and the HI-criticality jobs are allocated
their CiHI units of execution time in SHI without violating the dependency con-
straints. The priority between two jobs ji and jk is denoted by ji . jk, where ji
is higher priority than jk. This priority ordering must satisfy two properties:

– If a node ji is assigned higher priority than node jk (i.e., ji . jk), then there
should not be a path in the DAG from node jk to node ji.

– If the DAG is scheduled according to this priority ordering then each job ji
of the DAG must finish its Ci(LO) units of execution time before d∆i .

Now we present the algorithm DP LoCBP which finds a priority order for mixed-
criticality dependent jobs.

Algorithm 2 finds a priority order which is used to construct the scheduling
tables for all the processors in steps 1 to 11. First, our algorithm finds the LO-
scenario deadline (di

∆) of each job. For the LO-criticality jobs di
∆ = di, but

di
∆ ≤ di for the HI-criticality jobs. Then the algorithm starts to assign the

lowest priority jobs from the instance I. It always selects the latest deadline job
which doesn’t have an outward edge as the lowest priority job, but LO-criticality
jobs are considered before the HI-criticality jobs. A job ji can be assigned the
lowest priority if and only if all other jobs jk finish their execution and there
remains sufficient time for ji to complete its Ci(LO) units of execution time
before di

∆. After a job ji is assigned the lowest priority, it is removed from
the instance and added to the priority order Ψ . Then the remaining jobs are
considered for priority assignment. If at any step a job cannot be assigned a
priority, the algorithm declares failure. In step 12, the algorithm constructs the
table SLO. In steps 13 to 15, it checks for any possible HI-criticality scenario
failure. If it doesn’t find a HI-criticality scenario failure, then the priority order
constructed by Algorithm 2 can successfully schedule the instance I. Then the
table SHI is constructed for each processor by allocating Ci(HI) units of execution
time of each HI-criticality job using the same order of allocated jobs as SLO

where a HI-criticality job is given higher priority over LO-criticality jobs. In SHI

each HI-criticality job is allocated its Ci(LO) units of execution time without

Algorithm 2 DP LoCBP
Notation:
I = {j1, j2, ..., jn}, where ji =< ai, di, χi, Ci(LO), Ci(HI) >.
Input : I
Output : Tables SLO and SHI
Assume earliest arrival time is 0.

1: Compute the LO-scenario deadline (di
∆) of each job ji as di

∆ = di − (Ci(HI)−Ci(LO));
2: while I is not empty do
3: Assign a LO-criticality latest deadline job ji which doesn’t have an outward edge as the

lowest priority job if ji can finish its execution in the interval [ai, di
∆] after all other jobs

finish their execution in LO-scenario under the global EDF scheme;
4: If any LO-criticality job with no outward edge cannot be given the lowest priority then

a HI-criticality latest deadline job ji which doesn’t have an outward edge is assigned as
the lowest priority job if ji can finish its execution in the interval [ai, di

∆] after all other
jobs finishes their execution in LO-scenario under the global EDF scheme;

5: if No job is assigned a lowest priority then
6: Declare FAIL and EXIT;
7: else
8: Add the job ji to the priority order Ψ .
9: Remove job ji from the instance and continue;

10: end if
11: end while
12: Construct table SLO for each processor Pi using the priority order Ψ ;
13: if anyHI scenarioFailure(SLO, I, Ψ) then
14: return FAIL and EXIT;
15: else
16: Construct table SHI for each processor Pi using the same order of allocated jobs in SLO.
17: The same order as SLO is followed to allocate the jobs in SHI;
18: After a HI-criticality job ji is allocated its Ci(LO) execution time in SHI, Ci(HI) −

Ci(LO) units of execution time of job ji is allocated after the rightmost segment of job ji
in SLO without violating the dependency constraints and without disturbing the priority
order Ψ ;

19: end if

violating the dependency constraints. Once the Ci(LO) units of execution time
are allocated for HI-criticality jobs in SHI, the remaining Ci(HI)−Ci(LO) units of
execution time are allocated immediately without disturbing the priority order Ψ
and without violating the dependency constraints. At each instant, the allocation
is done without violating the dependency constraints.

We illustrate the operation of this algorithm by an example.

Example 2: Consider the mixed-criticality instance given in Table 3 which is
going to be scheduled on a multiprocessor system having two homogeneous pro-
cessors, i.e., P0 and P1. The corresponding DAG is given in Fig. 4.

Now we construct a priority order using our proposed algorithm. The LO-
criticality scenario d∆i of the jobs j1, j2, j3, j4.j5 are 3, 3, 3, 2, 4 respectively. Next
we start assigning priorities to each job.

– We start with a node having no outward edges from it. The only such node
is job j5. So Algorithm 2 assigns job j5 the lowest priority. If j5 is assigned
the lowest priority, then j1 and j2 can run simultaneously in P0 and P1 over
[0, 1] and [0, 1] respectively. Then j3 and j4 can run over [1, 2] in P0 and
P1 respectively. Then j5 can easily execute its 1 unit of execution on either

Fig. 3. Instance for Example 2
Job Arrival time Deadline Criticality Ci(LO) Ci(HI)

j1 0 3 LO 1 1

j2 0 3 LO 1 1

j3 0 3 LO 1 1

j4 0 4 HI 1 3

j5 1 6 HI 1 3

j1 j2 j3 j4

j5

Fig. 4. A DAG showing job dependency among the jobs
given in Table 3

P0 or P1 over [2, 3] to finish by its LO-scenario deadline (d∆i). Now we can
assign job j5 the lowest priority job.

We remove job j5 and consider {j1, j2, j3, j4} to find the next lowest priority job.

– Since the LO-criticality jobs are given the lowest priority by the proposed
algorithm, it is easy to verify that the successive lowest priority jobs will be
j1, j2 and j3 respectively. Finally, j4 is the highest priority job.

So the final priority order of jobs in instance I is j4 . j3 . j2 . j1 . j5. The table
SLO for each processor is given in Fig. 5.

Now the anyHI scenarioFailure(SLO, I, Ψ) subroutine checks for all possible
HI-criticality scenarios. We can check that all HI-criticality scenarios are schedu-
lable using the priority order j4 . j3 . j2 . j1 . j5 of the instance I. Finally, the
table SHI is constructed for each processor by allocating Ci(HI) units of exe-
cution time of each HI-criticality job using the same order of allocated jobs in
SLO where a HI-criticality job is given higher priority over a LO-criticality job.
On processor P0, the job order of SHI remains the same as in SLO. Job j4 is
a HI-criticality job and doesn’t depend on any other job, so it is allocated its
Ci(LO) units of execution time over [0, 1] and the remaining Ci(HI) − Ci(LO)
units of execution time are allocated in the interval [1, 3]. Job j5 is allocated
in the interval [2, 3] in table SLO of P0. But j5 is allocated in the interval [3, 6]
due to dependency constraints which doesn’t affect the scheduling after a mode
change. On processor P1, job j3 and j2 (LO-criticality) which don’t depend on
any other jobs, are allocated their one unit of execution time in the intervals [0, 1]
and [1, 2] respectively. The table SHI for each processor is given in Fig. 6.

SLO

P1

P0

j3 j2

j4 j1 j5

0 1 2 3 6

Fig. 5. Table SLO for processor P0 and
P1

SHI

P1

P0

j3 j2

j4 j5

0 1 2 3 6

Fig. 6. Table SHI for processor P0 and
P1

5.3 Comparison with MCPI algorithm

Theorem 4: An instance I is schedulable by the MCPI algorithm [4] if and only
if it is schedulable by our algorithm.

Proof. ⇒We need to show that if MCPI generates a priority order for an instance
I, then our algorithm will always find a priority order for instance I and the
anyHI scenarioFailure(SLO, I, Ψ) subroutine will not fail.

Suppose the MCPI algorithm finds a priority order for instance I. Now the
lowest priority job of the priority order (according to the MCPI algorithm) can
be either a LO-criticality or HI-criticality job. First, we prove the case where a
job is LO-criticality and then HI-criticality. Let ji be the lowest priority job and
its criticality be LO which means no other job depends on ji. So at the time
of construction of table SLO, every higher priority job jk finishes its Ck(LO)
units of execution time without violating the dependency constraints and there
remains sufficient time for the lowest priority job ji to finish its Ci(LO) units
of execution time in the interval [ai, (d

∆
i)]. So this condition is the same as our

proposed algorithm.
Let job ji be the lowest priority, and its criticality be HI which means no

other job depends on ji. Since MCPI successfully finds the priority order, it must
have checked all the scenarios and doesn’t find any failure in the HI-scenario sit-
uations. After every higher priority job jk finishes its Ck(LO) units of execution
time, there remains sufficient time for the lowest priority job ji to finish its
Ci(LO) units of execution time in the interval [ai, d

∆
i] without violating the de-

pendency constraints. The HI-criticality jobs need to finish their LO-criticality
execution on or before d∆i in LO-scenario, so that they have sufficient time to
finish their remaining Ci(HI)−Ci(LO) units of execution time before their dead-
line di. This condition doesn’t violate the dependency constraints as it is the job
which doesn’t have an outward edge from it. So this condition is the same as
our proposed algorithm.

Then ji is removed from the instance I and the next priority can be assigned
from the remaining jobs. We can argue in the same way for the remaining jobs.
From the above argument, it is proved that our proposed algorithm finds the
same priority order, for instance I as the MCPI algorithm. Since the priority
order is the same and MCPI doesn’t find any HI-scenario or LO-scenario failure,
anyHI scenarioFailure(SLO, I, Ψ) subroutine in our algorithm will not fail as
well. Thus, for a MCPI schedulable instance, our algorithm can also construct
priority tables SLO and SHI.

(⇐) Our algorithm generates a priority order for instance I which is used
to find the table SLO. When a mode change occurs, our algorithm uses the
table SHI which is constructed from the job ordering in SLO to schedule the
HI-criticality jobs. We need to show that if our algorithm generates a priority
order for instance I, then the MCPI algorithm will always find a priority order
and the anyHIScenarioFailure(PT, T) subroutine will not fail.

Suppose our algorithm finds a priority order, for instance I. The lowest prior-
ity job assigned by our algorithm can be either a HI-criticality or a LO-criticality
job. First, we consider the case where a job is LO-criticality. Let ji be the low-
est priority job, and its criticality be LO which means the job ji can finish
its execution between its arrival time and deadline after all other job finishes
their execution without violating the dependency constraints. So according to
the priority table (SPT) of MCPI, job ji can be given the lowest priority among
the LO-criticality jobs. Since the job can meet its deadline after all other jobs
finished their execution, the PullUp() subroutine will pull up the HI-criticality
jobs upward in the priority tree. So according to the MCPI algorithm, the job ji
is the lowest priority job among the HI-criticality jobs as well. This shows that
the job ji is the lowest priority job according to the MCPI algorithm.

Let ji be the lowest priority job, and its criticality be HI which means the job
ji can finish its execution between its arrival time and deadline after all other
job finishes their execution without violating the dependency constraints. Since
our algorithm prefers LO-criticality jobs to assign the lowest priority over HI-
criticality jobs, there are no LO-criticality jobs available which can be assigned
lower priority than job ji. Our algorithm chooses the job with no outward edges
which means no job depends on the lowest priority job. So due to the dependency
constraints, all the LO-criticality jobs finish before job ji. Since no LO-criticality
job can finish its execution after the execution of job ji, the PullUp() subroutine
will not be able to pull up the HI-criticality jobs upward in the priority tree. So
job ji is the lowest priority job according to the MCPI algorithm.

In the same way, we argue for the next priority assignment of jobs of instance
I.

Theorem 5: The computational complexity of DP-LoCBP (Algorithm 2 on
page 11) is O(nE + mn3), where n is the number of jobs, E the dependency
relations among the jobs in the instance I and m the number of processors in
the system.

Proof. Line 1 takes O(n) time. In lines 3 - 4, traversing each edges takes O(E)
time, simulation of global EDF on m processors takes O(mn2) times [12]. So
the total time taken by lines 3 and 4 is O(E + n log n+mn2). Lines 5 to 9 take
O(1) time in each execution of the loop body. Since the while loop in line 2
runs n times, lines 3 to 9 require a total of O(nE + n2 log n + mn3) time, i.e,
O(nE +mn3) time each. Lines 12, 13 to 14, 16 and 17 to 18 takes O(mn2) time
each. So the overall time complexity of our algorithm is O(nE +mn3).

This is in contrast to the MCPI algorithm [4], the only existing time-triggered
scheduling algorithm for the dependent jobs of mixed-criticality systems on mul-
tiprocessors is O(n2E +mn3 log n).

6 Results and Discussion

In this section, we present the experiments conducted to evaluate the LoCBP
algorithm for the dual-criticality case. The experiments compare the running
times of LoCBP and MCPI. The comparison is done over numerous instances
with randomly generated parameters.

The job generation policy may have significant effect on the experiments.
The details of the job generation policy are given below.

– The utilization (ui) of the jobs of instance I are generated according to the
Staffords randfixedsum algorithm [13].

– We use the exponential distribution proposed by Davis et al [14] to generate
the deadline (di) of the jobs of instance I.

– The Ci(LO) units of execution of the jobs are calculated by ui × di.
– The Ci(HI) units of execution of the jobs are calculated as Ci(HI) = CF ×
Ci(LO) where CF is the criticality factor which varies between 2 and 6 for
each HI-criticality job ji in our experiments.

– Each instance I contains at least one HI-criticality job and one LO-criticality
job. We have generated random instances for 2, 4, 8 and 16 processors, where
each instance has atleast m+1 number of jobs. Each instance is LO-scenario
schedulable. We have used an intel core 2 duo processor machine with speed
of 2.3 Ghz to conduct the experiments.

In the first experiment, we fix the number of processors to 2 and let the
deadline of the jobs vary between 1 and 2000. The graph in Fig. 7 shows the time
consumption by each schedulable instances from different numbers of randomly
generated instances.

From the graph in Fig. 7, it is clear that our algorithm consumes significantly
less time than the MCPI algorithm. As can be seen from Fig. 7, for a multipro-
cessor with two processors the time consumption by MCPI is much higher than
our algorithm. The ratio of time consumed also increases with the increase of
number of jobs per instance and is close to five for 1000 jobs. In another exper-
iment, we have shown that the time consumption decreases for m = 4, but the
ratio of time consumed by our algorithm in comparison to the MCPI algorithm
is very much similar to the case m = 2, as can be seen in Fig. 8.

7 Conclusion

In this paper, we proposed a new algorithm for time-triggered scheduling of
mixed-criticality jobs for multiprocessor systems. We proved that our algorithm
has a better worst-case time complexity than the previous algorithm (MCPI). We

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 c

o
n

s
u

m
e

d
 (

in
 s

e
c
s
)

Number of jobs per instance

MCPI Algorithm
LoCBP Algorithm

Fig. 7. Comparison of time consump-
tion of MC-schedulable instances for
m = 2

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 c

o
n

s
u

m
e

d
 (

in
 s

e
c
s
)

Number of jobs per instance

MCPI Algorithm
LoCBP Algorithm

Fig. 8. Comparison of time consump-
tion of MC-schedulable instances for
m = 4

also proved the correctness of our algorithm. Then we extended our algorithm for
dependent jobs and compared the worst-case time complexity with the existing
algorithm. We examined the theoretical result by comparing the actual time
consumption between LoCBP and MCPI.

References

1. S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In 28th IEEE International Real-Time Systems Sym-
posium, 2007. RTSS 2007., pages 239–243, Dec 2007.

2. S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs. IEEE
Transactions on Computers, 61(8):1140–1152, Aug 2012.

3. Kimon P Valavanis. Advances in unmanned aerial vehicles: state of the art and
the road to autonomy, volume 33. Springer Science & Business Media, 2008.

4. D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-critical
scheduler on single and multi-processor platforms. In HPCC / CSS /ICESS, pages
684–687, Aug 2015.

5. Sanjoy Baruah and Gerhard Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In 32nd IEEE Real-Time Systems Symposium
(RTSS), pages 3–12. IEEE, 2011.

6. D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest deadline
first. In 2013 25th Euromicro Conference on Real-Time Systems, pages 93–102,
July 2013.

7. Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. Mixed-
criticality scheduling on multiprocessors. Real-Time Systems, 50(1):142–177, 2014.

8. G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping mixed-
criticality applications on multi-core architectures. In Design, Automation Test
in Europe Conference Exhibition (DATE), pages 1–6, March 2014.

9. G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling of mixed-
criticality applications on resource-sharing multicore systems. In Proceedings of
the Eleventh ACM International Conference on Embedded Software, EMSOFT ’13,
pages 17:1–17:15. IEEE Press, 2013.

10. R. M. Pathan. Schedulability analysis of mixed-criticality systems on multiproces-
sors. In 24th Euromicro Conference on Real-Time Systems, pages 309–320, July
2012.

11. WA Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly,
21(1):177–185, 1974.

12. Houssine Chetto, Maryline Silly, and T Bouchentouf. Dynamic scheduling of real-
time tasks under precedence constraints. Real-Time Systems, 2(3):181–194, 1990.

13. Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis
of multiprocessor tasksets. In proceedings 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS 2010),
pages 6–11, 2010.

14. Robert I. Davis, Attila Zabos, and Alan Burns. Efficient exact schedulability tests
for fixed priority real-time systems. IEEE Transactions on Computers,, 57(9):1261–
1276, 2008.

