
Electronic Notes in Theoretical Computer Science 65 No. 7 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 17 pages

Formal Techniques for Analysing Scenarios
using Message Sequence Charts

Purandar Bhaduri, R. Venkatesh and Girish K. Palshikar

TRDDC, Tata Consultancy Services
54 B, Hadapsar Industrial Estate,

Pune 411 013, India
Email: {pbhaduri,rvenky,girishp}@pune.tcs.co.in

Abstract

This paper describes light-weight formal techniques based on Message Sequence
Charts (MSCs) for capturing and validating early requirements and design. Our
focus is on ease of use in specifying, simulating and validating scenarios, and check-
ing their desired properties efficiently. We discuss how the formalism of High Level
Message Sequence Charts (HMSCs or MSC’96), can be used to capture scenarios in
use cases, thus enabling the use of tools for analysing them. We then present two
formal semantics for HMSCs – an intuitive linear time semantics based on runs, and
an operational semantics in terms of a labelled transition system. Next we present
a way of describing desired properties of use case scenarios using templates, for
validating scenarios with respect to informal requirements. The correctness prop-
erties of a collection of MSCs can then be established by efficient algorithms for
finding paths in a directed graph representing the precedence relation on the events
of the MSCs. We have implemented the operational semantics and the verification
algorithms in the form of a simulation and verification tool for analysing scenarios.

1 Introduction

Our aim in this paper is the application of formal methods in the capture
and validation of user requirements. The goal is to formalize requirements
captured by use cases [8], as employed in object-oriented modelling based on
UML [4]. We intend to provide a rigorous semantics to use cases in UML
using the formal notation of Message Sequence Charts (MSCs) [7,11,12]. This
brings to bear several benefits to the modelling of use case scenarios. Since
MSCs are a formal notation, with a formal syntax and semantics, tools can be
built for analysing them. Moreover, MSCs extend UML sequence diagrams in
essential ways, by permitting multiple scenarios with branching and loops to
be presented in one model or diagram, and by offering the power of hierarchical
structuring for ease of understanding and reuse.

c©2002 Published by Elsevier Science B. V.

Bhaduri, Venkatesh and Palshikar

MSCs offer an intuitive and visual way of describing requirements by focus-
ing on message exchanges among communicating entities in software systems.
The recent standardization of syntax and semantics of MSCs (MSC’96 or
Z.120) by ITU [7] and their popularity for capturing early design requirements
(see [1,6]) have resulted in commercial tools for analysing their properties. Ex-
tensions of MSCs, called Live Sequence Charts (LSCs) have been proposed as
a semantically sound foundation for use cases and scenarios in [5].

This paper has goals similar to [2,5], namely to develop formal analysis
techniques and tools for effective use of scenario-based requirements in soft-
ware engineering. However, our focus is on ease of use in specification and
validation rather than expressive power. Since most users, designers and de-
velopers are unlikely to be familiar with formal specification and verification
techniques, we try to hide as much of the formality as possible behind a
tool, and present the user with a friendly and intuitive visual interface for
analysing scenarios. In particular, we offer the user the ability to validate
system requirements by simulating the various scenarios in a use case in an
interactive fashion. To this end, we have proposed an operational seman-
tics of the HMSC notation, which has been implemented in a simulator. As
another possible way of validating requirements, we propose a small specifi-
cation language of templates for stating desirable properties of a collection
of MSCs. This language is intuitive, and can be presented to the user in the
form of drop-down menus and list boxes. The verification of these properties is
achieved by searching for appropriate paths in the directed graph representing
the precedence relation on the events of the MSCs. Our specification language
of templates is powerful enough to capture both precedence and response (or
consequence) properties [9]. A precedence property states that the occurrence
of one state/event is a necessary pre-condition for an occurrence of another.
An example of a precedence property is “A phone must never alert when it is
off-hook.” A response property, on the other hand, states that when one state
occurs then an occurrence of another must follow. An example is “If a phone
is alerting when it goes off-hook, then a connection is established to another
phone.”

While the idea of template matching in MSCs has been explored in [10], the
focus there has been on patterns specifying the relative ordering of events and
efficient algorithms for the matching process. The authors specify templates as
MSCs and matching is defined as the existence of a homomorphic embedding
between precedence relations. Moreover, the difference between visual and
precedence order adds complexity to the template matching procedure. In
contrast, our templates are stated in terms of linearizations of event orderings,
where the events are sending and receiving of named messages. As a result,
our algorithms have polynomial complexity for the template properties we
have considered.

The work reported here is part of a programme for incorporating behaviour
modelling in the context of a meta-model based case tool. Since scenarios

2

Bhaduri, Venkatesh and Palshikar

present just one facet of system dynamics, they have to integrate with other
development views, both static (e.g., classes, objects) and dynamic (e.g., state
machines). Our goal is to arrive at a common semantic domain for both static
and dynamic views of a system. Each individual view, such as MSCs or state
machines, would map into this common semantic domain. This unified se-
mantic modelling will ensure consistency between views and compatibility of
code generated from them. In this paper, we do not pursue this general frame-
work and concentrate on MSC based analysis techniques in formal software
engineering.

The main contribution of the paper is two-fold. First, the operational
semantics of HMSCs we have presented in the form of a labelled transition
system (lts) is new. We have built a simulator for HMSCs which implements
this semantics by running the abstract machine corresponding to the lts. This
allows the user to explore various scenarios described by an HMSC, including
simulating the behaviour of branch points and iterative loops. Second, the
verification framework we have proposed, based on property specification using
patterns and efficient verification algorithms, has not been explored before.
The main advantage of such an approach to formal verification is the ease
of use and efficiency. The user does not have to be conversant with temporal
logic or model checking technology in order to carry out simple verification and
validation tasks. Because of the polynomial time complexity of the algorithms
for property checking, the state explosion problem encountered in traditional
model checking approaches is avoided.

This paper is organized as follows. In Section 2 we briefly describe the
MSC formalism and discuss how it can formally capture the flows in use case
scenarios. In Section 3 we describe a linear time semantics of HMSC based
on runs and an operational semantics suitable as a basis for a simulation tool
for HMSCs. Section 4 describes techniques for specification and verification
of properties of MSCs. Section 5 puts our work in the perspective of our
programme for formal software engineering.

2 Message Sequence Charts

Message Sequence Charts (MSCs) are a graphical language for the description
of the interactions between entities, standardized by the ITU-TS. Figure 1 is
an example of a basic MSC depicting a typical scenario in a telephone call.

The vertical lines in the MSC, labelled Caller, Switch and Callee denote
communicating entities, also known as instances. An instance in an MSC
shows the flow of time from top to bottom. The horizontal arrows between the
instances denote messages. An arrow starts at the sending instance and ends
at the receiving instance. The hexagons in the figure, labelled Idle, Talking
and Connected are known as conditions. For details about the notation refer
to the ITU recommendation Z.120 [7].

3

Bhaduri, Venkatesh and Palshikar

Caller Switch Callee

Idle
OffHook
DialTone
DialDigits

RingPhone
OffHook

TalkingAnswer

Talking Connected
OnHook

Disconnect
OnHook

Idle

msc Telephone Call

Fig. 1. Message Sequence Chart for a Typical Scenario in a Telephone Call

The ITU recommendation also defines High-level MSCs (HMSCs) for hi-
erarchically structuring multiple scenarios using iteration and branching. An
example of an HMSC is Telephone Call Scenarios, shown at the left of Fig-
ure 2, where each of the rounded boxes, known as nodes or MSC references,
refers to either a basic MSC or another HMSC. The edges between nodes de-
pict flow of control. Branches and loops depict alternative flows and iterative
actions in scenarios. In the Figure, Cancel and Disconnect are MSC references
which refer to basic MSCs, shown on the right. All the other nodes in HMSC
Telephone Call Scenarios refer to basic MSCs which are not shown.

The HMSC Telephone Call Scenarios in Figure 2 depicts more than one
scenario that can occur in a telephone call, in addition to the normal flow
depicted in Figure 1:

(i) The caller can disconnect before the callee answers. This situation is cap-
tured by the outgoing branch from the node Request to the node Cancel.
The normal flow corresponds to the outgoing branch from Request to
Reply.

(ii) The backward loop from Cancel and Disconnect to Request captures the
possibility of repetitive or iterative actions.

4

Bhaduri, Venkatesh and Palshikar

Request

Cancel

Reply

Connect

Disconnect

msc Telephone_Call_Scenarios
Caller Switch Callee

OnHook

cancel

msc Cancel

Caller Switch Callee

OnHook

disconnect

OnHook

msc Disconnect

Fig. 2. High Level MSC

Our MSC-based formalization of use cases is aimed at developing tools
for describing and analysing use case scenarios. The benefits gained are in
the form of tool support for simulation, analysis, test case generation and
formal verification. A prerequisite for such analyses is the existence of a formal
semantics for the MSC and HMSC notations, the subject of the next section.

3 Semantics of HMSCs

In this section we present two semantics for HMSCs – a linear time semantics
based on the notion of runs and an operational semantics in terms of a labelled
transition system. While the former is useful for understanding and reasoning
about MSCs, the latter is more suitable for implementing the behaviour of
HMSCs in a simulator.

3.1 Linear Time Semantics

We present a linear time semantics of our MSC language based on runs, as
is done by Damm and Harel in [5]. For us, a run of an HMSC is a finite or

5

Bhaduri, Venkatesh and Palshikar

infinite sequence of events. The events are the sending or the receiving of a
message msg from instance i to instance j, or timer events (set, reset and
timeout). Message passing can be either synchronous or asynchronous, and
we assume that there is a way to annotate messages with this information.

We start with the abstract syntax of basic MSCs as in [5]. With each
instance i in an MSC m we associate a finite number of discrete locations l,
which are numbered from the top of the instance i to the bottom, using an
index in {0, . . . , lmax(m, i)}. Each location l on instance i in an MSC m,
denoted 〈i, l〉m, is labelled with either a condition or an event. In other words,
a location refers to a region on an MSC instance that contains a condition, a
message send or a message receive, or a timer event (set, reset, timeout). We
will drop the subscript m from a location when the MSC being referred to is
clear from the context.

The semantics of a basic MSC m is defined in terms of the partial order
≤m induced by m on its set of locations 〈i, l〉. The partial order is obtained
from the following precedence relation Rm:

• order along an instance line:
〈i, l〉Rm〈i, l + 1〉, unless the two consecutive locations are in a co-region;

• order induced from message sending:
if 〈i, l〉 is a send event and 〈i′, l′〉 is the corresponding receive event for the
message, then 〈i, l〉Rm〈i

′, l′〉;

• synchronous messages block sender until receipt:
If 〈i, l〉 is a send event and 〈i′, l′〉 is the corresponding receive event for a
synchronous message, then 〈i′, l′〉Rm〈i, l + 1〉;

• shared conditions induce synchronization barrier:
if the locations 〈i, l〉 and 〈i′, l′〉 share a condition c then 〈i, l〉Rm〈i

′, l′ + 1〉.

We assume that the MSC m is well-formed i.e., the relation Rm is acyclic. We
call Rm the precedence relation of the MSC m. The partial order ≤m is then
the reflexive transitive closure of Rm. Figure 3 shows a basic MSC and its
associated partial order.

Definition 3.1 The semantics of a basic MSC m is the set of runs compatible
with ≤m, i.e., the set of all linearizations of the partial order ≤m. 2

Note that this means that we have an interleaving semantics for concur-
rency – if two events are independent, then they are assumed to take place in
an arbitrary order. Also note that the semantics of a basic MSC is a finite set
of finite sequences.

Next we define an MSC-graph [2] as a restricted form of HMSC where each
node is a basic MSC.

Definition 3.2 An MSC-graph G is a tuple (V,→, vI , vT , µ) where V is a set
of vertices, → a binary relation over V , vI an initial vertex, vT a terminal
vertex and µ a labelling function that maps each vertex v to an MSC m. 2

6

Bhaduri, Venkatesh and Palshikar

From this MSC-graph one obtains finite paths that start at the initial
vertex and end at the terminal vertex, representing finite executions of the
system. In addition, because of the presence of loops in the MSC-graph there
are infinite paths starting at the initial vertex that represent the infinite exe-
cutions of the system. In defining the semantics of an MSC graph, we have to
define what it means to concatenate two MSCs asynchronously [2]. Intuitively,
this corresponds to concatenating MSCs instance by instance.

Definition 3.3 The asynchronous concatenation of two MSCs m1 and m2

with the same set of instances is the partial order ≤m1;m2
on locations(m1)]

locations(m2) given by the transitive closure of the following relation:

≤m1
] ≤m2

∪ { (〈i, l〉m1
, 〈i, l′〉m2

) | 〈i, l〉m1
∈ locations(m1) ∧

〈i, l′〉m2
∈ locations(m2)}

where X] Y denotes the disjoint union of sets X and Y . 2

Definition 3.4 The semantics of an MSC-graph G is the set of all finite and
infinite runs obtained by:

(i) asynchronously concatenating each basic MSC along each path, and then

(ii) taking the disjoint union over all paths, both finite and infinite, of the
sets of runs obtained from the partial orders in the first step.

2

There is a subtlety in the above definition. A path in an MSC-graph
may involve loops, with some of the nodes repeated. Sufficient care must
be taken to rename the locations in the same basic MSC while performing
the asynchronous concatenation operation. This is the reason for using the
disjoint union operation.

Finally, an HMSC consists of a graph whose nodes are either basic MSCs
or are labelled with another HMSC, allowing for nesting of graphs.

Definition 3.5 An HMSC H is a tuple (N,B, vI , vT , µ, E) where N is a finite
set of nodes, B is a finite set of boxes (or supernodes), vI ∈ N∪B is the initial
node or box, vT ∈ N ∪B is the terminal node or box, µ is a labelling function
that maps each node in N to an MSC, and each box in B to an already defined
HMSC and E is the set of edges that connect nodes and boxes to each other.2

The meaning of an HMSC H is defined by recursively substituting each
box by the corresponding HMSC to obtain an MSC-graph. The details are
worked out in [2].

3.2 Operational Semantics of HMSCs

The linear time semantics of HMSCs presented in the last section, being non-
constructive, is not suitable as a basis for simulation. Here we present an
operational semantics which can be directly realized in the form of an abstract
machine for simulating HMSCs. This semantics is presented via a labelled

7

Bhaduri, Venkatesh and Palshikar

transition system (C, ι, E,−→) where C is the set of configurations or states,
ι is the initial configuration, E is the set of events and −→⊆ C×E×C is the
transition relation.

As with the linear time semantics, we start with basic MSCs. The op-
erational semantics for a basic MSC m is directly obtained from the partial
order ≤m defined in Section 3.1 by using a standard techniques for obtaining
an automaton from a partial order of events.

Definition 3.6 A cut c in a partial order (E,≤) of events is a downward
closed subset of E, i.e., e ∈ c and e′ ≤ e imply e′ ∈ c. The set of cuts obtained
from E is denoted C(E). 2

Intuitively, cuts represent consistent global states or configurations. The
empty cut represents the initial configuration, when no event has occurred.

Definition 3.7 Given a partial order (E,≤) of events we define a transition
relation (C(E), ∅, E,−→) as follows: for c, d ∈ C(E) there is a transition c

e
−→

d iff d = c∪{e}. We say that the event e is enabled in configuration c of MSC
m, denoted enabled(e, c,m). 2

Note that enabled(e, ∅,m) is equivalent to e being a minimal element in
the partial order (locations(m),≤m).

Definition 3.8 The operational semantics of a basic MSC m is given by the
transition system (C(E), ∅, E,−→) where E is the partial order (events(m),≤m

), where events(m) is the set of locations of m with send, receive and timer
events only i.e., conditions are ignored. 2

We now define the operational semantics of HMSCs. As in Section 3.1 we
start with the simpler case of MSC-graphs where the level of nesting of MSCs
is one.

In contrast to basic MSCs, the operational semantics of MSC-graphs presents
several complications and subtleties. Due to the asynchronous concatenation
used in the linear time interpretation, at any time control may reside in more
than one vertex in an MSC-graph. These vertices need not even form a con-
tiguous chain or path – there may be “holes” in them. In addition, because
of loops in the MSC-graph, more than one incarnation of a vertex may be
active. Further, because of branches in the graph, two different incarnations
of a vertex may chose to make different choices at a branching point. The
following definitions take all these complications into account.

Definition 3.9 A configuration C of an MSC-graph G = (V,→, vI , vT , µ) is
a pair of the form < p, c > where p = [v1, . . . , vn] is a finite path in G starting
at v1 = vI and c is a configuration, in the sense of Definition 3.7, in the basic
MSC m = m1; . . . ;mn, obtained by asynchronously concatenating the basic
MSCs m1, . . . ,mn, where µ(vi) = mi. 2

Note that the same vertex v may occur more than once in a path p.

8

Bhaduri, Venkatesh and Palshikar

We define the operational semantics of an MSC-graph G through the tran-
sition system (C, < vI , ∅ >,E] τ,−→) where C is the set of configurations
defined as above, E =

⋃

v∈V

m=µ(v)
events(m) ×N is the set of events in all the

basic MSCs in G indexed by natural numbers and τ is a special event called
the silent event. The initial configuration < vI , ∅ > consists of the empty path
starting with the initial vertex vI in G and the empty set of events.

Definition 3.10 The transition relation (with τ -labelled transitions) between
configurations is defined by the following cases:

(i) < [v1, . . . , vn], c >
<e,i>
−→< [v1, . . . , vn], c∪{e} > if e ∈ events(mi) is enabled

in the configuration c.

(ii) < [v1, . . . , vn], c >
τ
−→< [v1, . . . , vn, vn+1], c > if the configuration c con-

tains a maximal event on any instance in the basic MSC m = m1; . . . ;mn

or if an instance inm has no event at all. The vertex vn+1 is any successor
of vn in the MSC-graph G.

2

The above definition captures the intuition that one step of execution of
an MSC-graph G either executes an enabled event in one of the vertices of the
path p = [v1, . . . , vn] of G already visited, or adds a new vertex vn+1 to the
end of p when an event in vn+1 becomes enabled.

The operational semantics of an HMSC H = (N,B, vI , vT , µ, E) is ob-
tained by using the construction described above for flattening the HMSC
into an MSC-graph. We omit the details as there is no conceptual complexity
involved.

Proposition 3.11 The linear time and the operational semantics of HMSCs
presented above coincide, i.e., the set of runs defined by the linear time se-
mantics is identical to the set of traces of the labelled transition system for
the operational semantics. 2

3.3 Simulation of HMSCs

We have built a prototype tool for simulation of HMSCs that directly imple-
ments the operational semantics of HMSCs presented above. Due to space
constraints, we present only a brief outline of the simulation algorithm. The
details can be found in [3].

The simulation of basic MSCs takes as input the precedence relation Rm

corresponding to MSC m defined in Section 3.1. The algorithm essentially
does a topological sort of this relation, where the minimal elements at each
stage represent the enabled events. Whenever there is more than one minimal
element the user is offered a choice of which event to execute next. When the
event is executed it is deleted from the set of events. The algorithm stops
when all the events in the MSC have been executed.

The algorithm for simulating an HMSC does a nested traversal of the

9

Bhaduri, Venkatesh and Palshikar

corresponding directed graph, starting at the start vertex. It starts simulating
the first reachable basic MSC in the graph, and appends a new MSC to it
whenever a maximal event on an instance is executed. This corresponds to
the τ transition in the labelled transition system corresponding to the HMSC.
Whenever there is a branch in the HMSC graph, the user is prompted with a
choice for the next HMSC node to be considered for execution. The simulation
ends when the end vertex is reached.

4 Verification of Properties of Basic MSCs

4.1 Approach

When capturing requirements via scenarios, the requirements engineer is often
interested in validating a set S = {M1, ...,Mn} of basic MSCs. An alternative
to simulation, which could be impractical for a large n, is to allow the user to
state properties which the MSCs in S should obey, and to automatically verify
them. The problem is to define a verification algorithm, that takes a set S of
basic MSCs and a statement P of a property (in some well defined syntax)
as input, and returns yes if the set S satisfies the property P and returns no

otherwise (along with a counter-example, if necessary).

In the following presentation, we assume, for simplicity, that S consists of
a single basic MSC m. The techniques presented below can be easily extended
to handle the general case of n basic MSCs. The extension to HMSCs is being
investigated. There is a trade-off between ease of use and expressive power
in the choice of notation used to specify the properties. Following [9], we
assume that the properties fall into various types of pre-defined templates,
thus sacrificing generality for ease of use and efficiency of verification. The
properties are stated in terms of relative ordering of events in the traces of the
input MSC. Although the property templates cannot express all the properties
that may be of interest in practice, they do cover broad classes of typical
properties. Moreover, it is possible to design efficient algorithms for verifying
properties stated using these templates. We present the syntax of the property
templates and simple graph-theoretic algorithms (based on the partial-order
semantics for MSCs) for verification of these properties.

Every event in an MSC has a unique ID given by its location, as in Sec-
tion 3.1. A user-defined event corresponds, in general, to a set of internal
events. For instance, in Figure 3, the user-defined event “p1 sends inc” cor-
responds to the set of internal events {e1, e3}. We assume that the properties
are specified in terms of user-defined events and their negation. We say that
a user-defined event e occurs whenever any of the internal events correspond-
ing to it occurs. Since a user-defined event e stands for a non-empty set
S = {e1, ..., ek} of internal events, the negative event not(e) stands for the
event not(e1) ∧ ... ∧ not(ek).

10

Bhaduri, Venkatesh and Palshikar

P1 UR NA P2

inc

inc

double

double

msc NuclearControl

e6 = receive(P2,UR,double)

e8 = receive(P2,NA,double)

e5 = send(P2,UR,double)

e2 = receive(P1,UR,inc)

e7 = send(P2,NA,double)

e4 = receive(P1,NA,inc)

e3 = send(P1,NA,inc)

e1 = send(P1,UR,inc)

Fig. 3. An MSC and associated partial order

4.2 Syntax of Property Templates

4.2.1 Tracing

The tracing property asserts the occurrence of a sequence of events in the
specified order in all or some of the traces of the input MSC m. The template
for the property is shown below. The terms in bold separated by slashes are
options and one of them has to be chosen by the user. Here each ai, 1 ≤ i ≤ n,
is either a user-defined event (i.e. a non-empty set of internal events) or its
negation 1 .

The sub-sequence / [a1, ..., an] occurs at the beginning / ever /

packed sub-sequence at the end / somewhere always /

of events never

This template actually corresponds to several possible patterns, depend-
ing on the options chosen, as discussed below. We also define the semantics
of each of these patterns in terms of the linearizations of the partial order
corresponding to the given MSC m. For example, in Figure 3, the following

1 For simplicity, we forbid negative events when the packed sub-sequence (i.e., a con-
tiguous sub-sequence) option is selected. Similarly, when the beginning or end options
are chosen, the first event in the sequence should not be a negative event.

11

Bhaduri, Venkatesh and Palshikar

property states that it is possible (in at least one linearization) to receive the
double message flanked by receipts of the two inc messages.

The sub-sequence [”UR receives inc”, occurs ever

of events ”UR receives double”, somewhere

”NA receives inc”]

When the user-defined events in quotes are replaced by the associated sets
of internal events, this property statement translates to the following pattern.

The sub-sequence of events [{e2}, {e6}, {e4}] occurs somewhere ever

Clearly, this property is true and there is at least one linearization -
for example, < e1, e5, e2, e3, e6, e4, e7, e8 > in which the sequence of events
[e2, e6, e4] occurs as a sub-sequence. As another example, in Figure 3, the
following property states that it is possible to send two inc messages without
any send of a double message in between.

The sub-sequence [”p1 sends inc”, occurs ever

of events not(”p2 sends double”), somewhere

”p1 sends inc”]

When the user-defined events in quotes are replaced by the associated sets
of internal events, this property statement translates to the following pattern.

The sub-sequence [{e1, e3}, not({e5, e7}), occurs ever

of events {e1, e3}] somewhere

4.2.2 Consequence

Another common and useful kind of property, called consequence, is specified
using the following template.

12

Bhaduri, Venkatesh and Palshikar

The sub-sequence / X leads to sub-sequence / Y

packed sub-sequence / packed sub-sequence /

[each / all / an] event(s) from [an / all] event(s) from

Here X,Y ⊆ E are user-specified sets of events (X and/or Y are sequences
if the sub-sequence options are chosen). This template corresponds to several
possible patterns, which are used to check that certain actions are executed
when their precedences occur. For example, the consequence property can be
used to say that whenever a process (UR or NA) receives an inc message,
it subsequently receives a double message. There is a converse precedence
property template which asserts that if X has occurred then Y must have
occurred previously in that run.

4.3 Semantics and Verification of Property Templates

Each template corresponds to several patterns, depending on which options
are chosen by the user. The semantics of these patterns is defined in terms
of the linear-time semantics for MSC. We also define algorithms for checking
each of these property patterns. We illustrate this process for some of the pat-
terns for tracing and consequence property templates. Recall from Section 3.1
that Rm is the precedence relation associated with an MSC m. We write
precedes(ai, aj) when (ai, aj) ∈ R∗

m, the transitive closure of Rm. The fol-
lowing algorithms assume that the transitive closure has been pre-computed.
This can be done using Warshall’s algorithm in time O(n3).

To keep the presentation simple, in the following we assume that (i) each
event ai is a single internal event (not a user-defined event) and (ii) none of
the events ai is a negative event. The general algorithms handling user-defined
and negative events are described in the full paper [3].

(i) Property Pattern: The sub-sequence of events α = [a1, ..., an] occurs
somewhere ever. Meaning: Is there at least one linearization σ of Rm

such that α is a sub-sequence of σ?

(ii) Property Pattern: The sub-sequence of events α = [a1, ..., an] occurs
somewhere always. Meaning: Is α a part- sequence of every lineariza-
tion σ of Rm?

(iii) Property Pattern: The sub-sequence of events α = [a1, ..., an] occurs
somewhere never. Meaning: Is there no linearization σ of Rm such
that α is a sub-sequence of σ?

The following algorithm can be used to check property pattern (1). The al-
gorithm can be easily modified to output an actual linearization that contains
α as a sub-sequence.

13

Bhaduri, Venkatesh and Palshikar

algorithm tracing a
input set E = {e1, ..., en} of all possible events in an MSC m, n ≥ 1
input binary precedence relation Rm on E

input α = [a1, ..., ak] a given non-empty finite sequence of events
such that ai ∈ E for all 1 ≤ i ≤ k and there are no duplicates in α

output true if there is at least one linearization that contains α as
a sub-sequence; false otherwise

for (j = 2; j <= k; j ++)
for (i = 1; i < j; i++)

if (precedes(aj, ai))
return false;

return true;

The correctness of the algorithm follows from the following observation.

Proposition 4.1 Let E be a finite non-empty set containing n elements and
R be a precedence relation on E. Then two elements a1, a2 in E occur (in that
order) in some linearization of R if and only if a2 does not precede a1.

The following algorithm can be used to check property pattern (2), under
the same assumptions as for (1).

algorithm tracing b
input set E = {e1, ..., en} of all possible events of MSC m, n ≥ 1
input binary precedence relation Rm on E

input α = [a1, ..., ak] a given non-empty finite sequence of events
such that ai ∈ E for all 1 ≤ i ≤ k and there are no duplicates in α

output true if all possible linearizations contain α as
a sub-sequence; false otherwise

for (i = 1; i < k; i++)
if (! precedes(ai, ai+1))

return false;
return true;

The correctness of the algorithm follows from the following observation.

Proposition 4.2 Let E be a finite non-empty set containing n elements and
R be a precedence relation on E. Then two elements a1, a2 in E occur (in that
order) in every linearization of R if and only if a1 precedes a2.

The complexity of both algorithms is O(k2).

The consequence property template also stands for several property pat-
terns, depending on which options are chosen by the user. We illustrate the
semantics of one of the patterns for the consequence template.

Property Pattern: An event from X leads to all events from Y.Mean-
ing: Is it true that for every linearization σ of Rm, there exists some

14

Bhaduri, Venkatesh and Palshikar

x ∈ X and some ordered permutation Y1 of Y such that the sequence
x • Y1 (obtained by concatenating x with Y1) is a sub-sequence of σ?

The following algorithm verifies the property specified by this pattern for
consequence.

algorithm consequence b
input set E = {e1, ..., en} of all possible events in MSC m, n ≥ 1
input binary precedence relation Rm on E

input Two non-empty sets X,Y ⊆ E

output true if an event from X leads to all events from Y in
all possible linearizations; false otherwise

for (i = 1; i <= |X|; i++)
{

x := X(i); // ith element of X
// check if x is followed by all elements of Y in some order
// in all linearizations
for (j = 1; j <= |Y |; j ++)
{

if (!precedes(x, Y (j))) then // jth element of Y
break; // x is not followed by all elements of Y

} // end for
if (j > |Y |) then // above for loop checked all elements of Y

return true; // x is the one
} // end for
return false

The complexity of this algorithm is O(|X||Y |). Note that none of the
algorithms explicitly check all possible linearizations. Additional algorithms
for other property patterns are defined similarly.

5 Conclusion

Scenario based specifications such as MSCs offer an intuitive and visual way of
describing requirements. Since MSCs can be provided a formal semantics, they
can be subjected to a variety of analyses. In this paper we have proposed a
formal semantics for HMSCs, based on which a simulation and verification tool
has been designed. Our focus is the application of this toolset in requirements
validation as part of an industrial CASE tool.

In order to integrate the MSC based toolset into the software development
process several problems have to be addressed. First, they have to be inte-
grated with the use case model, a popular notation employed by UML for
requirements capture. One of the challenges faced by developers in maintain-
ing scenarios for use cases is that the requirements and hence the use cases
keep on changing, and it is difficult to keep the related MSCs in sync. To over-

15

Bhaduri, Venkatesh and Palshikar

come this problem, we propose to design a common meta-model from which
the meta-model for use cases and MSCs would be derived as views. This would
make it possible to maintain the relationship between use cases and MSCs,
thus enabling changes in one model to be automatically reflected in the other.
Moreover, the algorithms for simulation, verification of properties and other
analysis methods would work at the common meta-model level, rather than
MSCs.

Another challenge in using scenarios in the software development process
is maintaining their relationship to other dynamic models, such as state ma-
chines for describing object behaviour. MSCs and state machines can be
understood as partial views of a system, specifying inter-object collaboration
and intra-object reactive behavior respectively. Since these two views are not
independent, there must be a formal relationship that must be preserved be-
tween the two in order that they describe a coherent system. We propose to
address this issue by mapping these dynamic views to a common semantic
framework of labelled transition system with a structure on the states. This
semantic domain can, in principle, interpret all dynamic views of a system,
possibly with suitable parameterization or variation points, for example, with
respect to concurrency or granularity of transitions. The semantics of MSCs
presented in Section 3 is a special case, which can be thought of as specializing
the common semantic domain with respect to certain parameters.

Our scenario based analysis algorithms and tools should be seen as a first
step towards an integrated behaviour modelling and analysis framework out-
lined above. This would integrate scenarios with both structural and be-
havioural models and aid in forward engineering –refinement, code generation
and test case generation, in addition to detecting faults early in the life cycle.

6 Acknowledgements

We are grateful to Prof. S. Ramesh for his discussions and feedback on the
work. We thank Prof. Mathai Joseph for his guidance and encouragement
throughout the project.

References

[1] R. Alur, G.J. Holzmann, and D.A. Peled. An Analyzer for Message Sequence
Charts. Software Concepts and Tools, 17(2):70–77, 1996.

[2] R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts.
In Proceedings of the Tenth International Conference on Concurrency Theory,
CONCUR’99, Lecture Notes in Computer Science. Springer-Verlag, 1999.

[3] Purandar Bhaduri, R. Venkatesh, and Girish Palshikar. Formal techniques for
analysing scenarios using message sequence charts. Internal report, TRDDC,
2001.

16

Bhaduri, Venkatesh and Palshikar

[4] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1998.

[5] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
In FMOODS’99: Proc. Third IFIP Intl. Conf. on Formal Methods for Open
Object-Based Distributed Systems, March 1999.

[6] G.J. Holzmann, D.A. Peled, and M.H. Redberg. Design Tools for Requirements
Engineering. Bell Labs Technical Journal, pages 86–95, Winter 1997.

[7] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC), April
1996.

[8] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering – A Use Case Driven Approach.
Addison-Wesley/ACM Press, Reading, Mass., 1992.

[9] Wil Janssen, Radu Mateescu, Sjouke Mauw, Peter Fennema, and Petra van der
Stappen. Model checking for managers. In Proceedings of the 6th International
SPIN Workshop on Practical Aspects of Model Checking (Toulouse, France),
September 1999.

[10] Vladimir Levin and Doron Peled. Verification of message sequence charts
via template matching. In TAPSOFT (FASE)’97, Theory and Practice of
Software Development, volume 1214 of LNCS, pages 652–666, Lille, France,
1997. Springer.

[11] E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence
Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

[12] E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message
Sequence Charts (MSC’96). In Tutorials of the First joint International
Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification
(FORTE/PSTV’96), October 1996.

17

