

Copyright c©2010
Edward Ashford Lee & Sanjit Arunkumar Seshia

All rights reserved

Version 0.5
August 14, 2010

ISBN xxx-xxx-xxx-x

Contents

Preface . xiii

What this Book is About . xiii

Why We Wrote this Book . xiv

What is Missing . xvii

How to Use this Book . xvii

Sidebar: Reporting Errors . xix

Intended Audience . xx

Acknowledgements . xx

Sidebar: Notes for Instructors . xx

Sidebar: Further Reading . xxi

1 Introduction 1
1.1 Applications . 2

Sidebar: About the Term “Cyber-Physical Systems” 2

1.2 Motivating Example . 6

1.3 The Design Process . 8

1.3.1 Modeling . 11

1.3.2 Design . 13

1.3.3 Analysis . 14

1.4 Summary . 15

iii

CONTENTS

I Modeling Dynamic Behaviors 17

2 Continuous Dynamics 19

2.1 Newtonian Mechanics . 20
2.2 Actor Models . 25
2.3 Properties of Systems . 29

2.3.1 Causal Systems . 29

2.3.2 Memoryless Systems . 30

2.3.3 Linearity and Time Invariance 30

2.3.4 Stability . 31

2.4 Feedback Control . 32
2.5 Summary . 38

Exercises . 39

3 Discrete Dynamics 43

3.1 Discrete Systems . 44

Sidebar: Probing Further: Discrete Signals 46

Sidebar: Probing Further: Modeling Actors as Functions 47

3.2 The Notion of State . 49
3.3 Finite-State Machines . 50

3.3.1 Transitions . 50
3.3.2 When a Reaction Occurs 54
Sidebar: Probing Further: Hysteresis 54

3.3.3 Update Functions . 56

Sidebar: Software Tools Supporting FSMs 57

3.3.4 Determinacy and Receptiveness 59

3.4 Extended State Machines . 59
Sidebar: Moore Machines and Mealy Machines 60

3.5 Nondeterminism . 65
3.5.1 Formal Model . 67

iv Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

CONTENTS

3.5.2 Uses of Non-Determinism 68
3.6 Behaviors and Traces . 69
3.7 Summary . 73

Exercises . 74

4 Hybrid Systems 79

4.1 Modal Models . 80
4.1.1 Actor Model for State Machines 80
4.1.2 Continuous Inputs . 81

4.1.3 State Refinements . 82
4.2 Classes of Hybrid Systems . 84

4.2.1 Timed Automata . 84
4.2.2 Higher-Order Dynamics 89

4.2.3 Supervisory control . 94

4.3 Summary . 101

Exercises . 102

5 Composition of State Machines 107

5.1 Concurrent Composition . 109

5.1.1 Side-by-Side Synchronous Composition 110

5.1.2 Side-by-Side Asynchronous Composition 113

5.1.3 Shared Variables . 114
Sidebar: Scheduling Semantics for Asynchronous Composition . . . 115

5.1.4 Cascade Composition . 118

5.1.5 General Composition . 121

5.2 Hierarchical State Machines . 122
5.3 Summary . 127

Exercises . 128

6 Concurrent Models of Computation 131

6.1 Structure of Models . 133

Lee & Seshia, Introduction to Embedded Systems, version 0.5 v

http://LeeSeshia.org

CONTENTS

6.2 Synchronous-Reactive Models . 134

Sidebar: Actor Networks as a System of Equations 135

Sidebar: Fixed-Point Semantics 136
6.2.1 Feedback Models . 137
6.2.2 Well-Formed and Ill-Formed Models 139
6.2.3 Constructing a Fixed Point 141

6.3 Dataflow Models of Computation 143

6.3.1 Dataflow Principles . 143

Sidebar: Synchronous-Reactive Languages 144

6.3.2 Synchronous Dataflow . 148

6.3.3 Dynamic Dataflow . 152

6.3.4 Structured Dataflow . 154
6.3.5 Process Networks . 155
Sidebar: Petri Nets . 158

6.4 Timed Models of Computation . 159

6.4.1 Time-Triggered Models 159

Sidebar: Models of Time . 160

6.4.2 Discrete Event Systems . 161

6.4.3 Continuous-Time Systems 162

Sidebar: Probing Further: Discrete Event Semantics 163

6.5 Summary . 167

Exercises . 168

II Design of Embedded Systems 173

7 Embedded Processors 175
7.1 Types of Processors . 177

7.1.1 Microcontrollers . 177
7.1.2 DSP Processors . 177

vi Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

CONTENTS

Sidebar: Microcontrollers . 178
Sidebar: The x86 Architecture . 179
Sidebar: DSP Processors . 180
7.1.3 Graphics Processors . 184

Sidebar: Circular Buffers . 185

7.2 Parallelism . 186
7.2.1 Parallelism vs. Concurrency 186

7.2.2 Pipelining . 189

7.2.3 Instruction-Level Parallelism 193
7.2.4 Multicore Architectures 198
Sidebar: Fixed-Point Numbers . 199
Sidebar: Fixed-Point Numbers (continued) 200

Sidebar: Fixed-Point Arithmetic in C 201
7.3 Summary . 202

Exercises . 203

8 Memory Architectures 205

8.1 Memory Technologies . 206

8.1.1 RAM . 206
8.1.2 Non-Volatile Memory . 207

8.2 Memory Hierarchy . 209

8.2.1 Memory Maps . 209

Sidebar: Harvard Architecture . 211
8.2.2 Register Files . 212

8.2.3 Scratchpads and Caches 213

8.3 Memory Models . 218

8.3.1 Memory Addresses . 218

8.3.2 Stacks . 219
8.3.3 Memory Protection Units 220

8.3.4 Dynamic Memory Allocation 220

Lee & Seshia, Introduction to Embedded Systems, version 0.5 vii

http://LeeSeshia.org

CONTENTS

8.3.5 Memory Model of C . 221

8.4 Summary . 222

Exercises . 224

9 Input and Output 227

9.1 I/O Hardware . 228
9.1.1 General-Purpose Digital I/O 230

9.1.2 Serial Interfaces . 233
9.1.3 Parallel Interfaces . 237
9.1.4 Buses . 238

9.2 Sequential Software in a Concurrent World 239

9.2.1 Interrupts and Exceptions 239

9.2.2 Atomicity . 242

Sidebar: Basics: Timers . 242
9.2.3 Interrupt Controllers . 244

9.2.4 Modeling Interrupts . 245

9.3 The Analog/Digital Interface . 249

9.3.1 Digital to Analog and Analog to Digital Converters 250

9.3.2 Signal Conditioning . 252

9.3.3 Sampling and Aliasing . 255

Sidebar: Probing Further: Impulse Trains 257

9.4 Summary . 259

Exercises . 260

10 Multitasking 267

10.1 Imperative Programs . 270

Sidebar: Linked Lists in C . 273
10.2 Threads . 274

10.2.1 Creating Threads . 274

10.2.2 Implementing Threads . 277

viii Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

CONTENTS

10.2.3 Mutual Exclusion . 278

Sidebar: Operating Systems . 282

10.2.4 Deadlock . 283

10.2.5 Memory Consistency Models 284

10.2.6 The Problem with Threads 285

10.3 Processes and Message Passing . 288

10.4 Summary . 292

Exercises . 294

11 Scheduling 297

11.1 Basics of Scheduling . 298

11.1.1 Scheduling Decisions . 298

11.1.2 Task Models . 300

11.1.3 Comparing Schedulers . 303

11.1.4 Implementation of a Scheduler 303

Sidebar: Further Reading . 304

11.2 Rate Monotonic Scheduling . 306

11.3 Earliest Deadline First . 310

11.3.1 EDF with Precedences . 312

11.4 Scheduling and Mutual Exclusion 314

11.4.1 Priority Inversion . 315

11.4.2 Priority Inheritance Protocol 317

11.4.3 Priority Ceiling Protocol 318

11.5 Multiprocessor Scheduling . 320

11.5.1 Scheduling Anomalies . 321

11.6 Summary . 324

Exercises . 325

Lee & Seshia, Introduction to Embedded Systems, version 0.5 ix

http://LeeSeshia.org

CONTENTS

III Analysis and Verification 327

12 Invariants and Temporal Logic 329

12.1 Invariants . 331
12.2 Linear Temporal Logic . 333

12.2.1 Propositional Logic Formulas 334

12.2.2 LTL Formulas . 335
Sidebar: Safety and Liveness Properties 338

Sidebar: Probing Further: Alternative Temporal Logics 339

12.2.3 Using LTL Formulas . 341

12.3 Summary . 342

Exercises . 343

13 Equivalence and Refinement 347

13.1 Models as Specifications . 348

13.2 Type Equivalence and Refinement 349

Sidebar: Abstraction and Refinement 350

13.3 Language Equivalence and Containment 353

Sidebar: Finite Sequences and Accepting States 355

Sidebar: Regular Languages and Regular Expressions 356

13.4 Simulation . 358
Sidebar: Probing Further: Omega Regular Languages 358

13.4.1 Simulation Relations . 360
13.4.2 Formal Model . 362
13.4.3 Transitivity . 363

13.4.4 Non-Uniqueness of Simulation Relations 364

13.4.5 Simulation vs. Language Containment 365

13.5 Bisimulation . 366
13.6 Summary . 369

Exercises . 370

x Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

CONTENTS

14 Reachability Analysis and Model Checking 375

14.1 Open and Closed Systems . 375

14.2 Reachability Analysis . 375

14.3 Abstraction in Model Checking . 375

14.4 Model Checking Liveness Properties 375

15 Quantitative Analysis 377

15.1 Problems of Interest . 379
15.1.1 Extreme-Case Analysis . 379

15.1.2 Threshold Analysis . 380

15.1.3 Average-Case Analysis . 380

15.2 Programs as Graphs . 381

15.2.1 Basic Blocks . 382
15.2.2 Control-Flow Graphs . 382

15.2.3 Function Calls . 384
15.3 Factors Determining Execution Time 385

15.3.1 Loop Bounds . 385

15.3.2 Exponential Path Space . 388

15.3.3 Path Feasibility . 390

15.3.4 Memory Hierarchy . 391

15.4 Basics of Execution Time Analysis 392

15.4.1 Optimization Formulation 392

15.4.2 Logical Flow Constraints 396

15.4.3 Bounds for Basic Blocks 400
15.5 Other Quantitative Analysis Problems 402

15.5.1 Memory Bound Analysis 402

Sidebar: Probing Further: Tools for Execution-Time Analysis . . . 403

15.5.2 Power and Energy Analysis 404

15.6 Summary . 404

Lee & Seshia, Introduction to Embedded Systems, version 0.5 xi

http://LeeSeshia.org

CONTENTS

Exercises . 406

IV Appendices 409

A Sets and Functions 411
A.1 Sets . 411
A.2 Relations and Functions . 412

A.2.1 Restriction and Projection 415

A.3 Sequences . 416

Sidebar: Insight: Exponential Notation for Sets of Functions 418

Exercises . 419

Bibliography 421

Notation Index 436

Index 439

xii Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Preface

What this Book is About

The most visible use of computers and software is processing information for human
consumption. We use them to write books (like this one), search for information
on the web, communicate via email, and keep track of financial data. The vast
majority of computers in use, however, are much less visible. They run the engine,
brakes, seatbelts, airbag, and audio system in your car. They digitally encode your
voice and construct a radio signal to send it from your cell phone to a base station.
They control your microwave oven, refrigerator, and dishwasher. They run printers
ranging from desktop inkjet printers to large industrial high-volume printers. They
command robots on a factory floor, power generation in a power plant, processes in
a chemical plant, and traffic lights in a city. They search for microbes in biological
samples, construct images of the inside of a human body, and measure vital signs.
They process radio signals from space looking for supernovae and for extraterrestrial
intelligence. They bring toys to life, enabling them to react to human touch and to
sounds. They control aircraft and trains. These less visible computers are called
embedded systems, and the software they run is called embedded software.

Despite this widespread prevalence of embedded systems, computer science has,
throughout its relatively short history, focused primarily on information processing.
Only recently have embedded systems received much attention from researchers.
And only recently has the community recognized that the engineering techniques
required to design and analyze these systems are distinct. Although embedded sys-
tems have been in use since the 1970s, for most of their history they were seen
simply as small computers. The principal engineering problem was understood to
be one of coping with limited resources (limited processing power, limited energy
sources, small memories, etc.). As such, the engineering challenge was to optimize

xiii

PREFACE

the designs. Since all designs benefit from optimization, the discipline was not dis-
tinct from anything else in computer science. It just had to be more aggressive about
applying the same optimization techniques.

Recently, the community has come to understand that the principal challenges in em-
bedded systems stem from their interaction with physical processes, and not from
their limited resources. The term cyber-physical systems (CPS) was coined by Helen
Gill at the National Science Foundation in the U.S. to refer to the integration of com-
putation with physical processes. In CPS, embedded computers and networks mon-
itor and control the physical processes, usually with feedback loops where physical
processes affect computations and vice versa. The design of such systems, there-
fore, requires understanding the joint dynamics of computers, software, networks,
and physical processes. It is this study of joint dynamics that sets this discipline
apart.

When studying CPS, certain key problems emerge that are rare in so-called general-
purpose computing. For example, in general-purpose software, the time it takes to
perform a task is an issue of performance, not correctness. It is not incorrect to take
longer to perform a task. It is merely less convenient and therefore less valuable. In
CPS, the time it takes to perform a task may be critical to correct functioning of the
system. In the physical world, as opposed to the cyber world, the passage of time is
inexorable.

In CPS, moreover, many things happen at once. Physical processes are composi-
tions of many things going on at once, unlike software processes, which are deeply
rooted in sequential steps. Abelson and Sussman (1996) describe computer science
as “procedural epistemology,” knowledge through procedure. In the physical world,
by contrast, processes are rarely procedural. Physical processes are compositions of
many parallel processes. Measuring and controlling the dynamics of these processes
by orchestrating actions that influence the processes are the main tasks of embedded
systems. Consequently, concurrency is intrinsic in CPS. Many of the technical chal-
lenges in designing and analyzing embedded software stem from the need to bridge
an inherently sequential semantics with an intrinsically concurrent physical world.

Why We Wrote this Book

Today, getting computers to work together with physical processes requires techni-
cally intricate, low-level design. Embedded software designers are forced to struggle

xiv Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

PREFACE

with interrupt controllers, memory architectures, assembly-level programming (to
exploit specialized instructions or to precisely control timing), device driver design,
network interfaces, and scheduling strategies, rather than focusing on specifying de-
sired behavior. The sheer mass and complexity of these technologies tempts us to
focus an introductory course on mastering them. But a better introductory course
would focus on how to model and design the joint dynamics of software, networks,
and physical processes. Such a course would present the technologies only as to-
day’s (rather primitive) means of accomplishing those joint dynamics. This book is
our attempt at a textbook for such a course.

Most texts on embedded systems focus on the collection of technologies needed
to get computers to interact with physical systems (Barr and Massa, 2006; Berger,
2002; Burns and Wellings, 2001; Kamal, 2008; Noergaard, 2005; Parab et al., 2007;
Simon, 2006; Valvano, 2007; Wolf, 2000). Others focus on adaptations of computer-
science techniques (like programming languages, operating systems, networking,
etc.) to deal with technical problems in embedded systems (Buttazzo, 2005a; Ed-
wards, 2000; Pottie and Kaiser, 2005). While these implementation technologies are
(today) necessary for system designers to get embedded systems working, they do
not form the intellectual core of the discipline. The intellectual core is instead in
models and abstractions that conjoin computation and physical dynamics.

A few textbooks offer efforts in this direction. Jantsch (2003) focuses on concur-
rent models of computation, Marwedel (2003) focuses on models of software and
hardware behavior, and Sriram and Bhattacharyya (2009) focus on dataflow models
of signal processing behavior and their mapping onto programmable DSPs. These
are excellent starting points. Models and concurrency (such as dataflow) and ab-
stract models of software (such as Statecharts) provide a better starting point than
imperative programming languages (like C), interrupts and threads, and architectural
annoyances that a designer must work around (like caches). These texts, however,
are not suitable for an introductory course. They are either too specialized or too ad-
vanced or both. This book is our attempt to provide an introductory text that follows
the spirit of focusing on models and their relationship to realizations of systems.

The major theme of this book is on models and their relationship to realizations of
systems. The models we study are primarily about dynamics, the evolution of a
system state in time. We do not address structural models, which represent static
information about the construction of a system, although these too are important to
embedded system design.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 xv

http://LeeSeshia.org

PREFACE

Working with models has a major advantage. Models can have formal properties.
We can say definitive things about models. For example, we can assert that a model
is deterministic, meaning that given the same inputs it will always produce the same
outputs. No such absolute assertion is possible with any physical realization of a
system. If our model is a good abstraction of the physical system (here, “good”
means that it omits only inessential details), then the definitive assertion about the
model gives us confidence in the physical realization of the system. Such confi-
dence is hugely valuable, particularly for embedded systems where malfunctions
can threaten human lives. Studying models of systems gives us insight into how
those systems will behave in the physical world.

Our focus is on the interplay of software and hardware with the physical environment
in which they operate. This requires explicit modeling of the temporal dynamics of
software and networks and explicit specification of concurrency properties intrin-
sic to the application. The fact that the implementation technologies have not yet
caught up with this perspective should not cause us to teach the wrong engineering
approach. We should teach design and modeling as it should be, and enrich this
with a critical presentation of how to (partially) accomplish our objectives with to-
day’s technology. Embedded systems technologies today, therefore, should not be
presented dispassionately as a collection of facts and tricks, as they are in many of
the above cited books, but rather as stepping stones towards a sound design prac-
tice. The focus should be on what that sound design practice is, and on how today’s
technologies both impede and achieve it.

Stankovic et al. (2005) support this view, stating that “existing technology for RTES
[real-time embedded systems] design does not effectively support the development
of reliable and robust embedded systems.” They cite a need to “raise the level of
programming abstraction.” We argue that raising the level of abstraction is insuffi-
cient. We have also to fundamentally change the abstractions that are used. Timing
properties of software, for example, cannot be effectively introduced at higher lev-
els of abstraction if they are entirely absent from the lower levels of abstraction on
which these are built.

We require robust and predictable designs with repeatable temporal dynamics (Lee,
2009a). We must do this by building abstractions that appropriately reflect the re-
alities of cyber-physical systems. The result will be CPS designs that can be much
more sophisticated, including more adaptive control logic, evolvability over time,
improved safety and reliability, all without suffering from the brittleness of today’s
designs, where small changes have big consequences.

xvi Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

PREFACE

In addition to dealing with temporal dynamics, CPS designs invariably face chal-
lenging concurrency issues. Because software is so deeply rooted in sequential
abstractions, concurrency mechanisms such as interrupts and multitasking, using
semaphores and mutual exclusion, loom large. We therefore devote considerable ef-
fort in this book to developing a critical understanding of threads, message passing,
deadlock avoidance, race conditions, and data determinism.

What is Missing

This version of the book is not complete. It is arguable, in fact, that complete
coverage of embedded systems in the context of CPS is impossible. Specific top-
ics that we cover in the undergraduate Embedded Systems course at Berkeley (see
http://LeeSeshia.org) and hope to include in future versions of this book include
sensors and actuators, networking, fault tolerance, security, simulation techniques,
control systems, and hardware/software codesign.

How to Use this Book

This book is divided into three major parts, focused on modeling, design, and anal-
ysis, as shown in Figure 1. The three parts of the book are relatively independent of
one another and are largely meant to be read concurrently. A systematic reading of
the text can be accomplished in seven segments, shown with dashed outlines. Each
segment includes two chapters, so complete coverage of the text is possible in a 15
week semester, assuming each of the seven modules takes two weeks, and one week
is allowed for introduction and closing.

In recognition of recent advances in technology that are fundamentally changing
the technical publishing industry, this book is published in a non-traditional way. At
least the present version is available free in the form of PDF file designed specifically
for on-line reading. It can be obtained from the website http://LeeSeshia.org. The
layout is optimized for medium-sized screens, particularly laptop computers, the
iPad, and forthcoming tablets. Extensive use of hyperlinks and color enhance the
online reading experience.

We attempted to adapt the book to e-book formats, which, in theory, enable reading
on various sized screens, attempting to take best advantage of the available screen.
However, like HTML documents, e-book formats use a reflow technology, where

Lee & Seshia, Introduction to Embedded Systems, version 0.5 xvii

http://LeeSeshia.org
http://LeeSeshia.org
http://LeeSeshia.org

PREFACE

page layout is recomputed on the fly. The results are highly dependent on the screen
size and prove ludicrous on many screens and suboptimal on all. As a consequence,
we have opted for controlling the layout, and we do not recommend attempting to
read the book on an iPhone.

Figure 1: Map of the book with strong and weak dependencies between
chapters. Strong dependencies between chapters are shown with arrows
in black. Weak dependencies are shown in grey. When there is a weak
dependency from chapter i to chapter j, then j may mostly be read without
reading i, at most requiring skipping some examples or specialized analysis
techniques.

xviii Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

PREFACE

Although the electronic form is convenient, we recognize that there is real value
in a tangible manifestation on paper, something you can thumb through, something
that can live on a bookshelf to remind you of its existence. Hence, the book is also
available in print form from a print-on-demand service. This has the advantages of
dramatically reduced cost to the reader (compared with traditional publishers) and
the ability to quickly and frequently update the version of the book to correct errors
and discuss new technologies. See the website http://LeeSeshia.org for instructions
on obtaining the printed version.

Two major disadvantages of print media compared to electronic media are the lack
of hyperlinks and the lack of text search. We have attempted to compensate for
those limitations by providing page number references in the margin of the print
version whenever a term is used that is defined elsewhere. The term that is defined
elsewhere is underlined with a discrete light gray line. In addition, we have provided
an unusually extensive index, with more than 2,000 entries.

There are typographic conventions worth noting. When a term is being defined, it
will appear in bold face, and the corresponding index entry will also be in bold
face. Hyperlinks are shown in blue in the electronic version. The notation used in
diagrams, such as those for finite-state machines, is intended to be familiar, but not
to conform with any particular programming or modeling language.

This book is almost entirely constructed using open-source software. In particu-
lar, the typesetting is done using LaTeX, and most of the figures are created using
Ptolemy II (see http://Ptolemy.org).

Reporting Errors

If you find errors or typos in this book, or if you have suggestions for improvements
or other comments, please send email to:

authors@leeseshia.org

Please include in your message the version number of the book, whether it is the
electronic or the hardcopy distribution, and the relevant page numbers. Thank you!

Lee & Seshia, Introduction to Embedded Systems, version 0.5 xix

http://LeeSeshia.org
http://Ptolemy.org
mailto:authors@leeseshia.org
http://LeeSeshia.org

PREFACE

Intended Audience

This book is intended for students at the advanced undergraduate level or introduc-
tory graduate level, and for practicing engineers and computer scientists who wish
to understand the engineering principles of embedded systems. We assume that the
reader has some exposure to machine structures (e.g., should know what an ALU is),
computer programming (we use C throughout the text), basic discrete mathematics
and algorithms, and at least an appreciation for signals and systems (what it means
to sample a continuous-time signal, for example).

Acknowledgements

The authors gratefully acknowledge contributions and helpful suggestions from Elaine
Cheong, Gage Eads, Stephen Edwards, Shanna-Shaye Forbes, Jeff C. Jensen, Wen-
chao Li, Isaac Liu, Slobodan Matic, Steve Neuendorffer, Minxue Pan, Hiren Pa-
tel, Jan Reineke, Chris Shaver, Stavros Tripakis, Pravin Varaiya, Maarten Wiggers,
and the students in UC Berkeley’s EECS 149 class, particularly Ned Bass and Dan
Lynch.

Notes for Instructors

At Berkeley, we use this text for an advanced undergraduate course called Intro-
duction to Embedded Systems. A great deal of material for lectures and labs can be
found via the main web page for this text:

http://LeeSeshia.org

In addition, a solutions manual is available. Please send email to:
authors@leeseshia.org.

xx Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org
mailto:authors@leeseshia.org
http://LeeSeshia.org

PREFACE

Further Reading

Many textbooks on embedded systems have appeared in recent years. These books
approach the subject in surprisingly diverse ways, often reflecting the perspective
of a more established discipline that has migrated into embedded systems, such as
VLSI design, control systems, signal processing, robotics, real-time systems, or soft-
ware engineering. Some of these books complement the present one nicely. We
strongly recommend them to the reader who wishes to broaden his or her under-
standing of the subject.

Specifically, Patterson and Hennessey (1996), although not focused on embedded
processors, is the canonical reference for computer architecture, and a must-read
for anyone interested embedded processor architectures. Sriram and Bhattacharyya
(2009) focus on signal processing applications, such as wireless communications
and digital media, and give particularly thorough coverage to dataflow programming
methodologies. Wolf (2000) gives an excellent overview of hardware design tech-
niques and microprocessor architectures and their implications for embedded soft-
ware design. Mishra and Dutt (2005) give a view of embedded architectures based
on architecture description languages (ADLs). Oshana (2006) specializes in DSP
processors from Texas Instruments, giving an overview of architectural approaches
and a sense of assembly-level programming.

Focused more on software, Buttazzo (2005a) is an excellent overview of schedul-
ing techniques for real-time software. Liu (2000) gives one of the best treatments
yet of techniques for handling sporadic real-time events in software. Edwards (2000)
gives a good overview of domain-specific higher-level programming languages used
in some embedded system designs. Pottie and Kaiser (2005) give a good overview
of networking technologies, particularly wireless, for embedded systems.

No single textbook can comprehensively cover the breadth of technologies avail-
able to the embedded systems engineer. We have found useful information in many
of the books that focus primarily on today’s design techniques (Barr and Massa,
2006; Berger, 2002; Burns and Wellings, 2001; Gajski et al., 2009; Kamal, 2008;
Noergaard, 2005; Parab et al., 2007; Simon, 2006).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 xxi

http://LeeSeshia.org

PREFACE

xxii Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 1

Introduction

Contents
1.1 Applications . 2

Sidebar: About the Term “Cyber-Physical Systems” 2
1.2 Motivating Example . 6
1.3 The Design Process . 8

1.3.1 Modeling . 11
1.3.2 Design . 13
1.3.3 Analysis . 14

1.4 Summary . 15

A cyber-physical system (CPS) is an integration of computation with physical pro-
cesses. Embedded computers and networks monitor and control the physical pro-
cesses, usually with feedback loops where physical processes affect computations
and vice versa. As an intellectual challenge, CPS is about the intersection, not the
union, of the physical and the cyber. It is not sufficient to separately understand the
physical components and the computational components. We must instead under-
stand their interaction.

In this chapter, we use a few CPS applications to outline the engineering principles
of such systems and the processes by which they are designed.

1

1.1. APPLICATIONS

1.1 Applications

CPS applications arguably have the potential to eclipse the 20-th century IT revolu-
tion. Consider the following examples.

Example 1.1: Heart surgery often requires stopping the heart, performing
the surgery, and then restarting the heart. Such surgery is extremely risky

About the Term “Cyber-Physical Systems”

The term “cyber-physical systems” emerged around 2006, when it was coined by
Helen Gill at the National Science Foundation in the United States. While we are all
familiar with the term “cyberspace,” and may be tempted to associate it with CPS,
the roots of the term CPS are older and deeper. It would be more accurate to view
the terms “cyberspace” and “cyber-physical systems” as stemming from the same
root, “cybernetics,” rather than viewing one as being derived from the other.

The term “cybernetics” was coined by Norbert Wiener (Wiener, 1948), an Amer-
ican mathematician who had a huge impact on the development of control systems
theory. During World War II, Wiener pioneered technology for automatic aiming
and firing of anti-aircraft guns. Although the mechanisms he used did not involve
digital computers, the principles involved are similar to those used today in a huge
variety of computer-based feedback control systems. Wiener derived the term from
the Greek κυβερνητης (kybernetes), meaning helmsman, governor, pilot, or rudder.
The metaphor is apt for control systems.

Wiener described his vision of cybernetics as the conjunction of control and com-
munication. His notion of control was deeply rooted in closed-loop feedback, where
the control logic is driven by measurements of physical processes, and in turn drives
the physical processes. Even though Wiener did not use digital computers, the con-
trol logic is effectively a computation, and therefore cybernetics is the conjunction
of physical processes, computation, and communication.

Wiener could not have anticipated the powerful effects of digital computation and
networks. The fact that the term “cyber-physical systems” may be ambiguously in-
terpreted as the conjunction of cyberspace with physical processes, therefore, helps
to underscore the enormous impact that CPS will have. CPS leverages a phenomenal
information technology that far outstrips even the wildest dreams of Wiener’s era.

2 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

1. INTRODUCTION

and carries many detrimental side effects. A number of research teams
have been working on an alternative where a surgeon can operate on a
beating heart rather than stopping the heart. There are two key ideas that
make this possible. First, surgical tools can be robotically controlled so
that they move with the motion of the heart (Kremen, 2008). A surgeon
can therefore use a tool to apply constant pressure to a point on the heart
while the heart continues to beat. Second, a stereoscopic video system
can present to the surgeon a video illusion of a still heart (Rice, 2008).
To the surgeon, it looks as if the heart has been stopped, while in reality,
the heart continues to beat. To realize such a surgical system requires
extensive modeling of the heart, the tools, the computational hardware,
and the software. It requires careful design of the software that ensures
precise timing and safe fallback behaviors to handle malfunctions. And it
requires detailed analysis of the models and the designs to provide high
confidence.

Example 1.2: Consider a city where traffic lights and cars cooperate to
ensure efficient flow of traffic. In particular, imagine never having to stop
at a red light unless there is actual cross traffic. Such a system could be
realized with expensive infrastructure that detects cars on the road. But a
better approach might be to have the cars themselves cooperate. They track
their position and communicate to cooperatively use shared resources such
as intersections. Making such a system reliable, of course, is essential to
its viability. Failures could be disastrous.

Example 1.3: Imagine an airplane that refuses to crash. While preventing
all possible causes of a crash is not possible, a well-designed flight con-
trol system can prevent certain causes. The systems that do this are good
examples of cyber-physical systems.

In traditional aircraft, a pilot controls the aircraft through mechanical and
hydraulic linkages between controls in the cockpit and movable surfaces
on the wings and tail of the aircraft. In a fly-by-wire aircraft, the pilot

Lee & Seshia, Introduction to Embedded Systems, version 0.5 3

http://LeeSeshia.org

1.1. APPLICATIONS

commands are mediated by a flight computer and sent electronically over
a network to actuators in the wings and tail. Fly-by-wire aircraft are much
lighter than traditional aircraft, and therefore more fuel efficient. They
have also proven to be more reliable. Virtually all new aircraft designs are
fly-by-wire systems.

In a fly-by-wire aircraft, since a computer mediates the commands from
the pilot, the computer can modify the commands. Many modern flight
control systems modify pilot commands in certain circumstances. For ex-
ample, commercial airplanes made by Airbus use a technique called flight
envelope protection to prevent an airplane from getting outside its safe
operating range. They can prevent a pilot from causing a stall, for exam-
ple.

The concept of flight envelope protection could be extended to help pre-
vent certain other causes of crashes. For example, the soft walls system
proposed by Lee (2001), if implemented, would track the location of the
aircraft on which it is installed and prevent it from flying into obstacles
such as mountains and buildings. In Lee’s proposal, as an aircraft ap-
proaches the boundary of an obstacle, the fly-by-wire flight control system
creates a virtual pushing force that forces the aircraft away. The pilot feels
as if the aircraft has hit a soft wall that diverts it. There are many chal-
lenges, both technical and non-technical, to designing and deploying such
a system. See Lee (2003) for a discussion of some of these issues.

Although the soft walls system of the previous example is rather futuristic, there are
modest versions in automotive safety that have been deployed or are in advanced
stages of research and development. For example, many cars today detect inadver-
tent lane changes and warn the driver. Consider the much more challenging problem
of automatically correcting the driver’s actions. This is clearly much harder than just
warning the driver. How can you ensure that the system will react and take over only
when needed, and only exactly to the extent to which intervention is needed?

It is easy to imagine many other applications, such as systems that assist the el-
derly; telesurgery systems that allow a surgeon to perform an operation at a remote
location; home appliances that cooperate to smooth demand for electricity on the
power grid; etc. Moreover, it is easy to envision using CPS to improve many ex-
isting systems, such as robotic manufacturing systems; electric power generation

4 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

1. INTRODUCTION

Figure 1.1: Example structure of a cyber-physical system.

and distribution; process control in chemical factories; distributed computer games;
transportation of manufactured goods; heating, cooling, and lighting in buildings;
people movers such as elevators; and bridges that monitor their own state of health.
The impact of such improvements on safety, energy consumption, and the economy
is potentially enormous.

Many of the above examples will be deployed using a structure like that sketched in
Figure 1.1. There are three main parts in this sketch. First, the physical plant is the
“physical” part of a cyber-physical system. It is simply that part of the system that
is not realized with computers or digital networks. It can include mechanical parts,
biological or chemical processes, or human operators. Second, there is one or more
computational platform, which consists of sensors, actuators, one or more comput-
ers, and (possibly) one or more operating systems. Third, there is a network fabric,
which provides the mechanisms for the computers to communicate. Together, the
platforms and the network fabric form the “cyber” part of the cyber-physical system.

Figure 1.1 shows two networked platforms each with its own sensors and/or actua-
tors. The actuators affect the data provided by the sensors through the physical plant.
In the figure, Platform 2 controls the physical plant via Actuator 1. It measures the
processes in the physical plant using Sensor 2. The box labeled Computation 2 im-
plements a control law, which determines based on the sensor data what commands
to issue to the actuator. Such a loop is called a feedback control loop. Platform 1

Lee & Seshia, Introduction to Embedded Systems, version 0.5 5

http://LeeSeshia.org

1.2. MOTIVATING EXAMPLE

makes additional measurements, using Sensor 1, and sends messages to Platform 2
via the network fabric. Computation 3 realizes an additional control law, which is
merged with that of Computation 2, possibly preempting it.

Example 1.4: Consider a high-speed printing press for a print-on-demand
service. This might be structured similarly to Figure 1.1, but with many
more platforms, sensors, and actuators. The actuators may control motors
that drive paper through the press and ink onto the paper. The control laws
may include a strategy for compensating for paper stretch, which will typ-
ically depend on the type of paper, the temperature, and the humidity. A
networked structure like that in Figure 1.1 might be used to induce rapid
shutdown to prevent damage to the equipment in case of paper jams. Such
shutdowns need to be tightly orchestrated across the entire system to pre-
vent disasters. Similar situations are found in high-end instrumentation
systems and in energy production and distribution (Eidson et al., 2009).

1.2 Motivating Example

In this section, we describe a motivating example of a cyber-physical system, with a
goal to use this example to illustrate the importance of the breadth of topics covered
in this text. The specific application is the Stanford testbed of autonomous rotorcraft
for multi agent control (STARMAC), developed by Claire Tomlin and colleagues as
a cooperative effort at Stanford and Berkeley (Hoffmann et al., 2004). The STAR-
MAC is a small quadrotor aircraft; it is shown in flight in Figure 1.2. Its primary
purpose is to serve as a testbed for experimenting with multi-vehicle autonomous
control techniques. The objective is to be able to have multiple vehicles cooperate
on a common task.

There are considerable challenges in making such a system work. First, controlling
the vehicle is not trivial. The main actuators are the four rotors, which produce a
variable amount of downward thrust. By balancing the thrust from the four rotors,
the vehicle can take off, land, turn, and even flip in the air. How do we determine
what thrust to apply? Sophisticated control algorithms are required.

6 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

1. INTRODUCTION

Second, the weight of the vehicle is a major consideration. The heavier it is, the
more stored energy it needs to carry, which of course makes it even heavier. The
heavier it is, the more thrust it needs to fly, which implies bigger and more powerful
motors and rotors. The design crosses a major threshold when the vehicle is heavy
enough that the rotors become dangerous to humans. Even with a relatively light
vehicle, safety is a considerable concern, and the system needs to be designed with
fault handling.

Third, the vehicle needs to operate in a context, interacting with its environment. It
might, for example, be under the continuous control of a watchful human who oper-
ates it by remote control. Or it might be expected to operate autonomously, to take
off, perform some mission, return, and land. Autonomous operation is enormously
complex and challenging because it cannot benefit from the watchful human. Au-
tonomous operation demands more sophisticated sensors. The vehicle needs to keep
track of where it is (it needs to perform localization). It needs to sense obstacles,
and it needs to know where the ground is. With good design, it is even possible for
such vehicles to autonomously land on the pitching deck of a ship. The vehicle also
needs to continuously monitor its own health, to detect malfunctions and react to
them so as to contain the damage.

Figure 1.2: The STARMAC quadrotor aircraft in flight (reproduced with per-
mission).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 7

http://LeeSeshia.org

1.3. THE DESIGN PROCESS

It is not hard to imagine many other applications that share features with the quadro-
tor problem. The problem of landing a quadrotor vehicle on the deck of a pitching
ship is similar to the problem of operating on a beating heart (see Example 1.1). It
requires detailed modeling of the dynamics of the environment (the ship, the heart),
and a clear understanding of the interaction between the dynamics of the embedded
system (the quadrotor, the robot).

The rest of this chapter will explain the various parts of this book, using the quadro-
tor example to illustrate how the various parts contribute to the design of such a
system.

1.3 The Design Process

The goal of this book is to understand how to go about designing and implement-
ing cyber-physical systems. Figure 1.3 shows the three major parts of the process,
modeling, design, and analysis. Modeling is the process of gaining a deeper un-
derstanding of a system through imitation. Models imitate the system and reflect
properties of the system. Models specify what a system does. Design is the struc-
tured creation of artifacts. It specifies how a system does what it does. Analysis

Figure 1.3: Creating embedded systems requires an iterative process of
modeling, design, and analysis.

8 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

1. INTRODUCTION

is the process of gaining a deeper understanding of a system through dissection. It
specifies why a system does what it does (or fails to do what a model says it should
do).

As suggested in Figure 1.3, these three parts of the process overlap, and the design
process iteratively moves among the three parts. Normally, the process will begin
with modeling, where the goal is to understand the problem and to develop solution
strategies.

Example 1.5: For the quadrotor problem of Section 1.2, we might begin
by constructing models that translate commands from a human to move
vertically or laterally into commands to the four motors to produce thrust.
A model will reveal that if the thrust is not the same on the four rotors,
then the vehicle will tilt and move laterally.

Such a model might use techniques like those in Chapter 2 (Continuous
Dynamics), constructing differential equations to describe the dynamics
of the vehicle. It would then use techniques like those in Chapter 3 (Dis-
crete Dynamics) to build state machines that model the modes of oper-
ation: takeoff, landing, hovering, lateral flight, etc. It could then use the
techniques of Chapter 4 (Hybrid Systems) to blend these two types of mod-
els, creating hybrid system models of the system to study the transitions
between modes of operation. The techniques of Chapters 5 (Composition
of State Machines) and 6 (Concurrent Models of Computation) would then
provide mechanisms for composing models multiple vehicles, models of
the interactions between a vehicle and its environment, and models of the
interactions of components within a vehicle.

The process may progress quickly to the design phase, where we begin selecting
components and putting them together (motors, batteries, sensors, microprocessors,
memory systems, operating systems, wireless networks, etc.). An initial prototype
may reveal flaws in the models, causing a return to the modeling phase and revision
of the models.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 9

http://LeeSeshia.org

1.3. THE DESIGN PROCESS

WiFi

802.11b
 5 Mbps

ESC & Motors
Phoenix-25, Axi 2208/26

IMU
3DMG-X1

76 or 100 Hz

 Ranger
SRF08

13 Hz Altitude

GPS
Superstar II

10 Hz

I2C
400 kbps

PPM
100 Hz

UART
19.2 kbps

Robostix
Atmega128

Low level control

UART
115 kbps

CF
100 Mbps

Stereo Cam
Videre STOC

30 fps 320x240

Firewire
480 Mbps

UART
115 Kbps

LIDAR
URG-04LX

10 Hz ranges

Ranger
Mini-AE

10-50 Hz Altitude

Beacon
Tracker/DTS

1 Hz

WiFi

802.11g+
 54 Mbps

USB 2
480 Mbps

RS232
115 kbps

Timing/
Analog

Analog

RS232

UART

Stargate 1.0

Intel PXA255
64MB RAM, 400MHz

Supervisor, GPS

PC/104

Pentium M
1GB RAM, 1.8GHz

Est. & control

Figure 1.4: The STARMAC architecture (reproduced with permission).

Example 1.6: The hardware architecture of the first generation STAR-
MAC quadrotor is shown in Figure 1.4. At the left and bottom of the
figure are a number of sensors used by the vehicle to determine where it is
(localization) and what is around it. In the middle are three boxes show-
ing three distinct microprocessors. The Robostix is an Atmel AVR 8-bit
microcontroller that runs with no operating system and performs the low-
level control algorithms to keep the craft flying. The other two processors
perform higher-level tasks with the help of an operating system. Both pro-
cessors include wireless links that can be used by cooperating vehicles and
ground controllers.

Chapter 7 (Embedded Processors) considers processor architectures, offering some
basis for comparing the relative advantages of one architecture or another. Chapter 8

10 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

1. INTRODUCTION

(Memory Architectures) considers the design of memory systems, emphasizing the
impact that they can have on overall system behavior. Chapter 9 (Input and Out-
put) considers the interfacing of processors with sensors and actuators. Chapters 10
(Multitasking) and 11 (Scheduling) focus on software architecture, with particular
emphasis on how to orchestrate multiple real-time tasks.

In a healthy design process, analysis figures prominently early in the process. Anal-
ysis will be applied to the models and to the designs. The models may be analyzed
for safety conditions, for example to ensure an invariant that asserts that if the vehi-
cle is within one meter of the ground, then its vertical speed is no greater than 0.1
meter/sec. The designs may be analyzed for the timing behavior of software, for
example to determine how long it takes the system to respond to an emergency shut-
down command. Certain analysis problems will involve details of both models and
designs. For the quadrotor example, it is important to understand how the system
will behave if network connectivity is lost and it becomes impossible to communi-
cate with the vehicle. How can the vehicle detect that communication has been lost?
This will require accurate modeling of the network and the software.

Example 1.7: For the quadrotor problem, we use the techniques of Chap-
ter 12 (Invariants and Temporal Logic) to specify key safety requirements
for operation of the vehicles. We would then use the techniques of Chap-
ters 13 (Equivalence and Refinement) and 14 (Reachability Analysis and
Model Checking) to verify that these safety properties are satisfied by im-
plementations of the software. We would then use the techniques of Chap-
ter 15 (Quantitative Analysis) to determine whether real-time constraints
are met by the software.

Corresponding to a design process structured as in Figure 1.3, this book is divided
into three major parts, focused on modeling, design, and analysis (see Figure 1 on
page xviii). We now describe the approach taken in the three parts.

1.3.1 Modeling

The modeling part of the book focuses on models of dynamic behavior. It begins
with a light coverage of the modeling of physical dynamics in Chapter 2, specifically

Lee & Seshia, Introduction to Embedded Systems, version 0.5 11

http://LeeSeshia.org

1.3. THE DESIGN PROCESS

focusing on continuous dynamics in time. It then talks about discrete dynamics in
Chapter 3, using state machines as the principal formalism. It then combines the
two with a discussion of hybrid systems in Chapter 4. Chapter 5 (Composition of
State Machines) focuses on concurrent composition of state machines, emphasiz-
ing that the semantics of composition is a critical issue that designers must grapple
with. Chapter 6 (Concurrent Models of Computation) gives an overview of con-
current models of computation, including many of those used in design tools that
practitioners frequently leverage, such as Simulink and LabVIEW.

In the modeling part of the book, we define a system to be simply a combination
of parts that is considered a whole. A physical system is one realized in matter,
in contrast to a conceptual or logical system such as software and algorithms. The
dynamics of a system is its evolution in time: how its state changes. A model of a
physical system is a description of certain aspects of the system that is intended to
yield insight into properties of the system. In this text, models have mathematical
properties that enable systematic analysis. The model imitates properties of the
system, and hence yields insight into that system.

A model is itself a system. It is important to avoid confusing a model and the system
that it models. These are two distinct artifacts. A model of a system is said to have
high fidelity if it accurately describes properties of the system. It is said to abstract
the system if omits details. Models of physical systems inevitably do omit details, so
they are always abstractions of the system. A major goal of this text is to develop an
understanding of how to use models, of how to leverage their strengths and respect
their weaknesses.

A cyber-physical system (CPS) is a system composed of physical subsystems to-
gether with computing and networking. Models of cyber-physical systems normally
include all three parts. The models will typically need to represent both static prop-
erties (those that do not change during the operation of the system) and dynamics.

Each of the modeling techniques described in this part of the book is an enormous
subject, much bigger than one chapter, or even one book. In fact, such models
are the focus of many branches of engineering, physics, chemistry, and biology.
Our approach is aimed at engineers. We assume some background in mathematical
modeling of dynamics (calculus courses that give some examples from physics are
sufficient), and then focus on how to compose diverse models. This will form the
core of the cyber-physical system problem, since joint modeling of the cyber side,
which is logical and conceptual, with the physical side, which is embodied in matter,

12 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

1. INTRODUCTION

is the core of the problem. We therefore make no attempt to be comprehensive, but
rather pick a few modeling techniques that are widely used by engineers and well
understood, review them, and then compose them to form a cyber-physical whole.

1.3.2 Design

The second part of the book has a very different flavor, reflecting the intrinsic hetero-
geneity of the subject. This part focuses on the design of embedded systems, with
emphasis on the role they play within a CPS. Chapter 7 (Embedded Processors) dis-
cusses processor architectures, with emphasis on specialized properties most suited
to embedded systems. Chapter 8 (Memory Architectures) describes memory archi-
tectures, including abstractions such as memory models in programming languages,
physical properties such memory technologies, and architectural properties such as
memory hierarchy (caches, scratchpads, etc.). The emphasis is on how memory
architecture affects dynamics. Chapter 9 (Input and Output) is about the interface
between the software world and the physical world. It discusses input/output mech-
anisms in software and computer architectures, and the digital/analog interface, in-
cluding sampling. Chapter 10 (Multitasking) introduces the notions that underly
operating systems, with particularly emphasis on multitasking. The emphasis is on
the pitfalls of using low-level mechanisms such as threads, with a hope of convinc-
ing the reader that there is real value in using the modeling techniques covered in
the first part of the book. Chapter 11 (Scheduling) introduces real-time scheduling,
covering many of the classic results in the area.

In all chapters in the design part, we particularly focus on the mechanisms that pro-
vide concurrency and control over timing, because these issues loom large in the
design of cyber-physical systems. When deployed in a product, embedded proces-
sors typically have a dedicated function. They control an automotive engine or mea-
sure ice thickness in the Arctic. They are not asked to perform arbitrary functions
with user-defined software. Consequently, the processors, memory architectures,
I/O mechanisms, and operating systems can be more specialized. Making them more
specialized can bring enormous benefits. For example, they may consume far less
energy, and consequently be usable with small batteries for long periods of time. Or
they may include specialized hardware to perform operations that would be costly
to perform on general-purpose hardware, such as image analysis. Our goal in this
part is to enable the reader to critically evaluate the numerous available technology
offerings.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 13

http://LeeSeshia.org

1.3. THE DESIGN PROCESS

One of the goals in this part of the book is to teach students to implement systems
while thinking across traditional abstraction layers — e.g., hardware and software,
computation and physical processes. While such cross-layer thinking is valuable
in implementing systems in general, it is particularly essential in embedded sys-
tems given their heterogeneous nature. For example, a programmer implementing
a control algorithm expressed in terms of real-valued quantities must have a solid
understanding of computer arithmetic (e.g., of fixed-point numbers) in order to cre-
ate a reliable implementation. Similarly, an implementor of automotive software
that must satisfy real-time constraints must be aware of processor features – such
as pipelines and caches – that can affect the execution time of tasks and hence the
real-time behavior of the system. Likewise, an implementor of interrupt-driven or
multi-threaded software must understand the atomic operations provided by the un-
derlying software-hardware platform and use appropriate synchronization constructs
to ensure correctness. Rather than doing an exhaustive survey of different imple-
mentation methods and platforms, this part of the book seeks to give the reader an
appreciation for such cross-layer topics, and uses homework exercises to facilitate a
deeper understanding of them.

1.3.3 Analysis

Every system must be designed to meet certain requirements. For embedded sys-
tems, which are often intended for use in safety-critical, everyday applications, it
is essential to certify that the system meets its requirements. Such system require-
ments are also called properties or specifications. The need for specifications is
aptly captured by the following quotation, paraphrased from Young et al. (1985):

“A design without specifications cannot be right or wrong, it can only
be surprising!”

The analysis part of the book focuses on precise specifications of properties, on tech-
niques for comparing specifications, and on techniques for analyzing specifications
and the resulting designs. Reflecting the emphasis on dynamics in the text, Chapter
12 (Invariants and Temporal Logic) focuses on temporal logics, which provide pre-
cise descriptions of dynamic properties of systems. These descriptions are treated
as models. Chapter 13 (Equivalence and Refinement) focuses on the relationships
between models. Is one model an abstraction of another? Is it equivalent in some
sense? Specifically, that chapter introduces type systems, as a way of comparing

14 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

1. INTRODUCTION

static properties of models, and language containment and simulation relations as a
way of comparing dynamic properties of models. Chapter 14 (Reachability Analysis
and Model Checking) focuses on techniques for analyzing the large number of possi-
ble dynamic behaviors that a model may exhibit, with emphasis on model checking
as a technique for exploring such behaviors. Chapter 15 (Quantitative Analysis)
is about analyzing quantitative properties of embedded software, such as finding
bounds on resources consumed by programs. It focuses particularly on execution
time analysis, with some introduction to others such as energy and memory usage.

In present engineering practice, it is common to have system requirements stated in
a natural language such as English. It is important to precisely state requirements to
avoid ambiguities inherent in natural languages. The goal of this part of the book is
to help replace descriptive techniques with formal ones, which we believe are less
error prone.

Importantly, formal specifications also enable the use of automatic techniques for
formal verification of both models and implementations. The analysis part of the
book introduces readers to the basics of formal verification, including notions of
equivalence and refinement checking, as well as reachability analysis and model
checking. In discussing these verification methods, we attempt to give users of ver-
ification tools an appreciation of what’s “under the hood” so that they may derive
the most benefit from them. This user’s view is supported by examples discussing,
for example, how model checking can be applied to find subtle errors in concurrent
software, or how reachability analysis can be used in computing a control strategy
for a robot to achieve a particular task.

1.4 Summary

Cyber-physical systems are heterogeneous blends by nature. They combine compu-
tation, communication, and physical dynamics. They are harder to model, harder
to design, and harder to analyze than more homogeneous systems. This chapter
gives an overview of the engineering principles addressed in this book for modeling,
designing, and analyzing such systems.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 15

http://LeeSeshia.org

1.4. SUMMARY

16 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Part I

Modeling Dynamic Behaviors

17

Chapter 2

Continuous Dynamics

Contents
2.1 Newtonian Mechanics . 20

2.2 Actor Models . 25

2.3 Properties of Systems . 29

2.3.1 Causal Systems . 29

2.3.2 Memoryless Systems 30

2.3.3 Linearity and Time Invariance 30

2.3.4 Stability . 31

2.4 Feedback Control . 32

2.5 Summary . 38

Exercises . 39

This chapter reviews a few of the many modeling techniques for studying dynamics
of a physical system. We begin by studying mechanical parts that move (this prob-
lem is known as classical mechanics). The techniques used to study the dynamics
of such parts extend broadly to many other physical systems, including circuits,
chemical processes, and biological processes. But mechanical parts are easiest for
most people to visualize, so they make our example concrete. Motion of mechanical
parts can often be modeled using differential equations, or equivalently, integral
equations. Such models really only work well for “smooth” motion (a concept that

19

2.1. NEWTONIAN MECHANICS

we can make more precise using notions of linearity, time invariance, and conti-
nuity). For motions that are not smooth, such as those modeling collisions of me-
chanical parts, we can use modal models that represent distinct modes of operation
with abrupt (conceptually instantaneous) transitions between modes. Collisions of
mechanical objects can be usefully modeled as discrete, instantaneous events. The
problem of jointly modeling smooth motion and such discrete events is known as
hybrid systems modeling and is studied in Chapter 4. Such combinations of discrete
and continuous behaviors bring us one step closer to joint modeling of cyber and
physical processes.

We begin with simple equations of motion, which provide a model of a system in
the form of ordinary differential equations (ODEs). We then show how these
ODEs can be represented in actor models, which include the class of models in
popular modeling languages such as LabVIEW (from National Instruments) and
Simulink (from The MathWorks, Inc.). We then consider properties of such models
such as linearity, time invariance, and stability, and consider consequences of these
properties when manipulating models. We develop a simple example of a feedback
control system that stabilizes an unstable system. Controllers for such systems are
often realized using software, so such systems can serve as a canonical example of a
cyber-physical system. The properties of the overall system emerge from properties
of the cyber and physical parts.

2.1 Newtonian Mechanics

In this section, we give a brief working review of some principles of classical me-
chanics. This is intended to be just enough to be able to construct interesting models,
but is by no means comprehensive. The interested reader is referred to many excel-
lent texts on classical mechanics, including Goldstein (1980); Landau and Lifshitz
(1976); Marion and Thornton (1995).

Motion in space of physical objects can be represented with six degrees of free-
dom, illustrated in Figure 2.1. Three of these represent position in three dimen-
sional space, and three represent orientation in space. We assume three axes, x, y,
and z, where by convention x is drawn increasing to the right, y is drawn increasing
upwards, and z is drawn increasing out of the page. Roll θx is an angle of rotation
around the x axis, where by convention an angle of 0 radians represents horizontally
flat along the z axis (i.e., the angle is given relative to the z axis). Yaw θy is the ro-

20 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

Yaw

Roll

Pitch

x axis

z axis

y axis

Figure 2.1: Modeling position with six degrees of freedom. (Image modified
from the original by ZeroOne, Wikipedia Commons.)

tation around the y axis, where by convention 0 radians represents pointing directly
to the right (i.e., the angle is given relative to the x axis). Pitch θz is rotation around
the z axis, where by convention 0 radians represents pointing horizontally (i.e., the
angle is given relative to the y axis).

The position of an object in space, therefore, is represented by six functions of the
form f : R→ R, where the domain represents time and the codomain represents
either distance along an axis or angle relative to an axis.1 Functions of this form are
known as continuous-time signals.2 These are often collected into vector-valued
functions x : R→ R3 and θ : R→ R3, where x represents position, and θ represents
orientation.

Changes in position or orientation are governed by Newton’s second law, relating
force with acceleration. Acceleration is the second derivative of position. Our first
equation handles the position information,

F(t) = Mẍ(t), (2.1)

1If the notation is unfamiliar, see Appendix A.
2The domain of a continuous-time signal may be restricted to a connected subset of R, such as R+,

the non-negative reals, or [0,1], the interval between zero and one, inclusive. The codomain may be an
arbitrary set, though when representing physical quantities, real numbers are most useful.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 21

http://LeeSeshia.org

2.1. NEWTONIAN MECHANICS

where F is the force vector in three directions, M is the mass of the object, and ẍ is
the second derivative of x with respect to time (i.e., the acceleration). Velocity is the
integral of acceleration, given by

∀ t > 0, ẋ(t) = ẋ(0)+
tZ

0

ẍ(τ)dτ

where ẋ(0) is the initial velocity in three directions. Using (2.1), this becomes

∀ t > 0, ẋ(t) = ẋ(0)+
1
M

tZ
0

F(τ)dτ,

Position is the integral of velocity,

x(t) = x(0)+
tZ

0

ẋ(τ)dτ

= x(0)+ tẋ(0)+
1
M

tZ
0

τZ
0

F(α)dαdτ,

where x(0) is the initial position. Using these equations, if you know the initial
position and initial velocity of an object and the forces on the object in all three
directions as a function of time, you can determine the acceleration, velocity, and
position of the object at any time.

The versions of these motions of equation that affect orientation use torque, the
rotational version of force. It is again a three-element vector as a function of time,
representing the net rotational force on an object. It can be related to angular velocity
in a manner similar to (2.1),

T(t) =
d
dt

(
I(t)θ̇(t)

)
, (2.2)

where T is the torque vector in three axes and I(t) is the moment of inertia tensor
of the object. The moment of inertia is a 3×3 matrix that depends on the geometry
and orientation of the object. Intuitively, it represents the reluctance that an object
has to spin around any axis as a function of its orientation along the three axes. If
the object is spherical, for example, this reluctance is the same around all axes, so

22 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

it reduces to a constant scalar I (or equivalently, to a diagonal matrix I with equal
diagonal elements I). The equation then looks much more like (2.1),

T(t) = Iθ̈(t). (2.3)

To be explicit about the three dimensions, we might write (2.2) as Tx(t)
Ty(t)
Tz(t)

=
d
dt

 Ixx(t) Ixy(t) Ixz(t)
Iyx(t) Iyy(t) Iyz(t)
Izx(t) Izy(t) Izz(t)

 θ̇x(t)
θ̇y(t)
θ̇z(t)

 .

Here, for example, Ty(t) is the net torque around the y axis (which would cause
changes in yaw), Iyx(t) is the inertia that determines how acceleration around the x
axis is related to torque around the y axis.

Rotational velocity is the integral of acceleration,

θ̇(t) = θ̇(0)+
tZ

0

θ̈(τ)dτ,

where θ̇(0) is the initial rotational velocity in three axes. For a spherical object,
using (2.3), this becomes

θ̇(t) = θ̇(0)+
1
I

tZ
0

T(τ)dτ.

Orientation is the integral of rotational velocity,

θ(t) = θ(0)+
Z t

0
θ̇(τ)dτ

= θ(0)+ tθ̇(0)+
1
I

tZ
0

τZ
0

T(α)dαdτ

where θ(0) is the initial orientation. Using these equations, if you know the initial
orientation and initial rotational velocity of an object and the torques on the object
in all three axes as a function of time, you can determine the rotational acceleration,
velocity, and orientation of the object at any time.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 23

http://LeeSeshia.org

2.1. NEWTONIAN MECHANICS

M
body

tail

main rotor shaft

Figure 2.2: Simplified model of a helicopter.

Often, as we have done for a spherical object, we can simplify by reducing the
number of dimensions that are considered. In general, such a simplification is called
a model-order reduction. For example, if an object is a moving vehicle on a flat
surface, there may be little reason to consider the y axis movement or the pitch or
roll of the object.

Example 2.1: Consider a simple control problem that admits such re-
duction of dimensionality. A helicopter has two rotors, one above, which
provides lift, and one on the tail. Without the rotor on the tail, the body
of the helicopter would start to spin. The rotor on the tail counteracts
that spin. Specifically, the force produced by the tail rotor must perfectly
counter the torque produced by the main rotor, or the body will spin. Here
we consider this role of the tail rotor independently from all other motion
of the helicopter.

A highly simplified model of the helicopter is shown in Figure 2.2. In this
version, we assume that the helicopter position is fixed at the origin, and
hence there is no need to consider the equations governing the dynamics
of position. Moreover, we will assume that the helicopter remains vertical,
so pitch and roll are fixed at zero. Note that these assumptions are not as
unrealistic as they may seem since we can define the coordinate system to
be fixed to the helicopter.

24 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

With these assumptions, the moment of inertia reduces to a scalar that
represents a torque that resists changes in yaw. The torque causing changes
in yaw will be due to the friction with the main rotor. This will tend to
cause the helicopter to rotate in the same direction as the rotor rotation.
The tail rotor has the job of countering that torque to keep the body of the
helicopter from spinning.

We model the simplified helicopter by a system that takes as input a
continuous-time signal Ty, the torque around the y axis (which causes
changes in yaw). This torque is the net difference between the torque
caused by the friction of the main rotor and that caused by the tail ro-
tor. The output of our system will be the angular velocity θ̇y around the y
axis. The dimensionally-reduced version of (2.2) can be written as

θ̈y(t) = Ty(t)/Iyy.

Integrating both sides, we get the output θ̇ as a function of the input Ty,

θ̇y(t) = θ̇y(0)+
1

Iyy

tZ
0

Ty(τ)dτ. (2.4)

The critical observation about this example is that if we were to choose to model
the helicopter by, say, letting x : R→ R3 represent the absolute position in space
of the tail of the helicopter, we would end up with a far more complicated model.
Designing the control system would also be much more difficult.

2.2 Actor Models

In the previous section, a model of a physical system is given by a differential or
an integral equation that relates input signals (force or torque) to output signals (po-
sition, orientation, velocity, or rotational velocity). Such a physical system can be
viewed as a component in a larger system. In particular, a continuous-time system
(one that operates on continuous-time signals) may be modeled by a box with an
input port and an output port as follows:

Lee & Seshia, Introduction to Embedded Systems, version 0.5 25

http://LeeSeshia.org

2.2. ACTOR MODELS

parameters:

where the input signal x and the output signal y are functions of the form

x : R→ R, y : R→ R.

Here the domain represents time and the codomain represents the value of the signal
at a particular time. The domain R may be replaced by R+, the non-negative reals, if
we wish to explicitly model a system that comes into existence and starts operating
at a particular point in time.

The model of the system is a function of the form

S : X → Y, (2.5)

where X = Y = RR, the set of functions that map the reals into the reals, like x and y
above.3 The function S may depend on parameters of the system, in which case the
parameters may be optionally shown in the box, and may be optionally included in
the function notation. For example, in the above figure, if there are parameters p and
q, we might write the system function as Sp,q or even S(p,q), keeping in mind that
both notations represent functions of the form in 2.5. A box like that above, where
the inputs are functions and the outputs are functions, is called an actor.

Example 2.2: The actor model for the helicopter of example 2.1 can be
depicted as follows:

The input and output are both continuous-time functions. The parameters
of the actor are the initial angular velocity θ̇y(0) and the moment of inertia
Iyy. The function of the actor is defined by (2.4).

3As explained in Appendix A, the notation RR (which can also be written (R→R)) represents the
set of all functions with domain R and codomain R.

26 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

Actor models are composable. In particular, given two actors S1 and S2, we can form
a cascade composition as follows:

In the diagram, the “wire” between the output of S1 and the input of S2 means pre-
cisely that y1 = x2, or more pedantically,

∀ t ∈ R, y1(t) = x2(t).

Example 2.3: The actor model for the helicopter can be represented as a
cascade composition of two actors as follows:

The left actor represents a Scale actor parameterized by the constant a
defined by

∀ t ∈ R, y1(t) = ax1(t). (2.6)

More compactly, we can write y1 = ax1, where it is understood that the
product of a scalar a and a function x1 is interpreted as in (2.6). The right
actor represents an integrator parameterized by the initial value i defined
by

∀ t ∈ R, y2(t) = i+
tZ

0

x2(τ)dτ.

If we give the parameter values a = 1/Iyy and i = θ̇y(0), we see that this
system represents (2.4) where the input x1 = Ty is torque and the output
y2 = θ̇y is angular velocity.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 27

http://LeeSeshia.org

2.2. ACTOR MODELS

In the above figure, we have customized the icons, which are the boxes represent-
ing the actors. These particular actors (scaler and integrator) are particularly useful
building blocks for building up models of physical dynamics, so assigning them
recognizable visual notations is useful.

We can have actors that have multiple input signals and/or multiple output signals.
These are represented similarly, as in the following example, which has two input
signals and one output signal:

A particularly useful building block with this form is a signal adder, defined by

∀ t ∈ R, y(t) = x1(t)+ x2(t).

This will often be represented by a custom icon as follows:

Sometimes, one of the inputs will be subtracted rather than added, in which case the
icon is further customized with minus sign near that input, as below:

This actor represents a function S : (R→ R)2→ (R→ R) given by

∀ t ∈ R, ∀ x1,x2 ∈ (R→ R), (S(x1,x2))(t) = y(t) = x1(t)− x2(t).

Notice the careful notation. S(x1,x2) is a function in RR. Hence, it can be evaluated
at a t ∈ R.

28 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

In the rest of this chapter, we will not make a distinction between a system and its
actor model, unless the distinction is essential to the argument. We will assume
that the actor model captures everything of interest about the system. This is an
admittedly bold assumption. Generally the properties of the actor model are only
approximate descriptions of the actual system.

2.3 Properties of Systems

In this section, we consider a number of properties that actors and the systems they
compose may have, including causality, memorylessness, linearity, time invariance,
and stability.

2.3.1 Causal Systems

Intuitively, a system is causal if its output depends only on current and past inputs.
Making this notion precise is a bit tricky, however. We do this by first giving a
notation for “current and past inputs.” Consider a continuous-time signal x : R→ A,
for some set A. Let x|t≤τ represent a function called the restriction in time that is
only defined for times t ≤ τ, and where it is defined, x|t≤τ(t) = x(t). Hence if x is an
input to a system, then x|t≤τ is the “current and past inputs” at time τ.

Consider a continuous-time system S : X → Y , where X = AR and Y = BR for some
sets A and B. This system is causal if for all x1,x2 ∈ X and τ ∈ R,

x1|t≤τ = x2|t≤τ⇒ S(x1)|t≤τ = S(x2)|t≤τ

That is, the system is causal if for two possible inputs x1 and x2 that are identical up
to (and including) time τ, the outputs are identical up to (and including) time τ. All
systems we have considered so far are causal.

A system is strictly causal if for all x1,x2 ∈ X and τ ∈ R,

x1|t<τ = x2|t<τ⇒ S(x1)|t≤τ = S(x2)|t≤τ

That is, the system is causal if for two possible inputs x1 and x2 that are identical
up to (and not including) time τ, the outputs are identical up to (and including) time
τ. The output at time t of a strictly causal system does not depend on its input at

Lee & Seshia, Introduction to Embedded Systems, version 0.5 29

http://LeeSeshia.org

2.3. PROPERTIES OF SYSTEMS

time t. It only depends on past inputs. A strictly causal system, of course, is also
causal. The Integrator actor is strictly causal. The adder is not strictly causal, but it
is causal. Strictly causal actors are useful for constructing feedback systems.

2.3.2 Memoryless Systems

Intuitively, a system has memory if the output depends not only on the current inputs,
but also on past inputs (or future inputs, if the system is not causal). Consider a
continuous-time system S : X → Y , where X = RA and Y = RB for some sets A and
B. Formally, this system is memoryless if there exists a function f : A→ B such
that for all x ∈ X ,

(S(x))(t) = f (x(t))

for all t ∈ R. That is, the output (S(x))(t) at time t depends only on the input x(t) at
time t.

The Integrator considered above is not memoryless, but the adder is. Exercise 2
shows that if a system is strictly causal and memoryless then its output is constant
for all inputs.

2.3.3 Linearity and Time Invariance

Systems that are linear and time invariant (LTI) have particularly nice mathemati-
cal properties. Much of the theory of control systems depends on these properties.
These properties form the main body of courses on signals and systems, and are be-
yond the scope of this text. But we will occasionally exploit simple versions of the
properties, so it is useful to determine when a system is LTI.

A system S : X → Y , where X and Y are sets of signals, is linear if it satisfies the
superposition property:

∀ x1,x2 ∈ X and ∀ a,b ∈ R, S(ax1 +bx2) = aS(x1)+bS(x2).

It is easy to see that the helicopter system defined in Example 2.1 is linear if and
only if the initial angular velocity θ̇y(0) = 0 (see Exercise 3).

More generally, it is easy to see that an integrator as defined in Example 2.3 is linear
if and only if the initial value i = 0, that the Scale actor is always linear, and that the

30 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

cascade of any two linear actors is linear. We can trivially extend the definition of
linearity to actors with more than one input or output signal and then determine that
the adder is also linear.

To define time invariance, we first define a specialized continuous-time actor called
a delay. Let Dτ : X → Y , where X and Y are sets of continuous-time signals, be
defined by

∀ x ∈ X and ∀ t ∈ R, (Dτ(x))(t) = x(t− τ). (2.7)

Here, τ is a parameter of the delay actor. A system S : X → Y is time invariant if

∀ x ∈ X and ∀ τ ∈ R, S(Dτ(x)) = Dτ(S(x)).

The helicopter system defined in Example 2.1 and (2.4) is not time invariant. A
minor variant, however, is time invariant:

θ̇y(t) =
1

Iyy

tZ
−∞

Ty(τ)dτ.

This version does not allow for an initial angular rotation.

A linear time-invariant system (LTI) is a system that is both linear and time in-
variant. A major objective in modeling physical dynamics is to choose an LTI model
whenever possible. If a reasonable approximation results in an LTI model, it is worth
making this approximation. It is not always easy to determine whether the approx-
imation is reasonable, or to find models for which the approximation is reasonable.
It is often easy to construct models that are more complicated than they need to be
(see Exercise 4).

2.3.4 Stability

A system is said to be bounded-input bounded-output stable (BIBO stable or just
stable) if the output signal is bounded for all input signals that are bounded.

Consider a continuous-time system with input w and output v. The input is bounded
if there is a real number A < ∞ such that |w(t)| ≤ A for all t ∈ R. The output is
bounded if there is a real number B < ∞ such that |v(t)| ≤ B for all t ∈ R. The
system is stable if for any input bounded by A, there is some bound B on the output.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 31

http://LeeSeshia.org

2.4. FEEDBACK CONTROL

Example 2.4: It is now easy to see that the helicopter system developed
in Example 2.1 is unstable. Let the input be Ty = u, where u is the unit
step, given by

∀ t ∈ R, u(t) =
{

0, t < 0
1, t ≥ 0

. (2.8)

This means that prior to time zero, there is no torque applied to the system,
and starting at time zero, we apply a torque of unit magnitude. This input is
clearly bounded. It never exceeds one in magnitude. However, the output
grows without bound.

In practice, a helicopter uses a feedback system to determine how much
torque to apply at the tail rotor to keep the body of the helicopter straight.
We study how to do that next.

2.4 Feedback Control

A system with feedback has directed cycles, where an output from an actor is fed
back to affect an input of the same actor. An example of such a system is shown
in Figure 2.3. Most control systems use feedback. They make measurements of an
error (e in the figure), which is a discrepancy between desired behavior (ψ in the
figure) and actual behavior (θ̇y in the figure), and use that measurement to correct
the behavior. The error measurement is feedback, and the corresponding correction
signal (Ty in the figure) should compensate to reduce future error. Note that the
correction signal normally can only affect future errors, so a feedback system must
normally include at least one strictly causal actor (the Helicopter in the figure) in
every directed cycle.

Feedback control is a sophisticated topic, easily occupying multiple texts and com-
plete courses. Here, we only barely touch on the subject, just enough to motivate the
interactions between software and physical systems. Feedback control systems are
often implemented using embedded software, and the overall physical dynamics is
a composition of the software and physical dynamics. More detail can be found in
Chapters 12-14 of Lee and Varaiya (2003).

32 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

e
K

ψ

Figure 2.3: Proportional control system that stabilizes the helicopter.

Example 2.5: Recall that the helicopter model of Example 2.1 is not sta-
ble. We can stabilize it with a simple feedback control system, as shown
in Figure 2.3. The input ψ to this system is a continuous-time system
specifying the desired angular velocity. The error signal e represents the
difference between the actual and the desired angular velocity. In the fig-
ure, the controller simply scales the error signal by a constant K, providing
a control input to the helicopter. We use (2.4) to write

θ̇y(t) = θ̇y(0)+
1

Iyy

tZ
0

Ty(τ)dτ (2.9)

= θ̇y(0)+
K
Iyy

tZ
0

(ψ(τ)− θ̇y(τ))dτ, (2.10)

where we have used the facts (from the figure),

e(t) = ψ(t)− θ̇y(t)

and
Ty(t) = Ke(t).

Equation (2.10) has θ̇y(t) on both sides, and therefore is not trivial to
solve. The easiest solution technique uses Laplace transforms (see Lee
and Varaiya (2003) Chapter 14). However, for our purposes here, we can
use a more brute-force technique from calculus. To make this as simple as
possible, we assume that ψ(t) = 0 for all t; i.e., we wish to control the he-
licopter simply to keep it from rotating at all. The desired angular velocity

Lee & Seshia, Introduction to Embedded Systems, version 0.5 33

http://LeeSeshia.org

2.4. FEEDBACK CONTROL

is zero. In this case, (2.10) simplifies to

θ̇y(t) = θ̇y(0)− K
Iyy

tZ
0

θ̇y(τ)dτ. (2.11)

Using the fact from calculus that, for t ≥ 0,

tZ
0

aeaτdτ = eatu(t)−1,

where u is given by (2.8), we can infer that the solution to (2.11) is

θ̇y(t) = θ̇y(0)e−Kt/Iyyu(t). (2.12)

(Note that although it is easy to verify that this solution is correct, deriving
the solution is not so easy. For this purpose, Laplace transforms provide a
far better mechanism.)

We can see from (2.12) that the angular velocity approaches the desired
angular velocity (zero) as t gets large as long as K is positive. For larger
K, it will approach more quickly. For negative K, the system is unstable,
and angular velocity will grow without bound.

The previous example illustrates a proportional control feedback loop. It is called
this because the control signal is proportional to the error. We assumed a desired
signal of zero. It is equally easy to assume that the helicopter is initially at rest (the
angular velocity is zero) and then determine the behavior for a particular non-zero
desired signal, as we do in the following example.

Example 2.6: Assume that helicopter is initially at rest, meaning that

θ̇(0) = 0,

and that the desired signal is

ψ(t) = au(t)

34 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

for some constant a. That is, we wish to control the helicopter to get it to
rotate at a fixed rate.

We use (2.4) to write

θ̇y(t) =
1

Iyy

tZ
0

Ty(τ)dτ

=
K
Iyy

tZ
0

(ψ(τ)− θ̇y(τ))dτ

=
K
Iyy

tZ
0

adτ− K
Iyy

tZ
0

θ̇y(τ)dτ

=
Kat
Iyy
− K

Iyy

tZ
0

θ̇y(τ)dτ.

Using the same (black magic) technique of inferring and then verifying the
solution, we can see that the solution is

θ̇y(t) = au(t)(1− e−Kt/Iyy). (2.13)

Again, the angular velocity approaches the desired angular velocity as t
gets large as long as K is positive. For larger K, it will approach more
quickly. For negative K, the system is unstable, and angular velocity will
grow without bound.

Note that the first term in the above solution is exactly the desired angular
velocity. The second term is an error called the tracking error, that for
this example asymptotically approaches zero.

The above example is somewhat unrealistic because we cannot independently con-
trol the net torque of the helicopter. In particular, the net torque Ty is the sum of the
torque Tt due to the friction of the top rotor and the torque Tr due to the tail rotor,

∀ t ∈ R, Ty(t) = Tt(t)+Tr(t) .

Lee & Seshia, Introduction to Embedded Systems, version 0.5 35

http://LeeSeshia.org

2.4. FEEDBACK CONTROL

Tt will be determined by the rotation required to maintain or achieve a desired alti-
tude, quite independent of the rotation of the helicopter. Thus, we will actually need
to design a control system that controls Tr and stabilizes the helicopter for any Tt (or,
more precisely, any Tt within operating parameters). In the next example, we study
how this changes the performance of the control system.

Example 2.7: In Figure 2.4(a), we have modified the helicopter model
so that it has two inputs, Tt and Tr, the torque due to the top rotor and tail
rotor respectively. The feedback control system is now controlling only Tr,
and Tt is treated as an external (uncontrolled) input signal. How well will
this control system behave?

Again, a full treatment of the subject is beyond the scope of this text, but
we will study a specific example. Suppose that the torque due to the top
rotor is given by

Tt = bu(t)

for some constant b. That is, at time zero, the top rotor starts spinning a
constant velocity, and then holds that velocity. Suppose further that the
helicopter is initially at rest. We can use the results of Example 2.6 to find
the behavior of the system.

First, we transform the model into the equivalent model shown in Figure
2.4(b). This transformation simply relies on the algebraic fact that for any
real numbers a1,a2,K,

Ka1 +a2 = K(a1 +a2/K).

We further transform the model to get the equivalent model shown in Fig-
ure 2.4(c), which has used the fact that addition is commutative. In Figure
2.4(c), we see that the portion of the model enclosed in the box is exactly
the same as the control system analyzed in Example 2.6, shown in Figure
2.3. Thus, the same analysis as in Example 2.6 still applies. Suppose that
desired angular rotation is

ψ(t) = 0.

Then the input to the original control system will be

x(t) = ψ(t)+Tt(t)/K = (b/K)u(t).

36 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

(a)

(b)

(c)

(a)

(b)

Figure 2.4: (a) Helicopter model with separately controlled torques for the
top and tail rotors. (b) Transformation to an equivalent model (assuming
K > 0). (c) Further transformation to an equivalent model that we can use to
understand the behavior of the controller.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 37

http://LeeSeshia.org

2.5. SUMMARY

From (2.13), we see that the solution is

θ̇y(t) = (b/K)u(t)(1− e−Kt/Iyy). (2.14)

The desired angular rotation is zero, but the control system asymptotically
approaches a non-zero angular rotation of b/K. This tracking error can
be made arbitrarily small by increasing the control system feedback gain
K, but with this controller design, it cannot be made to go to zero. An
alternative controller design that yields an asymptotic tracking error of zero
is studied in Exercise 6.

2.5 Summary

This chapter has described two distinct modeling techniques that describe physi-
cal dynamics. The first is ordinary differential equations, a venerable toolkit for
engineers, and the second is actor models, a newer technique driven by software
modeling and simulation tools. The two are closely related. This chapter has em-
phasized the relationship between these models, and the relationship of those models
to the systems being modeled. These relationships, however, are quite a deep sub-
ject that we have barely touched upon. Our objective is to focus the attention of the
reader on the fact that we may use multiple models for a system, and that models
are distinct from the systems being modeled. The fidelity of a model (how well it
approximates the system being modeled) is a strong factor in the success or failure
of any engineering effort.

38 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

Exercises

1. A tuning fork, shown in Figure 2.5, consists of a metal finger (called a
tine) that is displaced by striking it with a hammer. After being displaced,
it vibrates. If the tine has no friction, it will vibrate forever. We can de-
note the displacement of the tine after being struck at time zero as a function
y : R+→ Reals. If we assume that the initial displacement introduced by the
hammer is one unit, then using our knowledge of physics we can determine
that for all t ∈ Reals+, the displacement satisfies the differential equation

ÿ(t) =−ω2
0y(t)

where ω2
0 is constant that depends on the mass and stiffness of the tine, and

and where ÿ(t) denotes the second derivative with respect to time of y. It is
easy to verify that y given by

∀ t ∈ Reals+, y(t) = cos(ω0t)

is a solution to the differential equation (just take its second derivative). Thus,
the displacement of the tuning fork is sinusoidal. If we choose materials for
the tuning fork so that ω0 = 2π×440 radians/second, then the tuning fork will
produce the tone of A-440 on the musical scale.

(a) Is y(t) = cos(ω0t) the only solution? If not, give some others.

(b) Assuming the solution is y(t) = cos(ω0t), what is the initial displace-
ment?

(c) Construct a model of the tuning fork that produces y as an output using
generic actors like Integrator, adder, scaler, or similarly simple actors.
Treat the initial displacement as a parameter. Carefully label your dia-
gram.

2. Show if a system S : RA→RB is strictly causal and memoryless then its output
is constant. Constant means that the output (S(x))(t) at time t does not depend
on t.

3. This exercise studies linearity.

(a) Show that the helicopter model defined in Example 2.1 is linear if and
only if the initial angular velocity θ̇y(0) = 0.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 39

http://LeeSeshia.org

EXERCISES

(b) Show that the cascade of any two linear actors is linear.

(c) Augment the definition of linearity so that it applies to actors with two
input signals and one output signal. Show that the adder actor is linear.

4. Consider the helicopter of Example 2.1, but with a slightly different definition
of the input and output. Suppose that, as in the example, the input is Ty : R→
R, as in the example, but the output is the position of the tail relative to the
main rotor shaft. Is this model LTI? Is it BIBO stable?

5. Consider a rotating robot where you can control the angular velocity around a
fixed axis.

(a) Model this as a system where the input is angular velocity θ̇ and the
output is angle θ. Give your model as an equation relating the input and
output as functions of time.

(b) Is this model BIBO stable?

(c) Design a proportional controller to set the robot onto a desired angle.
That is, assume that the initial angle is θ(0) = 0, and let the desired
angle be ψ(t) = au(t). Find the actual angle as a function of time and the
proportional controller feedback gain K. What is your output at t = 0?
What does it approach as t gets large?

displacement restorative force

tine

Figure 2.5: A tuning fork.

40 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

2. CONTINUOUS DYNAMICS

K1

K2

Figure 2.6: A PI controller for the helicopter.

6. (a) Using your favorite continuous-time modeling software (such as Lab-
VIEW, Simulink, or Ptolemy II), construct a model of the helicopter
control system shown in Figure 2.4. Choose some reasonable parame-
ters and plot the actual angular velocity as a function of time, assuming
that the desired angular velocity is zero, ψ(t) = 0, and that the top-rotor
torque is non-zero, Tt(t) = bu(t). Give your plot for several values of K
and discuss how the behavior varies with K.

(b) Modify the model of part (a) to replace the Controller of Figure 2.4 (the
simple scale-by-K actor) with the alternative controller shown in Figure
2.6. This alternative controller is called a proportional-integrator (PI)
controller. It has two parameter K1 and K2. Experiment with the values
of these parameters, give some plots of the behavior with the same inputs
as in part (a), and discuss the behavior of this controller in contrast to the
one of part (a).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 41

http://LeeSeshia.org

EXERCISES

42 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 3

Discrete Dynamics

Contents
3.1 Discrete Systems . 44

Sidebar: Probing Further: Discrete Signals 46
Sidebar: Probing Further: Modeling Actors as Functions 47

3.2 The Notion of State . 49
3.3 Finite-State Machines . 50

3.3.1 Transitions . 50
3.3.2 When a Reaction Occurs 54
Sidebar: Probing Further: Hysteresis 54
3.3.3 Update Functions . 56
Sidebar: Software Tools Supporting FSMs 57
3.3.4 Determinacy and Receptiveness 59

3.4 Extended State Machines . 59
Sidebar: Moore Machines and Mealy Machines 60

3.5 Nondeterminism . 65
3.5.1 Formal Model . 67
3.5.2 Uses of Non-Determinism 68

3.6 Behaviors and Traces . 69
3.7 Summary . 73
Exercises . 74

43

3.1. DISCRETE SYSTEMS

Models of embedded systems include both discrete and continuous components.
Loosely speaking, continuous components evolve smoothly, while discrete compo-
nents evolve abruptly. The previous chapter considered continuous components, and
showed that the physical dynamics of the system can often be modeled with ordinary
differential or integral equations, or equivalently with actor models that mirror these
equations. Discrete components, on the other hand, are not conveniently modeled
by ODEs. In this chapter, we study how state machines can be used to model dis-
crete dynamics. In the next chapter, we will show how these state machines can be
combined with models of continuous dynamics to get hybrid system models.

3.1 Discrete Systems

A discrete system operates in a sequence of discrete steps and is said to have dis-
crete dynamics. Some systems are inherently discrete.

Example 3.1: Consider a system that counts the number of cars that
enter and leave a parking garage in order to keep track of how many cars
are in the garage at any time. It could be modeled as shown in Figure
3.1. We ignore for now how to design the sensors that detect the entry
or departure of cars. We simply assume that the ArrivalDetector actor
produces an event when a car arrives, and the DepartureDetector actor

Figure 3.1: Model of a system that keeps track of the number of cars in a
parking garage.

44 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

Figure 3.2: Icon for the Integrator actor used in the previous chapter.

produces an event when a car departs. The Counter actor keeps a running
count, starting from an initial value i. Each time the count changes, it
produces an output event that updates a display.

In the above example, each entry or departure is modeled as a discrete event. A
discrete event occurs at an instant of time rather than over time. The Counter actor
in Figure 3.1 is analogous to the Integrator actor used in the previous chapter, shown
here in Figure 3.2. Like the Counter actor, the Integrator accumulates input values.
However, it does so very differently. The input of an Integrator is a function of the
form x : R→ R or x : R+ → R, a continuous-time signal. The signal u going into
the up input port of the Counter, on the other hand, is a function of the form

u : R→{absent,present}.

This means that at any time t ∈R, the input u(t) is either absent, meaning that there
is no event at that time, or present, meaning that there is. A signal of this form is
known as a pure signal. It carries no value, but instead provides all its information
by being either present or absent at any given time. The signal d in Figure 3.1 is also
a pure signal.

Assume our Counter operates as follows. When an event is present at the up input
port, it increments its count and produces on the output the new value of the count.
When an event is present at the down input, it decrements its count and produces
on the output the new value of the count.1 At all other times (when both inputs are
absent), it produces no output (the count output is absent). Hence, the signal c in
Figure 3.1 can be modeled by a function of the form

c : R→{absent}∪Z .

1It would be wise to design this system with a fault handler that does something reasonable if the
count drops below zero, but we ignore this for now.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 45

http://LeeSeshia.org

3.1. DISCRETE SYSTEMS

(See Appendix A for notation.) This signal is not pure, but like u and d, it is either
absent or present. Unlike u and d, when it is present, it has a value (an integer).

Assume further that the inputs are absent most of the time, or more technically,
that the inputs are discrete (see the sidebar on page 46). Then the Counter reacts
in sequence to each of a sequence of input events. This is very different from the
Integrator, which reacts continuously to a continuum of inputs.

The input to the Counter is a pair of discrete signals that at certain times have an
event (are present), and at other times have no event (are absent). The output also is a
discrete signal that, when an input is present, has a value that is a natural number, and
at other times is absent.2 Clearly, there is no need for this Counter to do anything

2As shown in Exercise 6, the fact that input signals are discrete does not necessarily imply that the
output signal is discrete. However, for this application, there are physical limitations on the rates at
which cars can arrive and depart that ensure that these signals are discrete. So it is safe to assume that
they are discrete.

Probing Further: Discrete Signals

Discrete signals consist of a sequence of instantaneous events in time. Here, we
make this intuitive concept precise.

Consider a signal of the form e : R→{absent}∪X , where X is any set of values.
This signal is a discrete signal if, intuitively, it is absent most of the time and we can
count, in order, the times at which it is present (not absent). Each time it is present,
we have a discrete event.

This ability to count the events in order is important. For example, if e is present at
all rational numbers t, then we do not call this signal discrete. The times at which it is
present cannot be counted in order. It is not, intuitively, a sequence of instantaneous
events in time (it is a set of instantaneous events in time, but not a sequence).

To define this formally, let T ⊆ R be the set of times where e is present. Specifi-
cally,

T = {t ∈ R : e(t) 6= absent}.

Then e is discrete if there exists a one-to-one function f : T → N that is order pre-
serving. Order preserving simply means that for all t1, t2 ∈ T where t1 ≤ t2, we
have that f (t1)≤ f (t2). The existence of such a one-to-one function ensures that we
can count off the events in temporal order. Some properties of discrete signals are
studied in Exercise 6.

46 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

when the input is absent. It only needs to operate when inputs are present. Hence, it
has discrete dynamics.

The dynamics of a discrete system can be described as a sequence of steps that we
call reactions, each of which we assume to be instantaneous. Reactions of a discrete
system are triggered by the environment in which the discrete system operates. In
the case of the example of Figure 3.1, reactions of the Counter actor are triggered
when one or more input events are present. That is, in this example, reactions are
event triggered. When both inputs to the Counter are absent, no reaction occurs.

Probing Further: Modeling Actors as Functions

As in Section 2.2, the Integrator actor of Figure 3.2 can be modeled by a function
of the form

Ii : RR+ → RR+ ,

which can also be written

Ii : (R+→ R)→ (R+→ R).

(See Appendix A if the notation is unfamiliar.) In the figure,

y = Ii(x) ,

where i is the initial value of the integration and x and y are continuous-time signals.
For example, if i = 0 and for all t ∈ R+, x(t) = 1, then

y(t) = i+
Z t

0
x(τ)dτ = t .

Similarly, the Counter in Figure 3.1 can be modeled by a function of the form

Ci : (R+→{absent,present})P→ (R+→{absent}∪Z),

where Z is the integers and P is the set of input ports, P = {up,down}. Recall that
the notation AB denotes the set of all functions from B to A. Hence, the input to the
function C is a function whose domain is P that for each port p ∈ P yields a function
in (R+ → {absent,present}). That latter function, in turn, for each time t ∈ R+
yields either absent or present.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 47

http://LeeSeshia.org

3.1. DISCRETE SYSTEMS

A particular reaction will observe the values of the inputs at a particular time t and
calculate output values for that same time t. Suppose an actor has input ports P =
{p1, · · · , pN}, where pi is the name of the i-th input port. Assume further that for
each input port p ∈ P, a set Vp denotes the values that may be received on port p
when the input is present. Vp is called the type of port p. At a reaction we treat
each p ∈ P as a variable that takes on a value p ∈Vp∪{absent}. A valuation of the
inputs P is an assignment of value in Vp to each variable p ∈ P or an assertion that p
is absent.

If port p receives a pure signal, then Vp = {present}, a singleton set (set with only
one element). The only possible value when the signal is not absent is present.
Hence, at a reaction, the variable p will have a value in the set {present,absent}.

Example 3.2: For the garage counter, the set of input ports is P =
{up,down}. Both receive pure signals, so the types are Vup = Vdown =
{present}. If a car is arriving at time t and none is departing, then at that
reaction, up = present and down = absent. If a car is arriving and another
is departing at the same time, then up = down = present. If neither is true,
then both are absent.

Outputs are similarly designated. Assume a discrete system has output ports Q =
{q1, · · · ,qM} with types Vq1 , · · · ,VqM . At each reaction, the system assigns a value
q∈Vq∪{absent} to each q∈Q, producing a valuation of the outputs. In this chapter,
we will assume that the output is absent at times t where a reaction does not occur.
Thus, outputs of a discrete system are discrete signals. Chapter 4 describes systems
whose outputs are not constrained to be discrete (see also box on page 60).

Example 3.3: The Counter actor of Figure 3.1 has one output port named
count, so Q = {count}. Its type is Vcount = Z. At a reaction, count is
assigned the count of cars in the garage.

48 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

3.2 The Notion of State

Intuitively, the state of a system or subsystem is its condition at a particular point in
time. In general, the state affects how the (sub)system reacts to inputs. Formally, we
define the state to be an encoding of everything about the past that has an effect on
the system’s reaction to current or future inputs. The state is a summary of the past.

Consider the Integrator actor shown in Figure 3.2. This actor has state, which in
this case happens to have the same value as the output at any time t. The state of
the actor at a time t is the value of the integral of the input signal up to time t. In
order to know how the subsystem will react to inputs at and beyond time t, we have
to know what this value is at time t. We do not need to know anything more about
the past inputs. Their effect on the future is entirely captured by the current value
at t. The icon in Figure 3.2 includes i, an initial state value, which is needed to get
things started at some starting time.

An Integrator operates in a time continuum. It integrates a continuous-time input
signal, generating as output at each time the cumulative area under the curve given
by the input plus the initial state. Its state at any given time is that accumulated area
plus the initial state. The Counter actor in the previous section also has state, and
that state is also an accumulation of past input values, but it operates discretely.

The state y(t) of the Integrator at time t is a real number. Hence, we say that the
state space of the Integrator is States = R. For the Counter used in Figure 3.1, the
state s(t) at time t is an integer, so States⊂Z. A practical parking garage has a finite
and non-negative number M of spaces, so the state space for the Counter actor used
in this way will be

States = {0,1,2, · · · ,M} .

(This assumes the garage does not let in more cars than there are spaces.) The state
space for the Integrator is infinite (uncountably infinite, in fact). The state space
for the garage counter is finite. Discrete models with finite state spaces are called
finite-state machines (FSMs). There are powerful analytical techniques available for
such models, so we consider them next.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 49

http://LeeSeshia.org

3.3. FINITE-STATE MACHINES

3.3 Finite-State Machines

A state machine is a model of a system with discrete dynamics that at each reac-
tion maps valuations of the inputs to valuations of the outputs, where the map may
depend on its current state. A finite-state machine (FSM) is a state machine where
the set States of possible states is finite.

If the number of states is reasonably small, then FSMs can be conveniently drawn
using a graphical notation like that in Figure 3.3. Here, each state is represented by
a bubble, so for this diagram, the set of states is given by

States = {State1,State2,State3}.

At the beginning of each reaction, there is an initial state, State1, indicated in the
diagram by a dangling arrow into it.

3.3.1 Transitions

Transitions between states govern the discrete dynamics of the state machine and
the mapping of input valuations to output valuations. A transition is represented as
a curved arrow, as shown in Figure 3.3, going from one state to another. A transition
may also start and end at the same state, as illustrated with State3 in the figure. In
this case, the transition is called a self transition.

In Figure 3.3, the transition from State1 to State2 is labeled with “guard / action.”
The guard determines whether the transition may be taken on a reaction. The action
specifies what outputs are produced on each reaction.

Figure 3.3: Visual notation for a finite state machine.

50 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

A guard is a predicate (a boolean-valued expression) that evaluates to true when
the transition should be taken, changing the state from that at the beginning of the
transition to that at the end. When a guard evaluates to true we say that the transition
is enabled. An action is an assignment of values (or absent) to the output ports.
Any output port not mentioned in a transition that is taken is implicitly absent. If no
action at all is given, then all outputs are implicitly absent.

Example 3.4: Figure 3.4 shows an FSM model for the garage counter.
The inputs and outputs are shown using the notation name : type. The set
of states is States = {0,1,2, · · · ,M}. The transition from state 0 to 1 has
a guard written as up∧¬down. This is a predicate that evaluates to true
when up is present and down is absent. If at a reaction the current state is
0 and this guard evaluates to true, then the transition will be taken and the
next state will be 1. Moreover, the action indicates that the output should
be assigned the value 1. The output port count is not explicitly named
because there is only one output port, and hence there is no ambiguity.

If the guard expression on the transition from 0 to 1 had been simply up,
then this could evaluate to true when down is also present, which would
incorrectly count cars when a car was arriving at the same time that another
was departing.

If p1 and p2 are pure inputs to a discrete system, then the following are examples of
valid guards:

Figure 3.4: FSM model for the garage counter.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 51

http://LeeSeshia.org

3.3. FINITE-STATE MACHINES

true Transition is always enabled.
p1 Transition is enabled if p1 is present.
¬p1 Transition is enabled if p1 is absent.

p1∧ p2 Transition is enabled if both p1 and p2 are present.
p1∨ p2 Transition is enabled if either p1 or p2 is present.

p1∧¬p2 Transition is enabled if p1 is present and p2 is absent.

These are standard logical operators where present is taken as a synonym for true
and absent as a synonym for false. The symbol ¬ represents logical negation. The
operator ∧ is logical conjunction (logical AND), and ∨ is logical disjunction (log-
ical OR).

Suppose that in addition the discrete system has a third input port p3 with type
Vp3 = N. Then the following are examples of valid guards:

p3 Transition is enabled if p3 is present (not absent).
p3 = 1 Transition is enabled if p3 is present and has value 1.

p3 = 1∧ p1 Transition is enabled if p3 has value 1 and p1 is present.
p3 > 5 Transition is enabled if p3 is present and has value greater than 5.

Example 3.5: A major use of energy worldwide is in heating, ventila-
tion, and air conditioning (HVAC) systems. Accurate models of tempera-
ture dynamics and temperature control systems can significantly improve
energy conservation. Such modeling begins with a modest thermostat,
which regulates temperature to maintain a setpoint, or target temperature.

Figure 3.5: A model of a thermostat with hysteresis.

52 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

The word “thermostat” comes from Greek words for “hot” and “to make
stand.”

Consider a thermostat modeled by an FSM with States =
{heating,cooling} as shown in Figure 3.5. Suppose the setpoint is
20 degrees Celsius. If the heater is on, then the thermostat allows the
temperature to rise past the setpoint to 22 degrees. If the heater is off,
then it allows the temperature to drop past the setpoint to 18 degrees. This
strategy is called hysteresis (see box on page 54). It avoids chattering,
where the heater would turn on and off rapidly when the temperature is
close to the setpoint temperature.

There is a single input temperature with type R and two pure outputs
heatOn and heatOff. These outputs will be present only when a change
in the status of the heater is needed (i.e., when it is on and needs to be
turned off, or when it is off and needs to be turned on).

The FSM in Figure 3.5 could be event triggered, like the garage counter, in which
case it will react whenever a temperature input is provided. Alternatively, it could
be time triggered, meaning that it reacts at regular time intervals. The definition of
the FSM does not change in these two cases. It is up to the environment in which an
FSM operates when it should react.

On a transition, the action (which is the portion after the slash) specifies the resulting
valuation on the output ports when a transition is taken. If q1 and q2 are pure outputs
and q3 has type N, then the following are examples of valid actions:

q1 q1 is present and q2 and q3 are absent.
q1,q2 q1 and q2 are both present and q3 is absent.

q3 := 1 q1 and q2 are absent and q3 is present with value 1.
q3 := 1, q1 q1 is present, q2 is absent, and q3 is present with value 1.

(nothing) q1, q2, and q3 are all absent.

Any output port that is not mentioned in a transition that is taken is implicitly absent.
When assigning a value to an output port, we use the notation name := value to
distinguish the assignment from a predicate, which would be written name = value.
As in Figure 3.1, if there is only one output, then the assignment need not mention
the port name.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 53

http://LeeSeshia.org

3.3. FINITE-STATE MACHINES

3.3.2 When a Reaction Occurs

Nothing in the definition of a state machine constrains when it reacts. The envi-
ronment determines when the machine reacts. Chapters 5 and 6 describe a variety

Probing Further: Hysteresis

The thermostat in Example 3.5 exhibits a particular form of state-dependent behavior
called hysteresis. Hysteresis is used to prevent chattering. A system with hysteresis
has memory, but in addition has a useful property called time-scale invariance. In
Example 3.5, the input signal as a function of time is a signal of the form

temperature : R→{absent}∪R .

Hence, temperature(t) is the temperature reading at time t, or absent if there is no
temperature reading at that time. The output as a function of time has the form

heatOn,heatOff : R→{absent,present} .

Suppose that instead of temperature the input is given by

temperature′(t) = temperature(α · t)

for some α > 0. If α > 1, then the input varies faster in time, whereas if α < 1 then
the input varies more slowly, but in both cases, the input pattern is the same. Then
for this FSM, the outputs heatOn′ and heatOff ′ are given by

heatOn′(t) = heatOn(α · t) heatOff ′(t) = heatOff (α · t) .

Time-scale invariance means that scaling the time axis at the input results in scaling
the time axis at the output, so the absolute time scale is irrelevant.

An alternative implementation for the thermostat would use a single temperature
threshold, but instead would require that the heater remain on or off for at least a
minimum amount of time, regardless of the temperature. The consequences of this
design choice are explored in Exercise 2.

54 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

of mechanisms and give a precise meaning to terms like event triggered and time
triggered. For now, however, we just focus on what the machine does when it reacts.

When the environment determines that a state machine should react, the inputs will
have a valuation. The state machine will assign a valuation to the output ports and
(possibly) change to a new state. If no guard on any transition out of the current state
evaluates to true, then the machine will remain in the same state.

It is possible for all inputs to be absent at a reaction. Even in this case, it may be
possible for a guard to evaluate to true, in which case a transition is taken. If the
input is absent and no guard on any transition out of the current state evaluates to
true, then the machine will stutter. A stuttering reaction is one where the inputs
and outputs are all absent and the machine does not change state. No progress is
made and nothing changes.

Example 3.6: In Figure 3.4, if on any reaction both inputs are absent, then
the machine will stutter. If we are in state 0 and the input down is present,
then the guard on the only outgoing transition is false, and the machine
remains in the same state. However, we do not call this a stuttering reaction
because the inputs are not all absent.

Our informal description of the garage counter in Example 3.1 did not explicitly
state what would happen if the count was at 0 and a car departed. A major advan-
tage of FSM models is that they define all possible behaviors. The model in Figure
3.4 defines what happens in this circumstance. The count remains at 0. As a conse-
quence, FSM models are amenable to formal checking, which determines whether
the specified behaviors are in fact desirable behaviors. The informal specification
cannot be subjected to such tests, or at least, not completely.

Although it may seem that the model in Figure 3.4 does not define what happens
if the state is 0 and down is present, it does so implicitly — the state remains un-
changed and no output is generated. The reaction is not shown explicitly in the
diagram. Sometimes it is useful to emphasize such reactions, in which case they
can be shown explicitly. A convenient way to do this is using a default transition,
shown in Figure 3.6. In that figure, the default transition is denoted with dashed
lines and is labeled with “true / ”. A default transition is enabled if no non-default

Lee & Seshia, Introduction to Embedded Systems, version 0.5 55

http://LeeSeshia.org

3.3. FINITE-STATE MACHINES

transition is enabled and if its guard evaluates to true. In Figure 3.6, therefore, the
default transition is enabled if up∧¬down evaluates to false, and when the default
transition is taken the output is absent.

Default transitions provide a convenient notation, but they are not really necessary.
Any default transition can be replaced by an ordinary transition with an appropriately
chosen guard. For example, in Figure 3.6 we could use an ordinary transition with
guard ¬(up∧¬down).

The use of both ordinary transitions and default transitions in a diagram can be
thought of as a way of assigning priority to transitions. An ordinary transition has
priority over a default transition. When both have guards that evaluate to true, the
ordinary transition prevails. Some formalisms for state machines support more than
two levels of priority. For example SyncCharts (André, 1996) associates with each
transition an integer priority. This can make guard expressions simpler, at the ex-
pense of having to indicate priorities in the diagrams.

3.3.3 Update Functions

The graphical notation for FSMs defines a specific mathematical model of the dy-
namics of a state machine. A mathematical notation with the same meaning as
the graphical notation sometimes proves convenient, particularly for large state ma-
chines where the graphical notation becomes cumbersome. In such a mathematical
notation, a finite-state machine is a five-tuple

(States, Inputs,Outputs,update, initialState)

where

Figure 3.6: A default transition that need not be shown explicitly because it
returns to the same state and produces no output.

56 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

• States is a finite set of states;
• Inputs is a set of input valuations;
• Outputs is a set of output valuations;
• update : States× Inputs→ States×Outputs is an update function, mapping a

state and an input valuation to a next state and an output valuation;
• initialState is the initial state.

The FSM reacts in a sequence of reactions. At each reaction, the FSM has a current
state, and the reaction may transition to a next state, which will be the current state
of the next reaction. We can number these states starting with 0 for the initial state.
Specifically, let s : N→ States be a function that gives the state of an FSM at reaction
n ∈ N. Initially, s(0) = initialState.

Let x : N→ Inputs and y : N→ Outputs denote that input and output valuations at
each reaction. Hence, x(0) ∈ Inputs is the first input valuation and y(0) ∈ Outputs
is the first output valuation. The dynamics of the state machine are given by the
following equation:

(s(n+1),y(n)) = update(s(n),x(n)) (3.1)

Software Tools Supporting FSMs

FSMs have been used in theoretical computer science and software engineering for
quite some time (Hopcroft and Ullman, 1979). A number of software tools support
design and analysis of FSMs. Statecharts (Harel, 1987), a notation for concurrent
composition of hierarchical FSMs, has influenced many of these tools. One of the
first tools supporting the Statecharts notation is STATEMATE (Harel et al., 1990),
which subsequently evolved into Rational Rose, sold by IBM. Many variants of Stat-
echarts have evolved (Beeck, 1994), and some variant is now supported by nearly
every software engineering tool that provides UML (unified modeling language)
capabilities (Booch et al., 1998). SyncCharts (André, 1996) is a particularly nice
variant in that it borrows the rigorous semantics of Esterel (Berry and Gonthier,
1992) for composition of concurrent FSMs. LabVIEW supports a variant of Stat-
echarts that can operate within dataflow diagrams, and Simulink with its Stateflow
extension supports a variant that can operate within continuous-time models.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 57

http://LeeSeshia.org

3.3. FINITE-STATE MACHINES

This gives the next state and output in terms of the current state and input. The
update function encodes all the transitions, guards, and output specifications in an
FSM. The term transition function is often used in place of update function.

The input and output valuations also have a natural mathematical form. Suppose an
FSM has input ports P = {p1, · · · , pN}, where each p ∈ P has a corresponding type
Vp. Then Inputs is a set of functions of the form

i : P→Vp1 ∪·· ·∪VpN ∪{absent} ,

where for each p∈P, i(p)∈Vp∪{absent} gives the value of port p. Thus, a function
i ∈ Inputs is a valuation of the input ports.

Example 3.7: The FSM in Figure 3.4 can be mathematically represented
as follows:

States = {0,1, · · · ,M}
Inputs = ({up,down}→ {present,absent})

Outputs = ({count}→ {0,1, · · · ,M,absent})
initialState = 0

The update function is given by

update(s, i) =



(s+1,s+1) if s < M
∧ i(up) = present
∧ i(down) = absent

(s−1,s−1) if s > 0
∧ i(up) = absent
∧ i(down) = present

(s,absent) otherwise

(3.2)

for all s ∈ States and i ∈ Inputs. Note that an output valuation o ∈ Outputs
is a function of the form o : {count} → {0,1, · · · ,M,absent}. In (3.2), the
first alternative gives the output valuation as o = s + 1, which we take to
mean the constant function that for all q∈Q = {count} yields o(q) = s+1.
When there is more than one output port we will need to be more explicit
about which output value is assigned to which output port. In such cases,
we can use the same notation that we use for actions in the diagrams.

58 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

3.3.4 Determinacy and Receptiveness

The state machines presented in this section have two important properties:

Determinacy: A state machine is said to be deterministic (or determinate) if, for
each state, there is at most one transition enabled by each input value. The
formal definition of an FSM given above ensures that it is deterministic, since
update is a function, not a one-to-many mapping. The graphical notation
with guards on the transitions, however, has no such constraint. Such a state
machine will be deterministic only if the guards leaving each state are non-
overlapping.

Receptiveness: A state machine is said to be receptive if, for each state, there is
at least one transition possible on each input symbol. In other words, recep-
tiveness ensures that a state machine is always ready to react to any input, and
does not “get stuck” in any state. The formal definition of an FSM given above
ensures that it is receptive, since update is a function, not a partial function. It
is defined for every possible state and input value. Moreover, in our graphical
notation, since we have implicit default transitions, we have ensured that all
state machines specified in our graphical notation are also receptive.

It follows that if a state machine is both deterministic and receptive, for every state,
there is exactly one transition possible on each input value.

3.4 Extended State Machines

The notation for FSMs becomes awkward when the number of states gets large. The
garage counter of Figure 3.4 illustrates this point clearly. If M is large, the bubble-
and-arc notation becomes unwieldy, which is why we resort to a less formal use of
“...” in the figure.

An extended state machine solves this problem by augmenting the FSM model
with variables that may be read and written as part of taking a transition between
states.

Example 3.8: The garage counter of Figure 3.4 can be represented more
compactly by the extended state machine in Figure 3.8.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 59

http://LeeSeshia.org

3.4. EXTENDED STATE MACHINES

Moore Machines and Mealy Machines

The state machines we describe in this chapter are known as Mealy machines,
named after George H. Mealy, a Bell Labs engineer who published a description
of these machines in 1955 (Mealy, 1955). Mealy machines are characterized by
producing outputs when a transition is taken. An alternative, known as a Moore
machine, produces outputs when the machine is in a state, rather than when a tran-
sition is taken. That is, the output is defined by the current state rather than by the
current transition. Moore machines are named after Edward F. Moore, another Bell
Labs engineer who described them in a 1956 paper (Moore, 1956).

The distinction between these machines is subtle but important. Both are discrete
systems, and hence their operation consists of a sequence of discrete reactions. For
a Moore machine, at each reaction, the output produced is defined by the current
state (at the start of the reaction, not at the end). Thus, the output at the time of a
reaction does not depend on the input at that same time. The input determines which
transition is taken, but not what output is produced by the reaction. Hence, a Moore
machine is strictly causal.

A Moore machine version of the garage counter is shown in Figure 3.7. The
outputs are shown in the state rather than on the transitions using a similar notation
with a slash. Note, however, that this machine is not equivalent to the machine in
Figure 3.1. To see that, suppose that on the first reaction, up = present and down =
absent. The output at that time will be 0 in Figure 3.7 and 1 in Figure 3.1. The output
of the Moore machine represents the number of cars in the garage at the time of the
arrival of a new car, not the number of cars after the arrival of the new car. Suppose
instead that at the first reaction, up = down = absent. Then the output at that time is
0 in Figure 3.7 and absent in Figure 3.1. The Moore machine, when it reacts, always
reports the output associated with the current state. The Mealy machine does not
produce any output unless there is a transition explicitly denoting that output.

Any Moore machine may be converted to an equivalent Mealy machine. A Mealy
machine may be converted to an almost equivalent Moore machine that differs only
in that the output is produced on the next reaction rather than on the current one. We
use Mealy machines because they tend to be more compact (requiring fewer states to
represent the same functionality), and because it is convenient to be able to produce
an output that instantaneously responds to the input.

60 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

That figure shows a variable c, declared explicitly at the upper left to make
it clear that c is a variable and not an input or an output. The transition
indicating the initial state initializes the value of this variable to zero.

The upper self-loop transition is then taken when the input up is present,
the input down is absent, and the variable c is less than M. When this
transition is taken, the state machine produces an output count with value
c+1, and then the value of c is incremented by one.

The lower self-loop transition is taken when the input down is present, the
input up is absent, and the variable c is greater than zero. Upon taking the

Figure 3.7: Moore machine for a system that keeps track of the number of
cars in a parking garage. Note this machine is not equivalent to that in Figure
3.1.

Figure 3.8: Extended state machine for the garage counter of Figure 3.4.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 61

http://LeeSeshia.org

3.4. EXTENDED STATE MACHINES

transition, the state machine produces an output with value c−1, and then
decrements the value of c.

Note that M is a parameter, not a variable. Specifically, it is assumed to be
constant throughout execution.

The general notation for extended state machines is shown in Figure 3.9. This differs
from the basic FSM notation of Figure 3.3 in three ways. First, variable declarations
are shown explicitly to make easy to determine that an identifier in a guard or action
refers to a variable and not an input or an output. Second, upon initialization, vari-
ables that have been declared may be initialized. The initial value will be shown on
the transition that indicates the initial state. Third, transition annotations now have
the form

guard / output action
set action(s)

The guard and output action are the same as for standard FSMs, except they may
now refer to variables. The set actions are new. They specify assignments to vari-
ables that are made when the transition is taken. These assignments are made after
the guard has been evaluated and the outputs have been produced. Thus, if the guard
or output actions reference a variable, the value of the variable is that before the as-
signment in the set action. If there is more than one set action, then the assignments
are made in sequence.

Figure 3.9: Notation for extended state machines.

62 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

Extended state machines can provide a convenient way to keep track of the passage
of time.

Example 3.9: An extended state machine describing a traffic light at a
pedestrian crosswalk is shown in Figure 3.10. This is a time triggered
machine that assumes it will react once per second. It starts in the red
state and counts 60 seconds with the help of the variable count. It then
transitions to green, where it will remain until the pure input pedestrian
is present. That input could be generated, for example, by a pedestrian
pushing a button to request a walk light. When pedestrian is present, the
machine transitions to yellow if it has been in state green for at least 60
seconds. Otherwise, it transitions to pending, where it stays for the re-
mainder of the 60 second interval. This ensures that once the light goes
green, it stays green for at least 60 seconds. At the end of 60 seconds, it
will transition to yellow, where it will remain for 5 seconds before transi-
tioning back to red.

Figure 3.10: Extended state machine model of a traffic light controller that
keeps track of the passage of time, assuming it reacts at regular intervals.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 63

http://LeeSeshia.org

3.4. EXTENDED STATE MACHINES

The outputs produced by this machine are sigG to turn on the green light,
sigY to change the light to yellow, and sigR to change the light to red.

The state of an extended state machine includes not only the information about
which discrete state (indicated by a bubble) the machine is in, but also what val-
ues any variables have. The number of possible states can therefore be quite large,
or even infinite. If there are n discrete states (bubbles) and m variables each of which
can have one of p possible values, then the size of the state space of the state machine
is

|States|= nmp .

Example 3.10: The garage counter of Figure 3.8 has n = 1, m = 1, and
p = M +1, so the total number of states is M +1.

Extended state machines may or may not be FSMs. In particular, it is not uncommon
for p to be infinite. For example, a variable may have values in N, the natural
numbers, in which case, the number of states is infinite.

Example 3.11: If we modify the state machine of Figure 3.8 so that the
guard on the upper transition is

up∧¬down

instead of
up∧¬down∧ c < M

then the state machine is no longer an FSM.

Some state machines will have states that can never be reached, so the set of reach-
able states — comprising all states that can be reached from the initial state on some
input sequence — may be smaller than the set of states.

64 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

Example 3.12: Although there are only four bubbles in Figure 3.10, the
number of states is actually much larger. The count variable has 61 possi-
ble values and there are 4 bubbles, so the total number of combinations is
61× 4 = 244. The size of the state space is therefore 244. However, not
all of these states are reachable. In particular, while in the yellow state, the
count variable will have only one of 6 values in {0, · · · ,5}. The number of
reachable states, therefore, is 61×3+6 = 189.

3.5 Nondeterminism

Most interesting state machines react to inputs and produce outputs. These inputs
must come from somewhere, and the outputs must go somewhere. We refer to this
“somewhere” as the environment of the state machine.

Example 3.13: The traffic light controller of Figure 3.10 has one pure
input signal, pedestrian. This input is present when a pedestrian arrives
at the crosswalk. The traffic light will remain green unless a pedestrian
arrives. Some other subsystem is responsible for generating the pedestrian
event, presumably in response to a pedestrian pushing a button to request
a cross light. That other subsystem is part of the environment of the FSM
in Figure 3.10.

A question becomes how to model the environment. In the traffic light example,
we could construct a model of pedestrian flow in a city to serve this purpose, but
this would likely be a very complicated model, and it is likely much more detailed
than necessary. We want to ignore inessential details, and focus on the design of the
traffic light. We can do this using a nondeterministic state machine.

Example 3.14: The FSM in Figure 3.11 models arrivals of pedestrians
at a crosswalk with a traffic light controller like that in Figure 3.10. This

Lee & Seshia, Introduction to Embedded Systems, version 0.5 65

http://LeeSeshia.org

3.5. NONDETERMINISM

Figure 3.11: Nondeterminate model of pedestrians that arrive at a crosswalk.

FSM has three inputs, which are presumed to come from the outputs of
Figure 3.10. Its single output, pedestrian, will provide the input for Fig-
ure 3.10.

The initial state is crossing. (Why? See Exercise 4.) When sigG is re-
ceived, the FSM transitions to none. Both transitions from this state have
guard true, indicating that they are always enabled. Since both are enabled,
this machine is nondeterminate. The FSM may stay in the same state and
produce no output, or it may transition to waiting and produce pure output
pedestrian.

The interaction between this machine and that of Figure 3.10 is surpris-
ingly subtle. Variations on the design are considered in Exercise 4, and the
composition of the two machines is studied in detail in Chapter 6.

If for any state of a state machine, there are two distinct transitions with guards that
can evaluate to true in the same reaction, then the state machine is nondeterminate
or nondeterministic. In a diagram for such a state machine, the transitions that
make the state machine nondeterminate may be colored red. In the example of Fig-
ure 3.11, the transitions exiting state none are the ones that make the state machine
nondeterminate.

66 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

It is also possible to define state machines where there is more than one initial state.
Such a state machine is also nondeterminate. An example is considered in Exercise
4.

In both cases, a nondeterminate FSM specifies a family of possible reactions rather
than a single reaction. Operationally, all reactions in the family are possible. The
nondeterminate FSM makes no statement at all about how likely the various reactions
are. It is perfectly correct, for example, to always take the self loop in state none
in Figure 3.11. A model that specifies likelihoods (in the form of probabilities) is a
stochastic model, quite distinct from a nondeterministic model.

3.5.1 Formal Model

Formally, a nondeterministic FSM is represented as a five-tuple, similar to a deter-
ministic FSM,

(States, Inputs,Outputs,possibleUpdates, initialStates)

The first three elements are the same as for a deterministic FSM, but the last two are
different:

• States is a finite set of states;
• Inputs is a set of input valuations;
• Outputs is a set of output valuations;
• possibleUpdates : States× Inputs→ 2States×Outputs is an update relation, map-

ping a state and an input valuation to a set of possible (next state, output valuation)
pairs;
• initialStates is a set of initial states.

The form of the function possibleUpdates indicates there can be more than one next
state and/or output valuation given a current state and input valuation. The codomain
is the powerset of States×Outputs. We refer to the possibleUpdates function as an
update relation, to emphasize this difference. The term transition relation is also
often used in place of update relation.

To support the fact that there can be more than one initial state for a nondeterministic
FSM, initialStates is a set rather than a single element of States.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 67

http://LeeSeshia.org

3.5. NONDETERMINISM

Example 3.15: The FSM in Figure 3.11 can be formally represented as
follows:

States = {none,waiting,crossing}
Inputs = ({sigG,sigY,sigR}→ {present,absent})

Outputs = ({pedestrian}→ {present,absent})
initialStates = {crossing}

The update relation is given below:

possibleUpdates(s, i) =



{(none,absent)}
if s = crossing
∧ i(sigG) = present

{(none,absent),(waiting,present)}
if s = none

{(crossing,absent)}
if s = waiting
∧ i(sigR) = present

{(s,absent)} otherwise

(3.3)

for all s ∈ States and i ∈ Inputs. Note that an output valuation o ∈ Outputs
is a function of the form o : {pedestrian} → {present,absent}. In (3.3),
the second alternative gives two possible outcomes, reflecting the nonde-
terminism of the machine.

3.5.2 Uses of Non-Determinism

While nondeterminism is an interesting mathematical concept in itself, it has two
major uses in modeling embedded systems:

Environment Modeling: It is often useful to hide irrelevant details about how an
environment operates, resulting in a non-deterministic FSM model. We have
already seen one example of such environment modeling in Figure 3.11.

68 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

Figure 3.12: Nondeterministic FSM specifying order of signal lights, but not
their timing. Notice that it ignores the pedestrian input.

Specifications: System specifications impose requirements on some system fea-
tures, while leaving other features unconstrained. Nondeterminism is a useful
modeling technique in such settings as well. For example, consider a speci-
fication that the traffic light cycles through red, green, yellow, in that order,
without regard for the timing between the outputs. The nondeterministic FSM
in Figure 3.12 models this specification. The guard true on each transition in-
dicates that the transition can be taken at any step. Technically, it means that
each transition is enabled for any input valuation in Inputs.

3.6 Behaviors and Traces

An FSM has discrete dynamics. As we did in Section 3.3.3, we can abstract away
the passage of time and consider only the sequence of reactions, without concern
for when in time each reaction occurs. We do not need to talk explicitly about the
amount of time that passes between reactions, since this is actually irrelevant to the
behavior of an FSM.

Consider a port p of a state machine with type Vp. This port will have a sequence of
values from the set Vp∪{absent}, one value at each reaction. We can represent this

Lee & Seshia, Introduction to Embedded Systems, version 0.5 69

http://LeeSeshia.org

3.6. BEHAVIORS AND TRACES

sequence as a function of the form

sp : N→Vp∪{absent} .

This is the signal received on that port (if it is an input) or produced on that port (if
it is an output).

A behavior of a state machine is an assignment of such a signal to each port such
that the signal on any output port is the output sequence produced for the given input
signals.

Example 3.16: The garage counter of Figure 3.4 has input port set P =
{up,down}, with types Vup = Vdown = {present}, and output port set Q =
{count} with type Vcount = {0, · · · ,M}. An example of input sequences is

sup = (present,absent,present,absent,present, · · ·)
sdown = (present,absent,absent,present,absent, · · ·)

The corresponding output sequence is

scount = (absent,absent,1,0,1, · · ·) .

These three signals sup, sdown, and scount together are a behavior of the state
machine. If we let

s′count = (1,2,3,4,5, · · ·) ,

then sup, sdown, and s′count together are not a behavior of the state machine.
The signal s′count is not produced by reactions to those inputs.

Deterministic state machines have the property that there is exactly one behavior
for each set of input sequences. That is, if you know the input sequences, then the
output sequence is fully determined. Such a machine can be viewed as a function
that maps input sequences to output sequences. Nondeterministic state machines can
have more than one behavior sharing the same input sequences, and hence cannot be
viewed as a function mapping input sequences to output sequences.

70 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

The set of all behaviors of a state machine M is called its language, written L(M).
Since our state machines are receptive, their languages always include all possible
input sequences.

A behavior may be more conveniently represented as a sequence of valuations called
an observable trace. Let xi represent the valuation of the input ports and yi the
valuation of the output ports at reaction i. Then an observable trace is a sequence

((x0,y0),(x1,y1),(x2,y2), · · ·) .

An observable trace is really just another representation of a behavior.

It is often useful to be able to reason about the states that are traversed in a behavior.
An execution trace includes the state trajectory, and may be written as a sequence

((x0,s0,y0),(x1,s1,y1),(x2,s2,y2), · · ·) ,

where s0 = initialState. This can be represented a bit more graphically as follows,

s0
x0/y0−−−→ s1

x1/y1−−−→ s2
x2/y2−−−→ ·· ·

This is an execution trace if for all i∈N, (si+1,yi)= update(si,xi) (for a deterministic
machine), or (si+1,yi) ∈ possibleUpdates(si,xi) (for a nondeterministic machine).

Example 3.17: Consider again the garage counter of Figure 3.4 with the
same input sequences sup and sdown from Example 3.16. The corresponding
execution trace may be written

0
up∧down /−−−−−−→ 0

/−−−−→ 0
up / 1−−−→ 1

down / 0−−−−−→ 0
up / 1−−−→ ·· ·

Here, we have used the same shorthand for valuations that is used on tran-
sitions in Section 3.3.1. For example, the label “up / 1” means that up is
present, down is absent, and count has value 1. Any notation that clearly
and unambiguously represents the input and output valuations is accept-
able.

For a nondeterministic machine, it may be useful to represent all the possible traces
that correspond to a particular input sequence, or even all the possible traces that

Lee & Seshia, Introduction to Embedded Systems, version 0.5 71

http://LeeSeshia.org

3.6. BEHAVIORS AND TRACES

Figure 3.13: A computation tree for the FSM in Figure 3.12.

result from all possible input sequences. This may be done using a computation
tree.

Example 3.18: Consider the non-deterministic FSM in Figure 3.12. Fig-
ure 3.13 shows the computation tree for the first three reactions with any
input sequence. Nodes in the tree are states and edges are labeled by the
input and output valuations, where the notation true means any input val-
uation.

Traces and computation trees can be valuable for developing insight into the behav-
iors of a state machine and for verifying that undesirable behaviors are avoided.

72 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

3.7 Summary

This chapter has given an introduction to the use of state machines to model systems
with discrete dynamics. It gives a graphical notation that is suitable for finite state
machines, and an extended state machine notation that can compactly represent large
numbers of states. It also gives a mathematical model that uses sets and functions
rather than visual notations. The mathematical notation can be useful to ensure
precise interpretations of a model and to prove properties of a model. This chapter
has also discussed nondeterminism, which can provide convenient abstractions that
compactly represent families of behaviors.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 73

http://LeeSeshia.org

EXERCISES

Exercises

1. Consider an event counter that is a simplified version of the counter in Section
3.1. It has an icon like this:

This actor starts with state i and upon arrival of an event at the input, incre-
ments the state and sends the new value to the output. Thus, e is a pure signal,
and c has the form c : R→ {absent}∪N, assuming i ∈ N. Suppose you are
to use such an event counter in a weather station to count the number of times
that a temperature rises above some threshold. Your task in this exercise is
to generate a reasonable input signal e for the event counter. You will create
several versions. For all versions, you will design a state machine whose input
is a signal τ : R→{absent}∪Z that gives the current temperature (in degrees
centigrade) once per hour. The output e : R→{absent,present}will be a pure
signal that goes to an event counter.

(a) For the first version, your state machine should simply produce a present
output whenever the input is present and greater than 38 degrees. Other-
wise, the output should be absent.

(b) For the second version, your state machine should have hysteresis. Specif-
ically, it should produce a present output the first time the input is greater
than 38 degrees, and subsequently, it should produce a present output
anytime the input is greater than 38 degrees but has dropped below 36
degrees since the last time a present output was produced.

(c) For the third version, your state machine should implement the same
hysteresis as in part (b), but also produce a present output at most once
per day.

2. Consider a variant of the thermostat of example 3.5. In this variant, there is
only one temperature threshold, and to avoid chattering the thermostat simply
leaves the heat on or off for at least a fixed amount of time. In the initial state,
if the temperature is less than or equal to 20 degrees Celsius, it turns the heater
on, and leaves it on for at least 30 seconds. After that, if the temperature is
greater than 20 degrees, it turns the heater off and leaves it off for at least 2

74 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

Figure 3.14: Deterministic finite-state machine for Exercise 3

minutes. It turns it on again only if the temperature is less than or equal to 20
degrees.

(a) Design an FSM that behaves as described, assuming it reacts exactly
once every 30 seconds.

(b) How many possible states does your thermostat have? Is this the smallest
number of states possible?

(c) Does this model thermostat have the time-scale invariance property?

3. Consider the deterministic finite-state machine in Figure 3.14 that models a
simple traffic light.

(a) Formally write down the description of this FSM as a 5-tuple:

(States, Inputs,Outputs,update, initialState) .

(b) Give an execution trace of this FSM of length 4 assuming the input tick
is present on each reaction.

(c) Now consider merging the red and yellow states into a single stop state.
Transitions that pointed into or out of those states are now directed into
or out of the new stop state. Other transitions and the inputs and outputs
stay the same. The new stop state is the new initial state. Is the resulting
state machine deterministic? Why or why not? If it is deterministic,
give a prefix of the trace of length 4. If it is non-deterministic, draw the
computation tree up to depth 4.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 75

http://LeeSeshia.org

EXERCISES

4. This problem considers variants of the FSM in Figure 3.11, which models
arrivals of pedestrians at a crosswalk. We assume that the traffic light at the
crosswalk is controlled by the FSM in Figure 3.10. In all cases, assume that
a time triggered model, where both the pedestrian model and the traffic light
model react once per second. Assume further that in each reaction, each ma-
chine sees as inputs the output produced by the other machine in the same
reaction (this form of composition, which is called synchronous composition,
is studied further in Chapter 6).

(a) Suppose that instead of Figure 3.11, we use the following FSM to model
the arrival of pedestrians:

Find a trace whereby a pedestrian arrives (the above machine transitions
to waiting) but the pedestrian is never allowed to cross. That is, at no
time after the pedestrian arrives is the traffic light in state red.

(b) Suppose that instead of Figure 3.11, we use the following FSM to model
the arrival of pedestrians:

Here, the initial state is nondeterministically chosen to be one of none or
crossing. Find a trace whereby a pedestrian arrives (the above machine

76 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

3. DISCRETE DYNAMICS

transitions from none to waiting) but the pedestrian is never allowed to
cross. That is, at no time after the pedestrian arrives is the traffic light in
state red.

5. Consider the state machine in Figure 3.15. State whether each of the following
is a behavior for this machine. In each of the following, the ellipsis “· · ·”
means that the last symbol is repeated forever. Also, for readability, absent is
denoted by the shorthand a and present by the shorthand p.

(a) x = (p, p, p, p, p, · · ·), y = (0,1,1,0,0, · · ·)
(b) x = (p, p, p, p, p, · · ·), y = (0,1,1,0,a, · · ·)
(c) x = (a, p,a, p,a, · · ·), y = (a,1,a,0,a, · · ·)
(d) x = (p, p, p, p, p, · · ·), y = (0,0,a,a,a, · · ·)
(e) x = (p, p, p, p, p, · · ·), y = (0,a,0,a,a, · · ·)

6. (NOTE: This exercise is rather advanced.) This exercise studies properties of
discrete signals as formally defined in the sidebar on page 46. Specifically,
we will show that discreteness is not a compositional property. That is, when
combining two discrete behaviors in a single system, the resulting combina-
tion is not necessarily discrete.

(a) Consider a pure signal x : R→{present,absent} given by

x(t) =
{

present if t is a non-negative integer
absent otherwise

for all t ∈ R. Show that this signal is discrete.

Figure 3.15: State machine for Exercise 5.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 77

http://LeeSeshia.org

EXERCISES

(b) Consider a pure signal y : R→{present,absent} given by

y(t) =
{

present if t = 1−1/n for any positive integer n
absent otherwise

for all t ∈ R. Show that this signal is discrete.

(c) Consider a signal w that is the merge of x and y in the previous two parts.
That is, w(t) = present if either x(t) = present or y(t) = present, and is
absent otherwise. Show that w is not discrete.

(d) Consider the example shown in Figure 3.1. Assume that each of the two
signals arrival and departure is discrete. Show that this does not imply
that the output count is a discrete signal.

78 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 4

Hybrid Systems1

Contents
4.1 Modal Models . 80

4.1.1 Actor Model for State Machines 80

4.1.2 Continuous Inputs . 81

4.1.3 State Refinements . 82

4.2 Classes of Hybrid Systems 84
4.2.1 Timed Automata . 84

4.2.2 Higher-Order Dynamics 89

4.2.3 Supervisory control . 94

4.3 Summary . 101
Exercises . 102

Chapters 2 and 3 describe two very different modeling strategies, one focused on
continuous dynamics and one on discrete dynamics. For continuous dynamics, we
use differential equations and their corresponding actor models. For discrete dynam-
ics, we use state machines.

Cyber-physical systems integrate physical dynamics and computational systems, so
they commonly combine both discrete and continuous dynamics. In this chapter, we
show that the modeling techniques of Chapters 2 and 3 can be combined, yielding

1This chapter borrows heavily from Lee and Varaiya (2003).

79

4.1. MODAL MODELS

what are known as hybrid systems. Hybrid system models are often much simpler
and more understandable than brute-force models that constrain themselves to only
one of the two styles in Chapters 2 and 3. They are a powerful tool for understanding
real-world systems.

4.1 Modal Models

In this section, we show that state machines can be generalized to admit continuous
inputs and outputs and to combine discrete and continuous dynamics.

4.1.1 Actor Model for State Machines

In Section 3.3.1 we explain that state machines have inputs defined by the set Inputs
that may be pure signals or may carry a value. In either case, the state machine has a
number of input ports, which in the case of pure signals are either present or absent,
and in the case of valued signals have a value at each reaction of the state machine.

We also explain in Section 3.3.1 that actions on transitions set the values of outputs.
The outputs can also be represented by ports, and again the ports can carry pure sig-
nals or valued signals. In the case of pure signals, a transition that is taken specifies
whether the output is present or absent, and in the case of valued signals, it assigns a
value or asserts that the signal is absent. Outputs are presumed to be absent between
transitions.

Given this input/output view of state machines, it is natural to think of a state ma-
chine as an actor, as illustrated in Figure 4.1. In that figure, we assume some number
n of input ports named i1 · · · in. At each reaction, these ports have a value that is ei-
ther present or absent (if the port carries a pure signal) or a member of some set of
values (if the port carries a valued signal). The outputs are similar. The guards on
the transitions define subsets of possible values on input ports, and the actions assign
values to output ports. Given such an actor model, it is straightforward to generalize
FSMs to admit continuous-time signals as inputs.

80 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

i1

in om

o1
... ...

Figure 4.1: An FSM represented as an actor.

4.1.2 Continuous Inputs

We have so far assumed that state machines operate in a sequence of discrete reac-
tions. We have assumed that inputs and outputs are absent between reactions. We
will now generalize this to allow inputs and outputs to be continuous-time signals.

In order to get state machine models to coexist with time-based models, we need
to interpret state transitions to occur on the same time line used for the time-based
portion of the system. The notion of discrete reactions described in Section 3.1
suffices for this purpose, but we will no longer require inputs and outputs to be
absent between reactions. Instead, we will define a transition to occur at the earliest
time that a guard on an outgoing transition from the current state becomes enabled.
As before, during the time between reactions, a state machine is understood to be
stuttering. But the inputs and outputs are no longer required to be absent during that
time.

Example 4.1: Consider a thermostat modeled as a state machine with
states Σ = {heating,cooling}, shown in Figure 4.2. This is a variant of the
model of Example 3.5 where instead of a discrete input that provides a tem-
perature at each reaction, the input is a continuous-time signal τ : R→ R
where τ(t) represents the temperature at time t. The initial state is cooling,

Lee & Seshia, Introduction to Embedded Systems, version 0.5 81

http://LeeSeshia.org

4.1. MODAL MODELS

and the transition out of this state is enabled at the earliest time t after the
start time when τ(t)≤ 18. In this example, we assume the outputs are pure
signals heatOn and heatOff.

In the above example, the outputs are present only at the times the transitions are
taken. We can also generalize FSMs to support continuous-time outputs, but to do
this, we need the notion of state refinements.

4.1.3 State Refinements

A hybrid system associates with each state of an FSM a dynamic behavior. Our
first (very simple) example uses this capability merely to produce continuous-time
outputs.

Example 4.2: Suppose that instead of discrete outputs as in Example 4.1
we wish to produce a control signal whose value is 1 when the heat is on
and 0 when the heat is off. Such a control signal could directly drive a
heater. The thermostat in Figure 4.3 does this. In that figure, each state has
a refinement that gives the value of the output h while the state machine is
in that state.

Figure 4.2: A thermostat modeled as an FSM with a continuous-time input
signal.

82 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

In a hybrid system, the current state of the state machine has a state refinement
that gives the dynamic behavior of the output as a function of the input. In the above
simple example, the output is constant in each state, which is rather trivial dynamics,
but hybrid systems can get much more elaborate.

The general structure of a hybrid system model is shown in Figure 4.4. In that
figure, there is a two-state finite state machine. Each state is associated with a state
refinement labeled in the figure as a “time-based system.” The state refinement
defines dynamic behavior of the outputs and (possibly) additional continuous state
variables. In addition, each transition can optionally specify set actions, which set
the values of such additional state variables when a transition is taken. The example
of Figure 4.3 is rather trivial, in that it has no continuous state variables, no output
actions, and no set actions.

A hybrid system is sometimes called a modal model because it has a finite number
of modes, one for each state of the FSM, and when it is in a mode, it has dynamics
specified by the state refinement. The states of the FSM may be referred to as modes
rather than states, which as we will see, helps prevent confusion with states of the
refinements.

h

Figure 4.3: A thermostat with continuous-time output.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 83

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

i1

in om

o1
... ...

time-based system time-based system

Figure 4.4: Notation for hybrid systems.

The next simplest such dynamics, besides the rather trivial constant outputs of Ex-
ample 4.2 is found in timed automata, which we discuss next.

4.2 Classes of Hybrid Systems

Hybrid systems can be quite elaborate. In this section, we first describe a relatively
simple form known as timed automata. We then illustrate more elaborate forms that
model nontrivial physical dynamics and nontrivial control systems.

4.2.1 Timed Automata

Most cyber-physical systems require measuring the passage of time and performing
actions at specific times. A device that measures the passage of time, a clock, has
a particularly simple dynamics: its state progresses linearly in time. In this section,

84 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

we describe timed automata, which enable the construction of more complicated
system from such simple clocks.

Timed automata are the simplest non-trivial hybrid systems. They are modal models
where the time-based refinements have very simple dynamics; all they do is measure
the passage of time. A clock is modeled by a first-order differential equation,

∀ t ∈ Tm, ṡ(t) = a,

where s : R→ R is a continuous-time signal, s(t) is the value of the clock at time t,
and Tm ⊂ R is the subset of time during which the hybrid system is in mode m. The
rate of the clock, a, is a constant while the system is in this mode.

Example 4.3: Recall the thermostat of Example 4.1, which uses hys-
teresis to prevent chattering. An alternative implementation that would
also prevent chattering would use a single temperature threshold, but in-
stead would require that the heater remain on or off for at least a minimum
amount of time, regardless of the temperature. This design would not have
the hysteresis property, but may be useful nonetheless. This can be mod-
eled as a timed automaton as shown in Figure 4.5. In that figure, each state
refinement has a clock, which is a continuous-time signal s with dynamics
given by

ṡ(t) = 1 .

The value s(t) increases linearly with t. Note that in that figure, the state
refinement is shown directly with the name of the state in the state bubble.
This shorthand is convenient when the refinement is relatively simple.

Notice that the initial state cooling has a set action on the dangling transi-
tion indicating the initial state, written as

s(t) := Tc .

As we did with extended state machines, we use the notation “:=” to em-
phasize that this is an assignment, not a predicate. This action ensures that
when the thermostat starts, it can immediately transition to the heating
mode if the temperature τ(t) is less than or equal to 20 degrees. The other
two transitions each have set actions that reset the clock s to zero. The por-
tion of the guard that specifies s(t)≥ Th ensures that the heater will always

Lee & Seshia, Introduction to Embedded Systems, version 0.5 85

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

h

Figure 4.5: A timed automaton modeling a thermostat with a single temper-
ature threshold and minimum times in each mode.

be on for at least time Th. The portion of the guard that specifies s(t)≥ Tc

specifies that once the heater goes off, it will remain off for at least time
Tc.

A possible execution of this timed automaton is shown in Figure 4.6. In
that figure, we assume that the temperature is initially above the setpoint of
20 degrees, so the FSM remains in the cooling state until the temperature
drops to 20 degrees. At that time t1, it can take the transition immediately
because s(t1) > Tc. The transition resets s to zero and turns on the heater.
The heater will remain on until time t1 +Th, assuming that the temperature
only rises when the heater is on. At time t1 + Th, it will transition back to
the cooling state and turn the heater off. It will cool until at least time Tc

elapses and until the temperature drops again to 20 degrees, at which point
it will turn the heater back on.

In the previous example the state of system at any time t is not only the mode, heat-
ing or cooling, but also the current value s(t) of the clock. We call s a continuous
state variable, whereas heating and cooling are discrete states. Thus, note that the
term “state” for such a hybrid system can become confusing. The FSM has states,

86 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

h(t)

t...

(a)

(b)

(c)

s(t)

t...

τ(t)

t...
20 t1 t1 + Th

0

Tc

0
1

Figure 4.6: (a) A temperature input to the hybrid system of Figure 4.5, (b)
the output h, and (c) the refinement state s.

but so do the refinement systems (unless they are memoryless). When there is any
possibility of confusion we explicitly refer to the states of the machine as modes.

Transitions between modes have actions associated with them. Sometimes, it is
useful to have transitions from one mode back to itself, just so that the action can be
realized. This is illustrated in the next example, which also shows a timed automaton
that produces a pure output.

Example 4.4: The timed automaton in Figure 4.7 produces a pure output
that will be present every T time units, starting at the time when the sys-
tem begins executing. Notice that the guard on the transition, s(t) ≥ T , is
followed by an output action, tick, and a set action, s(t) := 0.

Figure 4.7 shows another notational shorthand that works well for simple diagrams.
The automaton is shown directly inside the icon for its actor model.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 87

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T
time units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure
3.10.

88 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

Example 4.5: The traffic light controller of Figure 3.10 is a time triggered
machine that assumes it reacts once each second. Figure 4.8 shows a timed
automaton with the same behavior. It is more explicit about the passage of
time in that its temporal dynamics do not depend on unstated assumptions
about when the machine will react.

4.2.2 Higher-Order Dynamics

In timed automata, all that happens in the time-based refinement systems is that time
passes. Hybrid systems, however, are much more interesting when the behavior of
the refinements is more complex.

Example 4.6: Consider the physical system depicted in Figure 4.9. Two
sticky round masses are attached to springs. The springs are compressed
or extended and then released. The masses oscillate on a frictionless table.
If they collide, they stick together and oscillate together. After some time,
the stickiness decays, and masses pull apart again.

A plot of the displacement of the two masses as a function of time is shown
in the figure. Both springs begin compressed, so the masses begin moving
towards one another. They almost immediately collide, and then oscillate
together for a brief period until they pull apart. In this plot, they collide
two more times, and almost collide a third time.

The physics of this problem is quite simple if we assume idealized springs.
Let y1(t) denote the right edge of the left mass at time t, and y2(t) denote
the left edge of the right mass at time t, as shown in Figure 4.9. Let p1 and
p2 denote the neutral positions of the two masses, i.e. when the springs are
neither extended nor compressed, so the force is zero. For an ideal spring,
the force at time t on the mass is proportional to p1− y1(t) (for the left
mass) and p2− y2(t) (for the right mass). The force is positive to the right
and negative to the left.

Let the spring constants be k1 and k2, respectively. Then the force
on the left spring is k1(p1 − y1(t)), and the force on the left spring is

Lee & Seshia, Introduction to Embedded Systems, version 0.5 89

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

y1(t)

y2(t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50

y1(t)

y2(t)

Displacement of Masses

time

Figure 4.9: Sticky masses system considered in example 4.6.

k2(p2− y2(t)). Let the masses be m1 and m2 respectively. Now we can
use Newton’s law, which relates force, mass, and acceleration,

f = ma.

The acceleration is the second derivative of the position with respect to
time, which we write ÿ1(t) and ÿ2(t) respectively. Thus, as long as the
masses are separate, their dynamics are given by

ÿ1(t) = k1(p1− y1(t))/m1 (4.1)

ÿ2(t) = k2(p2− y2(t))/m2. (4.2)

90 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

Figure 4.10: Hybrid system model for the sticky masses system considered
in example 4.6.

When the masses collide, however, the situation changes. With the masses
stuck together, they behave as a single object with mass m1 + m2. This
single object is pulled in opposite directions by two springs. While the
masses are stuck together, y1(t) = y2(t). Let

y(t) = y1(t) = y2(t).

The dynamics are then given by

ÿ(t) =
k1 p1 + k2 p2− (k1 + k2)y(t)

m1 +m2
. (4.3)

It is easy to see now how to construct a hybrid systems model for this
physical system. The model is shown in Figure 4.10. It has two modes,
apart and together. The refinement of the apart mode is given by (4.1)
and (4.2), while the refinement of the together mode is given by (4.3).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 91

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

We still have work to do, however, to label the transitions. The initial
transition is shown in Figure 4.10 entering the apart mode. Thus, we are
assuming the masses begin apart. Moreover, this transition is labeled with
a set action that sets the initial positions of the two masses to i1 and i2 and
the initial velocities to zero.

The transition from apart to together has the guard

y1(t) = y2(t) .

This transition has a set action which assigns values to two continuous state
variables y(t) and ẏ(t), which will represent the motion of the two masses
stuck together. The value it assigns to ẏ(t) conserves momentum. The
momentum of the left mass is ẏ1(t)m1, the momentum of the right mass is
ẏ2(t)m2, and the momentum of the combined masses is ẏ(t)(m1 +m2). To
make these equal, it sets

ẏ(t) =
ẏ1(t)m1 + ẏ2(t)m2

m1 +m2
.

The refinement of the together mode gives the dynamics of y and simply
sets y1(t) = y2(t) = y(t), since the masses are moving together. The tran-
sition from apart to together sets y(t) equal to y1(t) (it could equally well
have chosen y2(t), since these are equal).

The transition from together to apart has the more complicated guard

(k1− k2)y(t)+ k2 p2− k1 p1 > s,

where s represents the stickiness of the two masses. This guard is satisfied
when the right-pulling force on the right mass exceeds the right-pulling
force on the left mass by more than the stickiness. The right-pulling force
on the right mass is simply

f2(t) = k2(p2− y(t))

and the right-pulling force on the left mass is

f1(t) = k1(p1− y(t)).

Thus,
f2(t)− f1(t) = (k1− k2)y(t)+ k2 p2− k1 p1.

92 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

When this exceeds the stickiness K, then the masses pull apart.

An interesting elaboration on this example, considered in problem 8, mod-
ifies the together mode so that the stickiness is initialized to a starting
value, but then decays according to the differential equation

ṡ(t) =−as(t)

where s(t) is the stickiness at time t, and a is some positive constant. In
fact, it is the dynamics of such an elaboration that is plotted in Figure 4.9.

As in Example 4.4, it is sometimes useful to have hybrid system models with only
one state. The actions on one or more state transitions define the discrete event
behavior that combines with the time-based behavior.

Example 4.7: Consider a bouncing ball. At time t = 0, the ball is dropped
from a height y(0) = h0, where h0 is the initial height in meters. It falls
freely. At some later time t1 it hits the ground with a velocity ẏ(t1) < 0
m/s (meters per second). A bump event is produced when the ball hits the
ground. The collision is inelastic (meaning that kinetic energy is lost), and
the ball bounces back up with velocity −aẏ(t1), where a is constant with
0 < a < 1. The ball will then rise to a certain height and fall back to the
ground repeatedly.

The behavior of the bouncing ball can be described by the hybrid system
of Figure 4.11. There is only one mode, called free. When it is not in
contact with the ground, we know that the ball follows the second-order
differential equation,

ÿ(t) =−g, (4.4)

where g = 9.81 m/sec2 is the acceleration imposed by gravity. The contin-
uous state variables of the free mode are

s(t) =
[

y(t)
ẏ(t)

]
with the initial conditions y(0) = h0 and ẏ(0) = 0. It is then a simple matter
to rewrite (4.4) as a first-order differential equation,

ṡ(t) = f (s(t)) (4.5)

Lee & Seshia, Introduction to Embedded Systems, version 0.5 93

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

for a suitably chosen function f .

At the time t1 when the ball first hits the ground, the guard

y(t) = 0

is satisfied, and the self-loop transition is taken. The output bump is
produced, and the set action ẏ(t) := −aẏ(t) changes ẏ(t1) to have value
−aẏ(t1). Then (4.4) is followed again until the guard becomes true again.

By integrating (4.4) we get, for all t ∈ (0, t1),

ẏ(t) = −gt,

y(t) = y(0)+
Z t

0
ẏ(τ)dτ = h0−

1
2

gt2.

So t1 > 0 is determined by y(t1) = 0. It is the solution to the equation

h0−
1
2

gt2 = 0.

Thus,
t1 =

√
2h0/g.

Figure 4.11 plots the continuous state versus time.

4.2.3 Supervisory control

A control system involves four components. There is a system called the plant—the
physical process that is to be controlled; the environment in which the plant op-
erates; the sensors that measure some variables of the plant and the environment;
and the controller that determines the mode transition structure and selects the time-
based inputs to the plant. The controller has two levels: the supervisory control that
determines the mode transition structure, and the low-level control that determines
the time-based inputs to the plant. Intuitively, the supervisory controller determines
which of several strategies should be followed, and the low-level controller imple-
ments the selected strategy. Hybrid systems are ideal for modeling such two-level
controllers. We show how through a detailed example.

94 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

t1 t2

t

t1 t2

t

Figure 4.11: The motion of a bouncing ball may be described as a hybrid
system with only one mode. The system outputs a bump each time the ball
hits the ground, and also outputs the position of the ball. The position and
velocity are plotted versus time at the right.

Example 4.8: Consider an automated guided vehicle (AGV) that moves
along a closed track painted on a warehouse or factory floor. We will
design a controller so that the vehicle closely follows the track.

The vehicle has two degrees of freedom. At any time t, it can move forward
along its body axis with speed u(t) with the restriction that 0 ≤ u(t) ≤ 10
mph (miles per hour). It can also rotate about its center of gravity with an
angular speed ω(t) restricted to−π≤ω(t)≤ π radians/second. We ignore
the inertia of the vehicle, so we assume that we can instantaneously change
the velocity or angular speed.

Let (x(t),y(t))∈R2 be the position relative to some fixed coordinate frame
and θ(t) ∈ (−π,π] be the angle (in radians) of the vehicle at time t, as
shown in Figure 4.12. In terms of this coordinate frame, the motion of the
vehicle is given by a system of three differential equations,

ẋ(t) = u(t)cosθ(t),
ẏ(t) = u(t)sinθ(t), (4.6)

θ̇(t) = ω(t).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 95

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

track

AG
V

global
coordinate
frame

Figure 4.12: Illustration of the automated guided vehicle of example 4.8. The
vehicle is following a curved painted track, and has deviated from the track
by a distance e(t). The coordinates of the vehicle at time t with respect to
the global coordinate frame are (x(t),y(t),θ(t)).

Equations (4.6) describe the plant. The environment is the closed painted
track. It could be described by an equation. We will describe it indirectly
below by means of a sensor.

The two-level controller design is based on a simple idea. The vehicle
always moves at its maximum speed of 10 mph. If the vehicle strays too
far to the left of the track, the controller steers it towards the right; if it
strays too far to the right of the track, the controller steers it towards the
left. If the vehicle is close to the track, the controller maintains the vehicle

96 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

Figure 4.13: The automatic guided vehicle of example 4.8 has four modes:
stop, straight, left, right.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 97

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

in a straight direction. Thus the controller guides the vehicle in four modes,
left, right, straight, and stop. In stop mode, the vehicle comes to a halt.

The following differential equations govern the AGV’s motion in the re-
finements of the four modes. They describe the low-level controller, i.e.
the selection of the time-based plant inputs in each mode.

straight

ẋ(t) = 10cosθ(t)
ẏ(t) = 10sinθ(t)
θ̇(t) = 0

left

ẋ(t) = 10cosθ(t)
ẏ(t) = 10sinθ(t)
θ̇(t) = π

right

ẋ(t) = 10cosθ(t)
ẏ(t) = 10sinθ(t)
θ̇(t) = −π

stop

ẋ(t) = 0

ẏ(t) = 0

θ̇(t) = 0

In the stop mode, the vehicle is stopped, so x(t), y(t), and θ(t) are constant.
In the left mode, θ(t) increases at the rate of π radians/second, so from
Figure 4.12 we see that the vehicle moves to the left. In the right mode, it
moves to the right. In the straight mode, θ(t) is constant, and the vehicle
moves straight ahead with a constant heading. The refinements of the four
modes are shown in the boxes of Figure 4.13.

98 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

We design the supervisory control governing transitions between modes in
such a way that the vehicle closely follows the track, using a sensor that
determines how far the vehicle is to the left or right of the track. We can
build such a sensor using photodiodes. Let’s suppose the track is painted
with a light-reflecting color, whereas the floor is relatively dark. Under-
neath the AGV we place an array of photodiodes as shown in Figure 4.14.
The array is perpendicular to the AGV body axis. As the AGV passes over
the track, the diode directly above the track generates more current than
the other diodes. By comparing the magnitudes of the currents through the
different diodes, the sensor estimates the displacement e(t) of the center
of the array (hence, the center of the AGV) from the track. We adopt the
convention that e(t) < 0 means that the AGV is to the right of the track and
e(t) > 0 means it is to the left. We model the sensor output as a function f
of the AGV’s position,

∀t, e(t) = f (x(t),y(t)).

The function f of course depends on the environment—the track. We now
specify the supervisory controller precisely. We select two thresholds, 0 <
ε1 < ε2, as shown in Figure 4.14. If the magnitude of the displacement is
small, |e(t)| < ε1, we consider that the AGV is close enough to the track,
and the AGV can move straight ahead, in straight mode. If e(t) > ε2
(e(t) is large and positive), the AGV has strayed too far to the left and
must be steered to the right, by switching to right mode. If e(t) < −ε2
(e(t) is large and negative), the AGV has strayed too far to the right and
must be steered to the left, by switching to left mode. This control logic is
captured in the mode transitions of Figure 4.13. The inputs are pure signals
stop and start. These model an operator that can stop or start the AGV.
There is no continuous-time input. The outputs represent the position of
the vehicle, x(t) and y(t). The initial mode is stop, and the initial values
of its refinement are (x0,y0,θ0).

We analyze how the AGV will move. Figure 4.15 sketches one possible
trajectory. Initially the vehicle is within distance ε1 of the track, so it moves
straight. At some later time, the vehicle goes too far to the left, so the guard

¬stop∧ e(t) > ε2

Lee & Seshia, Introduction to Embedded Systems, version 0.5 99

http://LeeSeshia.org

4.2. CLASSES OF HYBRID SYSTEMS

photodiode trackATV

Figure 4.14: An array of photodiodes under the AGV is used to estimate
the displacement e of the AGV relative to the track. The photodiode directly
above the track generates more current.

is satisfied, and there is a mode switch to right. After some time, the
vehicle will again be close enough to the track, so the guard

¬stop∧|e(t)|< ε1

is satisfied, and there is a mode switch to straight. Some time later, the
vehicle is too far to the right, so the guard

¬stop∧ e(t) <−ε2

is satisfied, and there is a mode switch to left. And so on.

The example illustrates the four components of a control system. The plant is de-
scribed by the differential equations (4.6) that govern the evolution of the continuous
state at time t, (x(t),y(t),θ(t)), in terms of the plant inputs u and ω. The second
component is the environment—the closed track. The third component is the sensor,
whose output at time t, e(t) = f (x(t),y(t)), gives the position of the AGV relative
to the track. The fourth component is the two-level controller. The supervisory
controller comprises the four modes and the guards that determine when to switch
between modes. The low-level controller specifies how the time-based inputs to the
plant, u and ω, are selected in each mode.

100 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

initial
position

straight

right
straight

left

track

Figure 4.15: A trajectory of the AGV, annotated with modes.

4.3 Summary

Hybrid systems provide a bridge between time-based models and state-machine
models. The combination of the two families of models provides a rich framework
for describing real-world systems. There are two key ideas. First, discrete events are
embedded in a time base. Second, a hierarchical description is particularly useful,
where the system undergoes discrete transitions between different modes of oper-
ation. Associated with each mode of operation is a time-based system called the
refinement of the mode. Mode transitions are taken when guards that specify the
combination of inputs and continuous states are satisfied. The action associated
with a transition, in turn, sets the continuous state in the destination mode.

The behavior of a hybrid system is understood using the tools of state machine anal-
ysis for mode transitions, and the tools of time-based analysis for the refinement
systems. The design of hybrid systems similarly proceeds on two levels: state ma-
chines are designed to achieve the appropriate logic of mode transitions, and refine-
ment systems are designed to secure the desired time-based behavior in each mode.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 101

http://LeeSeshia.org

EXERCISES

Exercises

1. Construct (on paper is sufficient) a timed automaton similar to that of Figure
4.7 which produces tick at times 1,2,3,5,6,7,8,10,11, · · · . That is, ticks are
produced with intervals between them of 1 second (three times) and 2 seconds
(once).

2. The objective of this problem is to understand a timed automaton, and then to
modify it as specified.

(a) For the timed automaton shown below, describe the output y. Avoid
imprecise or sloppy notation.

(b) Assume there is a new pure input reset, and that when this input is
present, the hybrid system starts over, behaving as if it were starting
at time 0 again. Modify the hybrid system from part (a) to do this.

3. You have an analog source that produces a pure tone. You can switch the
source on or off by the input event on or off. Construct a timed automaton that
provides the on and off signals as outputs, to be connected to the inputs of
the tone generator. Your system should behave as follows. Upon receiving an
input event ring, it should produce an 80 ms-long sound consisting of three 20
ms-long bursts of the pure tone separated by two 10 ms intervals of silence.
What does your system do if it receives two ring events that are 50 ms apart?

4. Automobiles today have the features listed below. Implement each feature as
a timed automaton.

102 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

Main
Se

co
nd

ar
y

light

detector

R

R G

G Y

Y

Figure 4.16: Traffic lights control the intersection of a main street and a sec-
ondary street. A detector senses when a vehicle crosses it. The red phase
of one light must coincide with the green and yellow phases of the other light.

(a) The dome light is turned on as soon as any door is opened. It stays on
for 30 seconds after all doors are shut. What sensors are needed?

(b) Once the engine is started, a beeper is sounded and a red light warning
is indicated if there are passengers that have not buckled their seat belt.
The beeper stops sounding after 30 seconds, or as soon the seat belts are
buckled, whichever is sooner. The warning light is on all the time the
seat belt is unbuckled. Hint: Assume the sensors provide a warn event
when the ignition is turned on and there is a seat with passenger not
buckled in, or if the ignition is already on and a passenger sits in a seat
without buckling the seatbelt. Assume further that the sensors provide a
noWarn event when a passenger departs from a seat, or when the buckle
is buckled, or when the ignition is turned off.

5. A programmable thermostat allows you to select 4 times, 0 ≤ T1 ≤ ·· · ≤
T4 < 24 (for a 24-hour cycle) and the corresponding setpoint temperatures
a1, · · · ,a4. Construct a timed automaton that sends the event ai to the heating
systems controller. The controller maintains the temperature close to the value
ai until it receives the next event. How many timers and modes do you need?

Lee & Seshia, Introduction to Embedded Systems, version 0.5 103

http://LeeSeshia.org

EXERCISES

6. Figure 4.16 depicts the intersection of two one-way streets, called Main and
Secondary. A light on each street controls its traffic. Each light goes through
a cycle consisting of a red (R), green (G), and yellow (Y) phases. It is a safety
requirement that when one light is in its green or yellow phase, the other is in
its red phase. The yellow phase is always 5 seconds long.

The traffic lights operate as follows. A sensor in the secondary road detects a
vehicle. While no vehicle is detected, there is a 4 minute-long cycle with the
main light having 3 minutes of green, 5 seconds of yellow, and 55 seconds of
red. The secondary light is red for 3 minutes and 5 seconds (while the main
light is green and yellow), green for 50 seconds, then yellow for 5 seconds.

If a vehicle is detected on the secondary road, the traffic light quickly gives a
right of way to the secondary road. When this happens, the main light aborts
its green phase and immediately switches to its 5 second yellow phase. If the
vehicle is detected while the main light is yellow or red, the system continues
as if there were no vehicle.

Design a hybrid system that controls the lights. Let this hybrid system have
six pure outputs, one for each light, named mG, mY, and mR, to designate the
main light being green, yellow, or red, respectively, and sG, sY, and sR, to
designate the secondary light being green, yellow, or red, respectively. These
signals should be generated to turn on a light. You can implicitly assume that
when one light is turned on, whichever has been on is turned off.

7. For the bouncing ball of example 4.7 let tn be the time when the ball hits the
ground for the n-th time, and let v(n) = ẏ(tn) be the velocity at that time.

(a) Find a relation between v(n + 1) and v(n) and then calculate v(n) in
terms of v(1).

(b) Obtain tn in terms of v(n).
(c) Calculate the maximum height reached by the ball after successive bumps.

8. Elaborate the hybrid system model of Figure 4.10 so that in the together mode,
the stickiness decays according to the differential equation

ṡ(t) =−as(t)

where s(t) is the stickiness at time t, and a is some positive constant. On the
transition into this mode, the stickiness should be initialized to some starting
stickiness b.

104 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

4. HYBRID SYSTEMS

Figure 4.17: Water tank system.

9. Show that the trajectory of the AGV of Figure 4.13 while it is in left or right
mode is a circle. What is the radius of this circle, and how long does it take to
complete a circle?

10. Consider Figure 4.17 depicting a system comprising two tanks containing wa-
ter. Each tank is leaking at a constant rate. Water is added at a constant rate to
the system through a hose, which at any point in time is filling either one tank
or the other. It is assumed that the hose can switch between the tanks instanta-
neously. For i ∈ {1,2}, let xi denote the volume of water in Tank i and vi > 0
denote the constant flow of water out of Tank i. Let w denote the constant flow
of water into the system. The objective is to keep the water volumes above
r1 and r2, respectively, assuming that the water volumes are above r1 and r2
initially. This is to be achieved by a controller that switches the inflow to Tank
1 whenever x1(t)≤ r1(t) and to Tank 2 whenever x2(t)≤ r2(t).

The hybrid automaton representing this two-tank system is given in Figure 4.18.

Answer the following questions:

Lee & Seshia, Introduction to Embedded Systems, version 0.5 105

http://LeeSeshia.org

EXERCISES

Figure 4.18: Hybrid automaton representing water tank system.

(a) Construct a model of this hybrid automaton in Ptolemy II, LabVIEW, or
Simulink. Use the following parameter values: r1 = r2 = 0, v1 = v2 =
0.5, and w = 0.75. Set the initial state to be (q1,(0,1)). (That is, initial
value x1(0) is 0 and x2(0) is 1.)
Verify that this hybrid automaton is Zeno. What is the reason for this
Zeno behavior? Simulate your model and plot how x1 and x2 vary as a
function of time t, simulating long enough to illustrate the Zeno behav-
ior.

(b) A Zeno system may be regularized by ensuring that the time time be-
tween transitions is never less than some positive number ε. This can be
emulated by inserting extra modes that in which the hybrid automaton
dwells for time ε. Use regularization to make your model from part (a)
non-Zeno. Again, plot x1 and x2 for the same length of time as in the
first part. State the value of ε that you used.

Include printouts of your plots with your answer.

106 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 5

Composition of State Machines

Contents
5.1 Concurrent Composition . 109

5.1.1 Side-by-Side Synchronous Composition 110
5.1.2 Side-by-Side Asynchronous Composition 113
5.1.3 Shared Variables . 114
Sidebar: Scheduling Semantics for Asynchronous Composition . 115
5.1.4 Cascade Composition 118
5.1.5 General Composition 121

5.2 Hierarchical State Machines 122
5.3 Summary . 127
Exercises . 128

State machines provide a convenient way to model behaviors of systems. One dis-
advantage that they have is that for most interesting systems, the number of states
is very large, often even infinite. Automated tools can handle large state spaces, but
humans have more difficulty with any direct representation of a large state space.

A time-honored principle in engineering is that complicated systems should be de-
scribed as compositions of simpler systems. This chapter gives a number of ways
to do this with state machines. The reader should be aware, however, that there
are many subtly different ways to compose state machines. Compositions that look
similar on the surface may mean different things to different people. The rules of

107

notation of a model are called its syntax, and the meaning of the notation is called
its semantics. We will see that the same syntax can have many different semantics,
which can cause no end of confusion.

Example 5.1: A now popular notation for concurrent composition of state
machines called Statecharts was introduced by Harel (1987). Although
they are all based on the same original paper, many variants of Statecharts
have evolved (Beeck, 1994). These variants often assign different seman-
tics to the same syntax.

For all discussions in this chapter, we will assume an actor model for extended state
machines using the syntax summarized in Figure 5.1. The semantics of a single such
state machine is described in Chapter 3. This chapter will discuss the semantics that
can be assigned to compositions of multiple such machines.

The first composition technique we consider is concurrent composition. Two or
more state machines react either simultaneously or independently. If the reactions
are simultaneous, we call it synchronous composition. If they are independent, then

i1

in om

o1
... ...

Figure 5.1: Summary of notation for state machines used in this chapter.

108 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

we call it asynchronous composition. But even within these classes of composition,
many subtle variations in the semantics are possible. These variations mostly revolve
around whether and how the state machines communicate and share variables.

The second composition technique we will consider is hierarchy. Hierarchical state
machines can also enable complicated systems to be described as compositions of
simpler systems. Again, we will see that subtle differences in semantics are possible.

5.1 Concurrent Composition

To study concurrent composition of state machines, we will proceed through a se-
quence of patterns of composition. These patterns can be combined to build arbitrar-
ily complicated systems. We begin with the simplest case, side-by-side composition,
where the state machines being composed do not communicate. We then consider
allowing communication through shared variables, showing that this creates signif-
icant subtleties that can complicate modeling. We then consider communication
through ports, first looking at serial composition, then expanding to arbitrary inter-
connections. We consider both synchronous and asynchronous composition for each
type of composition.

Figure 5.2: Side-by-side composition of two actors.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 109

http://LeeSeshia.org

5.1. CONCURRENT COMPOSITION

Figure 5.3: Example of side-by-side composition of two actors.

5.1.1 Side-by-Side Synchronous Composition

The first pattern of composition that we consider is side-by-side composition, illus-
trated for two actors in Figure 5.2. In this pattern, we assume that the inputs and
outputs of the two actors are disjoint, i.e., that the state machines do not communi-
cate. In the figure, actor A has input i1 and output o1, and actor B has input i2 and
output o2. The composition of the two actors is itself an actor C with inputs i1 and
i2 and outputs o1 and o2.1

In the simplest scenario, if the two actors are extended state machines with variables,
then those variables are also disjoint. We will later consider what happens when the
two state machines share variables. Under synchronous composition, a reaction of
C is a simultaneous reaction of A and B.

1The composition actor C may rename these input and output ports, but here we assume it uses the
same names as the component actors.

110 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

Example 5.2: Consider FSMs A and B in Figure 5.3. A has a single pure
output a, and B has a single pure output b. The side-by-side composition
C has two pure outputs, a and b. If the composition is synchronous, then
on the first reaction, a will be absent and b will be present. On the second,
reaction, it will be the reverse. On subsequent reactions, a and b will
continue to alternate being present.

Synchronous side-by-side composition is simple for several reasons. First, recall
from Section 3.3.2 that the environment determines when a state machine reacts. In
synchronous side-by-side composition, then the environment need not be aware that
C is a composition of two state machines. Such compositions are modular in the
sense that the composition itself becomes a component that can be further composed
as if it were itself an atomic component.

Moreover, if the two state machines A and B are determinate, then the synchronous
side-by-side composition is also determinate. We say that a property is composi-
tional if a property held by the components is also a property of the composition.
For synchronous side-by-side composition, determinacy is a compositional property.

In addition, a synchronous side-by-side composition of finite state machines is itself
an FSM. A rigorous way to give the semantics of the composition is to define a single
state machine for the composition. Suppose that as in Section 3.3.3, state machines
A and B are given by the five tuples,

A = (StatesA, InputsA,OutputsA,updateA, initialStateA)
B = (StatesB, InputsB,OutputsB,updateB, initialStateB) .

Then the synchronous side-by-side composition C is given by

StatesC = StatesA×StatesB (5.1)

InputsC = InputsA× InputsB (5.2)

OutputsC = OutputsA×OutputsB (5.3)

initialStateC = (initialStateA, initialStateB) (5.4)

and the update function is defined by

updateC((sA,sB),(iA, iB)) = ((s′A,s′B),(oA,oB)),

Lee & Seshia, Introduction to Embedded Systems, version 0.5 111

http://LeeSeshia.org

5.1. CONCURRENT COMPOSITION

Figure 5.4: Single state machine giving the semantics of synchronous side-
by-side composition of the state machines in Figure 5.3.

where
(s′A,oA) = updateA(sA, iA),

and
(s′B,oB) = updateB(sB, iB),

for all sA ∈ StatesA, sB ∈ StatesB, iA ∈ InputsA, and iB ∈ InputsB.

Recall that InputsA and InputsB are sets of valuations. Each valuation in the set is an
assignment of values to ports. What we mean by

InputsC = InputsA× InputsB

is that a valuation of the inputs of C must include both valuations for the inputs of A
and the inputs of B.

As usual, the single FSM C can be given pictorially rather than symbolically, as
illustrated in the next example.

Example 5.3: The synchronous side-by-side composition C in Figure 5.3
is given as a single FSM in Figure 5.4. Notice that this machine behaves
exactly as described in Example 5.2. The outputs a and b alternate being
present. Notice further that (s1,s4) and (s2,s3) are not reachable states.

112 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

5.1.2 Side-by-Side Asynchronous Composition

In an asynchronous composition of state machines, the component machines react
independently. This statement is rather vague, and in fact, it has several different
interpretations. Each interpretation gives a semantics to the composition. The key to
each semantics is how to define a reaction of the composition C in Figure 5.2. Two
possibilities are:

• Semantics 1. A reaction of C is a reaction of one of A or B, where the choice
is nondeterministic.

• Semantics 2. A reaction of C is a reaction of A, B, or both A and B, where the
choice is nondeterministic. A variant of this possibility might allow neither to
react.

Semantics 1 is referred to as an interleaving semantics, meaning that A or B never
react simultaneously. Their reactions are interleaved in some order.

A significant subtlety is that under these semantics machines A and B may com-
pletely miss input events. That is, an input to C destined for machine A may be
present in a reaction where the nondeterministic choice results in B reacting rather
than A. If this is not desirable, then some some control over scheduling (see sidebar
on page 115) or synchronous composition becomes a better choice.

Example 5.4: For the example in Figure 5.3, semantics 1 results in the
composition state machine shown in Figure 5.5. This machine is nondeter-
ministic. From state (s1,s3), when C reacts, it can move to (s2,s3) and
emit no output, or it can move to (s1,s4) and emit b. Note that if we had
chosen semantics 2, then it would also be able to move to (s2,s4).

For asynchronous composition under semantics 1, the symbolic definition of C has
the same definitions of StatesC, InputsC, OutputsC, and initialStateC as for syn-
chronous composition, given in (5.1) through (5.4). But the update function differs,
becoming

updateC((sA,sB),(iA, iB)) = ((s′A,s′B),(o′A,o′B)),

Lee & Seshia, Introduction to Embedded Systems, version 0.5 113

http://LeeSeshia.org

5.1. CONCURRENT COMPOSITION

Figure 5.5: State machine giving the semantics of asynchronous side-by-
side composition of the state machines in Figure 5.3.

where either

(s′A,o′A) = updateA(sA, iA) and s′B = sB and o′B = absent

or
(s′B,o′B) = updateB(sB, iB) and s′A = sA and o′A = absent

for all sA ∈ StatesA, sB ∈ StatesB, iA ∈ InputsA, and iB ∈ InputsB. What we mean by
o′B = absent is that all outputs of B are absent. Semantics 2 can be similarly defined
(see Exercise 2).

5.1.3 Shared Variables

An extended state machine has local variables that can be read and written as part
of taking a transition. Sometimes it is useful when composing state machines to
allow these variables to be shared among a group of machines. In particular, such
shared variables can be useful for modeling interrupts, studied in Chapter 9, and
threads, studied in Chapter 10. However, considerable care is required to ensure that
the semantics of the model conforms with that of the program. Many complications
arise, including the memory consistency model and the notion of atomic operations.

114 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

Example 5.5: Consider two servers that can receive requests from a net-
work. Each request requires an unknown amount of time to service, so the
servers share a queue of requests. If one server is busy, the other server can
respond to a request, even if the request arrives at the network interface of
the first server.

Scheduling Semantics for Asynchronous Composition

In the case of semantics 1 and 2 given in Section 5.1.2, the choice of which compo-
nent machine reacts is nondeterministic. The model does not express any particular
constraints. It is often more useful to introduce some scheduling policies, where the
environment is able to influence or control the nondeterministic choice. This leads
to two additional possible semantics for asynchronous composition:

• Semantics 3. A reaction of C is a reaction of one of A or B, where the envi-
ronment chooses which of A or B reacts.

• Semantics 4. A reaction of C is a reaction of A, B, or both A and B, where the
choice is made by the environment.

Like semantics 1, semantics 3 is an interleaving semantics.
In one sense, semantics 1 and 2 are more compositional than semantics 3 and 4.

To implement semantics 3 and 4, a composition has to provide some mechanism for
the environment to choose which component machine should react (for scheduling
the component machines). This means that the hierarchy suggested in Figure 5.2
does not quite work. Actor C has to expose more of its internal structure than just
the ports and the ability to react.

In another sense, semantics 1 and 2 are less compositional than semantics 3 and 4
because determinacy is not preserved by composition. A composition of determinate
state machines is not a determinate state machine.

Notice further that semantics 1 is an abstraction of semantics 3 in the sense that
every behavior under semantics 3 is also a behavior under semantics 1. This notion
of abstraction is studied in detail in Chapter 13.

The subtle differences between these choices make asynchronous composition
rather treacherous. Considerable care is required to ensure that it is clear which
semantics is used.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 115

http://LeeSeshia.org

5.1. CONCURRENT COMPOSITION

Figure 5.6: Model of two servers with a shared task queue, assuming asyn-
chronous composition under semantics 1.

This scenario fits a pattern similar to that in Figure 5.2, where A and B
are the servers. We can model the servers as state machines as shown in
Figure 5.6. In this model, a shared variable pending counts the number of
pending job requests. When a request arrives at the composite machine C,
one of the two servers is nondeterministically chosen to react, assuming
asynchronous composition under semantics 1. If that server is idle, then
it proceeds to serve the request. If the server is serving another request,
then one of two things can happen: it can coincidentally finish serving the
request it is currently serving, issuing the output done, and proceed to serve
the new one, or it can increment the count of pending requests and continue

116 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

to serve the current request. The choice between these is nondeterministic,
to model the fact that the time it takes to service a request is unknown.

If C reacts when there is no request, then again either server A or B will
be selected nondeterministically to react. If the server that reacts is idle
and there is one or more pending request, then the server transitions to
serving and decrements the variable pending. If the server that reacts is
not idle, then one of three things can happen. It may continue serving the
current request, in which case it simply transitions on the self transition
back to serving. Or it may finish serving the request, in which case it
will transition to idle if there are no pending requests, or transition back to
serving and decrement pending if there are pending requests.

The model in the previous example exhibits many subtleties of concurrent sys-
tems. First, because of the interleaving semantics, accesses to the shared variable
are atomic operations, something that is quite challenging to guarantee in practice,
as discussed in Chapters 9 and 10. Second, the choice of semantics 1 is reasonable
in this case because the input goes to both of the component machines, so regard-
less of which component machine reacts, no input event will be missed. However,
this semantics would not work if the two machines had independent inputs, because
then requests could be missed. Semantics 2 can help prevent that, but what strategy
should be used by the environment to determine which machine reacts? What if the
two independent inputs both have requests present at the same reaction of C? If we
choose semantics 4 in the sidebar on page 115 to allow both machines to react simul-
taneously, then what is the meaning when both machines update the shared variable?
The updates are no longer atomic, as they are with an interleaving semantics.

Note further that choosing asynchronous composition under semantics 1 allows be-
haviors that do not make good use of idle machines. In particular, suppose that
machine A is serving, machine B is idle, and a request arrives. If the nondeterminis-
tic choice results in machine A reacting, then it will simply increment pending. Not
until the nondeterministic choice results in B reacting will the idle machine be put
to use. In fact, semantics 1 allows behaviors that never use one of the machines.

Shared variables may be used in synchronous compositions as well, but sophisticated
subtleties again emerge. In particular, what should happen if in the same reaction
one machine reads a shared variable to evaluate a guard and another machine writes

Lee & Seshia, Introduction to Embedded Systems, version 0.5 117

http://LeeSeshia.org

5.1. CONCURRENT COMPOSITION

to the shared variable? Do we require the write before the read? What if the transi-
tion doing the write to the shared variable also reads the same variable in its guard
expression? One possibility is to choose a synchronous interleaving semantics,
where the component machines react in arbitrary order, chosen nondeterministi-
cally. This strategy has the disadvantage that a composition of two deterministic
machines may be nondeterministic. An alternative version of the synchronous inter-
leaving semantics has the component machines react in a fixed order determined by
the environment or by some additional mechanism such as priority.

The difficulties of shared variables, particularly with asynchronous composition, re-
flect the inherent complexity of concurrency models with shared variables. Clean so-
lutions require a more sophisticated semantics, to be discussed in Chapter 6. Specif-
ically, in that chapter, we will explain the synchronous-reactive model of computa-
tion, which gives a synchronous composition semantics that is reasonably composi-
tional.

So far, we have considered composition of machines that do not directly commu-
nication. We next consider what happens when the outputs of one machine are the
inputs of another.

5.1.4 Cascade Composition

Consider two state machines A and B that are composed as shown in Figure 5.7. The
output of machine A feeds the input of B. This style of composition is called cascade
composition or serial composition.

Figure 5.7: Cascade composition of two actors.

118 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

Figure 5.8: Example of a cascade composition of two FSMs.

In the figure, output port o1 from A feeds events to input port i2 of B. Assume the
data type of o1 is V1 (meaning that o1 can take values from V1 or be absent), and the
data type of i2 is V2. Then a requirement for this composition to be valid is that

V1 ⊆V2 .

This asserts that any output produced by A on port o1 is an acceptable input to B on
port i2. The composition type checks.

For cascade composition, if we wish the composition to be asynchronous, then we
need to introduce some machinery for buffering the data that is sent from A to B. We
defer discussion of such asynchronous composition to Chapter 6, where dataflow
and process network models of computation will provide such asynchronous com-
position. In this chapter, we will only consider synchronous composition for cascade
systems.

In synchronous composition of the cascade structure of Figure 5.7, a reaction of C
consists of a reaction of both A and B, where A reacts first, produces its output (if
any), and then B reacts. Logically, we view this as occurring in zero time, so the two
reactions are in a sense simultaneous and instantaneous. But they are causally
related in that the outputs of A can affect the behavior of B.

Example 5.6: Consider the cascade composition of the two FSMs in
Figure 5.8. Assuming synchronous semantics, the meaning of a reaction
of C is given in Figure 5.9. That figure makes it clear that the reactions

Lee & Seshia, Introduction to Embedded Systems, version 0.5 119

http://LeeSeshia.org

5.1. CONCURRENT COMPOSITION

Figure 5.9: Semantics of the cascade composition of Figure 5.8, assuming
synchronous composition.

of the two machines are simultaneous and instantaneous. When moving
from the initial state (s1, s3) to (s2, s4) (which occurs when the input a
is absent), the composition machine C does not pass through (s2, s3)! In
fact, (s2, s3) is not a reachable state! In this way, a single reaction of C
encompasses a reaction of both A and B.

To construct the composition machine as in Figure 5.9, first form the state space as
the cross product of the state spaces of the component machines, and then determine
which transitions are taken under what conditions. It is important to remember that
the transitions are simultaneous, even when one logically causes the other.

Example 5.7: Recall the traffic light model of Figure 3.10. Suppose
that we wish to compose this with a model of a pedestrian crossing light,
like that shown in Figure 5.10. The output sigR of the traffic light can
provide the input sigR of the pedestrian light. Under synchronous cascade
composition, the meaning of the composite is given in Figure 5.11. Note
that unsafe states, such as (green, green), which is the state when both

120 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

cars and pedestrians have a green light, are not reachable states, and hence
are not shown.

In its simplest form, cascade composition implies an ordering of the reactions of the
components. Since this ordering is well defined, we do not have as much difficulty
with shared variables as we did with side-by-side composition. However, we will
see that in more general compositions, the ordering is not so simple.

5.1.5 General Composition

Side-by-side and cascade composition provide the basic building blocks for building
more complex compositions of machines. Consider for example the composition in
Figure 5.12. A1 and A3 are a side-by-side composition that together define a machine
B. B and A2 are a cascade composition, with B feeding events to A2. However, B
and A2 are also a cascade composition in the opposite order, with A2 feeding events
to B. Cycles like this are called feedback, and they introduce a conundrum; which
machine should react first, B or A2? This conundrum will be resolved in the next
chapter when we explain the synchronous-reactive model of computation.

Figure 5.10: A model of a pedestrian crossing light, to be composed in a
synchronous cascade composition with the traffic light model of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 121

http://LeeSeshia.org

5.2. HIERARCHICAL STATE MACHINES

Figure 5.11: Semantics of a synchronous cascade composition of the traffic
light model of Figure 3.10 with the pedestrian light model of Figure 5.10.

5.2 Hierarchical State Machines

In this section, we consider hierarchical FSMs, which date back to Statecharts
(Harel, 1987). There are many variants of Statecharts, often with subtle semantic
differences between them (Beeck, 1994). Here, we will focus on some of the simpler
aspects only, and we will pick a particular semantic variant.

The key idea in hierarchical state machines is that a state can have a state refinement.
In Figure 5.13, state B has a refinement that is another FSM with two states, C and
D. What it means for the machine to be in state B is that it is in one of states C or D.

The meaning of the hierarchy in Figure 5.13 can be understood by comparing it to the
equivalent flattened FSM in Figure 5.14. The machine starts in state A. When guard
g2 evaluates to true, the machine transitions to state B, which means a transition
to state C, the initial state of the refinement. Upon taking this transition to C, the

122 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

Figure 5.12: Arbitrary interconnections of state machines are combinations
of side-by-side and cascade compositions, possibly creating cycles, as in
this example.

Figure 5.13: In a hierarchical FSM, a state may have a refinement that is
another state machine.

machine performs action a2, which may produce an output event or set a variable (if
this is an extended state machine).

There are then two ways to exit C. Either guard g1 evaluates to true, in which case
the machine exits B and returns to A, or guard g4 evaluates to true and the machine
transitions to D. A subtle question is what happens if both guards g1 and g4 evaluate
to true. Different variants of Statecharts may make different choices at this point. It
seems reasonable that the machine should end up in state A, but which of the actions
should be performed, a4, a1, or both? Such subtle questions help account for the
proliferation of different variants of Statecharts.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 123

http://LeeSeshia.org

5.2. HIERARCHICAL STATE MACHINES

Figure 5.14: Semantics of the hierarchical FSM in Figure 5.13.

We choose a particular semantics that has attractive modularity properties (Lee,
2009c). In this semantics, a reaction of a hierarchical FSM is defined in a depth-first
fashion. The deepest refinement of the current state reacts first, then its container
state machine, then its container, etc. In Figure 5.13, this means that if the machine
is in state B (which means that it is in either C or D), then the refinement machine
reacts first. If it is C, and guard g4 is true, the transition is taken to D and action a4 is
performed. But then, as part of the same reaction, the top-level FSM reacts. If guard
g1 is also true, then the machine transitions to state A. It is important that logically
these two transitions are simultaneous and instantaneous, so the machine does not
actually go to state D. Nonetheless, action a4 is performed, and so is action a1. This
combination corresponds to the topmost transition of Figure 5.14.

Another subtlety that arises is that if two actions are performed in the same reaction,
they may conflict. For example, two actions may write different values to the same
output port. Or they may set the same variable to different values. Our choice is that
the actions are performed in sequence, as suggested by the semicolon in the action
a4; a1. As in an imperative language like C, the semicolon denotes a sequence. As
with an imperative language, if the two actions conflict, the later one dominates.

Such subtleties can be avoided by using a preemptive transition, shown in Figure
5.15, which has the semantics shown in Figure 5.16. The guards of a preemptive
transition are evaluated before the refinement reacts, and if any guard evaluates to
true, the refinement does not react. As a consequence, if the machine is in state B

124 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

Figure 5.15: Variant of Figure 5.13 that uses a preemptive transition.

Figure 5.16: Semantics of Figure 5.15 with a preemptive transition.

and g1 is true, then neither action a3 nor a4 is performed. A preemptive transition is
shown with a (red) circle at the originating end of the transition.

Notice in Figures 5.13 and 5.14 that whenever the machine enters B, it always enters
C, never D, even if it was previously in D when leaving B. The transition from A to
B is called a reset transition because the destination refinement is reset to its initial
state, regardless of where it had previously been. A reset transition is indicated in
our notation with a hollow arrowhead at the destination end of a transition.

In Figure 5.17, the transition from A to B is a history transition, an alternative to
a reset transition. In our notation, a solid arrowhead denotes a history transition. It
may also be marked with an “H” for emphasis. When a history transition is taken,
the destination refinement resumes in whatever state it was last in (or its initial state
on the first entry).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 125

http://LeeSeshia.org

5.2. HIERARCHICAL STATE MACHINES

Figure 5.17: Variant of the hierarchical state machine of Figure 5.13 that has
a history transition.

Figure 5.18: Semantics of the hierarchical state machine of Figure 5.17 that
has a history transition.

126 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

The semantics of the history transition is shown in Figure 5.18. The initial state is
labeled (A, C) to indicate that the machine is in state A, and if and when it next
enters B it will go to C. The first time it goes to B, it will be in the state labeled (B,
C) to indicate that it is in state B and, more specifically, C. If it then transitions to
(B, D), and then back to A, it will end up in the state labeled (A, D), which means it
is in state A, but if and when it next enters B it will go to D. That is, it remembers
the history, specifically where it was when it left B.

As with concurrent composition, hierarchical state machines admit many possible
meanings. The differences can be subtle. Considerable care is required to ensure
that models are clear and that their semantics match what is being modeled.

5.3 Summary

Any well-engineered system is a composition of simpler components. In this chap-
ter, we have considered two forms of composition of state machines, concurrent
composition and hierarchical composition.

For concurrent composition, we introduced both synchronous and asynchronous
composition, but did not complete the story. We have deferred dealing with feed-
back to the next chapter, because for synchronous composition, significant subtleties
arise. For asynchronous composition, communication via ports requires additional
mechanisms that are not (yet) part of our model of state machines. Even with-
out communication via ports, significant subtleties arise because there are several
possible semantics for asynchronous composition, and each has strengths and weak-
nesses. One choice of semantics may be suitable for one application and not for
another. These subtleties motivate the topic of the next chapter, which provides
more structure to concurrent composition and resolves most of these questions (in a
variety of ways).

For hierarchical composition, we focus on a style originally introduced by Harel
(1987) known as Statecharts. We specifically focus on the ability for states in an
FSM to have refinements that are themselves state machines. The reactions of the
refinement FSMs are composed with those of the machine that contains the refine-
ments. As usual, there are many possible semantics.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 127

http://LeeSeshia.org

EXERCISES

Exercises

1. Consider the extended state machine model of Figure 3.8, the garage counter.
Suppose that the garage has two distinct entrance and exit points. Construct
a side-by-side concurrent composition of two counters that share a variable
c that keeps track of the number of cars in the garage. Specify whether you
are using synchronous or asynchronous composition, and define exactly the
semantics of your composition by giving a single machine modeling the com-
position. If you choose synchronous semantics, explain what happens if the
two machines simultaneously modify the shared variable. If you choose asyn-
chronous composition, explain precisely which variant of asynchronous se-
mantics you have chosen and why. Is your composition machine determinate?

2. For semantics 2 in Section 5.1.2, give the five tuple for a single machine rep-
resenting the composition C,

(StatesC, InputsC,OutputsC,updateC, initialStateC)

for the side-by-side asynchronous composition of two state machines A and
B. Your answer should be in terms of the five-tuple definitions for A and B,

(StatesA, InputsA,OutputsA,updateA, initialStateA)

and
(StatesB, InputsB,OutputsB,updateB, initialStateB)

3. Consider the following synchronous composition of two state machines A and
B:

128 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

5. COMPOSITION OF STATE MACHINES

Construct a single state machine C representing the composition. Which states
of the composition are unreachable?

4. Consider the following hierarchical state machine:

Construct an equivalent flat FSM giving the semantics of the hierarchy. De-
scribe in words the input/output behavior of this machine. Is there a simpler
machine that exhibits the same behavior? (Note that equivalence relations
between state machines are considered in Chapter 13, but here, you can use
intuition and just consider what the state machine does when it reacts.)

Lee & Seshia, Introduction to Embedded Systems, version 0.5 129

http://LeeSeshia.org

EXERCISES

130 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 6

Concurrent Models of
Computation

Contents
6.1 Structure of Models . 133
6.2 Synchronous-Reactive Models 134

Sidebar: Actor Networks as a System of Equations 135

Sidebar: Fixed-Point Semantics 136

6.2.1 Feedback Models . 137

6.2.2 Well-Formed and Ill-Formed Models 139

6.2.3 Constructing a Fixed Point 141

6.3 Dataflow Models of Computation 143
6.3.1 Dataflow Principles . 143

Sidebar: Synchronous-Reactive Languages 144

6.3.2 Synchronous Dataflow 148

6.3.3 Dynamic Dataflow . 152

6.3.4 Structured Dataflow 154

6.3.5 Process Networks . 155

Sidebar: Petri Nets . 158

6.4 Timed Models of Computation 159
6.4.1 Time-Triggered Models 159

131

Sidebar: Models of Time . 160
6.4.2 Discrete Event Systems 161
6.4.3 Continuous-Time Systems 162
Sidebar: Probing Further: Discrete Event Semantics 163

6.5 Summary . 167
Exercises . 168

In sound engineering practice, systems are built by composing components. In order
for the composition to be well understood, we need for the components to be well
understood, and for the meaning of the interaction between components to be well
understood. The previous chapter dealt with composition of finite state machines.
With such composition, the components are well defined (FSMs), but there are many
possible interpretations to the interaction between components. The meaning of a
composition is referred to as its semantics.

This chapter focuses on the semantics of concurrent composition. The word “con-
current” literally means “running together.” A system is said to be concurrent if
different parts of the system (components) conceptually operate at the same time.
There is no particular order to their operations. The semantics of such concurrent
operation can be quite subtle, however.

The components we consider in this chapter are actors, which react to stimulus at
input ports and produce stimulus on output ports. In this chapter, we will be only
minimally concerned with how the actors themselves are defined. They may be
FSMs, hardware, or programs specified in an imperative programming language.
We will need to impose some constraints on what these actors can do, but we need
not constrain how they are specified.

The semantics of a concurrent composition of actors is governed by three sets of
rules that we collectively call a model of computation (MoC). The first set of rules
specify what constitutes a component. In this chapter, a component will be an actor
with ports and a set of execution actions. The ports will be interconnected to provide
for communication between actors, and the execution actions will be invoked by the
environment of the actor to cause the actor to perform its function. For example, for
FSMs, one action is provided that causes a reaction. Some MoCs require a more
extensive set of execution actions.

We begin by laying out the common structure of models that applies to all MoCs
studied in this chapter. We then proceed to describe a suite of MoCs.

132 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.1: Any interconnection of actors can be modeled as a single (side-
by-side composite) actor with feedback.

6.1 Structure of Models

In this chapter, we assume that models consist of fixed interconnections of actors like
that shown in Figure 6.1(a). The interconnections between actors specify commu-
nication paths. The communication itself takes the form of a signal, which consists
of one or more communication events. For the discrete signals of Section 3.1, for
example, a signal s has the form of a function

s : R→Vs∪{absent},

where Vs is a set of values called the type of the signal s. A communication event in
this case is a non-absent value of s.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 133

http://LeeSeshia.org

6.2. SYNCHRONOUS-REACTIVE MODELS

Example 6.1: Consider a pure signal s that is a discrete signal given by

s(t) =
{

present if t is a multiple of P
absent otherwise

for all t ∈ R and some P ∈ R. Such a signal is called a clock signal with
period P. Communication events occur every P time units.

In Chapter 2, a continuous-time signal has the form of a function

s : R→V,

in which case every one of the (uncountably) infinite set of values is a communica-
tion event. In this chapter, we will also encounter signals of the form

s : N→V,

where there is no time line. The signal is simply a sequence of values.

A communication event has a type, and we require that a connection between actors
type check. That is, if an output port y with type Vy is connected to an input port x
with type Vx, then

Vy ⊆Vx.

As suggested in Figure 6.1(b-d), any actor network can be reduced to a rather simple
form. If we rearrange the actors as shown in Figure 6.1(b), then the actors form a
side-by-side composition indicated by the box with rounded corners. This box is
itself an actor F as shown in Figure 6.1(c) whose input is a three-tuple (s1,s2,s3) of
signals and whose output is the same three-tuple of signals. If we let s = (s1,s2,s3),
then the actor can be depicted as in Figure 6.1(d), which of course hides all the
complexity of the model.

Notice that Figure 6.1(d) is a feedback system. By following the procedure that
we used to build it, every interconnection of actors can be similarly structured as a
feedback system (see Exercise 1).

6.2 Synchronous-Reactive Models

In Chapter 5 we studied synchronous composition of state machines, but we avoided
the nuances of feedback compositions. For a model described as the feedback sys-

134 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Actor Networks as a System of Equations

In a model, if the actors are determinate, then each actor is a function that maps input
signals to output signal. For example, in Figure 6.1(a), actor A may be a function
relating signals s1 and s2 as follows,

s2 = A(s1).

Similarly, actor B relates three signals by

s1 = B(s2,s3).

Actor C is a bit more subtle, since it has no input ports. How can it be a function?
What is the domain of the function? If the actor is determinate, then its output signal
s3 is a constant signal. The function C needs to be a constant function, one that
yields the same output for every input. A simple way to ensure this is to define C
so that its domain is a singleton set (a set with only one element). Let { /0} be the
singleton set, so C can only be applied to /0. The function C is then given by

C(/0) = s3.

Hence, Figure 6.1(a) gives a system of equations

s1 = B(s2,s3)
s2 = A(s1)
s3 = C(/0).

The semantics of such a model, therefore, is a solution to such a system of equations.
This can be represented compactly using the function F in Figure 6.1(d), which is

F(s1,s2,s3) = (B(s2,s3),A(s1),C(/0)).

All actors in Figure 6.1(a) have output ports; if we had an actor with no output
port, then we could similarly define it as a function whose codomain is { /0}. The
output of such function is the same, /0, for all inputs.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 135

http://LeeSeshia.org

6.2. SYNCHRONOUS-REACTIVE MODELS

Fixed-Point Semantics

In a model, if the actors are determinate, then each actor is a function that maps input
signals to output signal. The semantics of such a model is a system of equations (see
box on page 135) and the reduced form of Figure 6.1(d) becomes

s = F(s), (6.1)

where s = (s1,s2,s3). Of course, this equation only looks simple. Its complexity lies
in the definition of the function F and the structure of the domain and range of F .

Given any function F : X→X for any set X , if there is an x∈X such that F(x) = x,
then x is called a fixed point. Equation (6.1) therefore asserts that the semantics of
a determinate actor network is a fixed point. Whether a fixed point exists, whether
the fixed point is unique, and how to find the fixed point, all become interesting
questions that are central to the model of computation.

In the SR model of computation, the execution of all actors is simultaneous and
instantaneous and occurs at ticks of the global clock. If the actor is determinate, then
each such execution implements a function called a firing function. For example,
in the n-th tick of the global clock, actor A implements a function of the form

an : V1∪{absent}→V2∪{absent}

where Vi is the type of signal si. Hence, if si(n) is the value of si at the n-th tick, then

s2(n) = an(s1(n)).

Given such a firing function fn for each actor F we can, just as in Figure 6.1(d)
define the execution at a single tick by a fixed point,

s(n) = fn(s(n)),

where s(n) = (s1(n),s2(n),s3(n)) and fn is a function is given by

fn(s1(n),s2(n),s3(n)) = (bn(s2(n),s3(n)),an(s1(n)),cn(/0)).

Thus, for SR, the semantics at each tick of the global clock is a fixed point of the
function fn, just as its execution over all ticks is a fixed point of the function F .

136 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.2: A simple well-formed feedback model.

tem of Figure 6.1(d), the conundrum discussed in Section 5.1.5 takes a particularly
simple form. If F is a state machine, then in order for it to react, we need to know
its inputs at the time of the reaction. But its inputs are the same as its outputs, so
in order for F to react, we need to know its outputs. But we can’t know its outputs
until after it reacts.

As shown in Section 6.1 above, all actor networks can be viewed as feedback sys-
tems, so we really do have to resolve the conundrum. We do that now by giving a
model of computation known as the synchronous-reactive (SR) MoC.

An SR model is a discrete system where signals are absent at all times except (pos-
sibly) at ticks of a global clock. Conceptually, execution of a model is a sequence
of global reactions that occur discrete times, and at each such reaction, the reaction
of all actors is simultaneous and instantaneous.

6.2.1 Feedback Models

We focus first on feedback models of the form of Figure 6.1(d), where F is a state
machine. At the n-th tick of the global clock, we have to find the value of the signal
s so that it is both a valid input and a valid output of the state machine, given its
current state. Let s(n) denote the value of the signal s at the n-th reaction. The goal
is to determine, at each tick of the global clock, the value of s(n).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 137

http://LeeSeshia.org

6.2. SYNCHRONOUS-REACTIVE MODELS

Figure 6.3: The semantics of the model in Figure 6.2.

Example 6.2: Consider first a simpler example shown in Figure 6.2.
(This is simpler than Figure 6.1(d) because the signal s is a single pure
signal rather than an aggregation of three signals.) If A is in state s1 when
that reaction occurs, then the only possible value for s(n) is s(n) = absent
because a reaction must take one of the transitions out of s1, and both of
these transitions emit absent. Moreover, once we know that s(n) = absent,
we know that the input port x has value absent, so we can determine that
A will transition to state s2.

If A is in state s2 when the reaction occurs, then the only possible value for
s(n) is s(n) = present, and the machine will transition to state s1. There-
fore, s alternates between absent and present. The semantics of machine A
in the feedback model is therefore given by Figure 6.3.

In the previous example, it is important to note that the input x and output y have
the same value in every reaction. This is what is meant by the feedback connection.
Any connection from an output port to an input port means this. The value at the
input port is the same as the value at the output port at all times.

Given a determinate state machine in a feedback model like that of Figure 6.2, in
each state i we can define a function ai that maps input values to output values,

ai : {present,absent}→ {present,absent},

138 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

where the function depends on the state the machine is in. This function is defined
by the update function.

Example 6.3: For the example in Figure 6.2, if the machine is in state s1,
then

as1(x) = absent

for all x ∈ {present,absent}.

The function ai is called the firing function for state i (see box on page 136). Given
a firing function, to find the value s(n) at the n-th reaction, we simply need to find a
value s(n) such that

s(n) = ai(s(n)).

Such a value s(n) is called a fixed point of the function ai. It is easy to see how
to generalize this so that the signal s can have any type, and even so that s is an
aggregation of signals as in Figure 6.1(d) (see box on page 136).

6.2.2 Well-Formed and Ill-Formed Models

There are two potential problems that may occur when seeking a fixed point. First,
there may be no fixed point. Second, there may be more than one fixed point. If
either case occurs in a reachable state, we call the system ill formed. Otherwise, it
is well formed.

Example 6.4: Consider machine B shown in Figure 6.4. In state s1, we
get the unique fixed point s(n) = absent. In state s2, however, there is no
fixed point. If we attempt to choose s(n) = present, then the machine will
transition to s1 and its output will be absent. But the output has to be the
same as the input, and the input is present, so we get a contradiction. A
similar contradiction occurs if we attempt to choose s(n) = absent.

Since state s2 is reachable, this feedback model is ill formed.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 139

http://LeeSeshia.org

6.2. SYNCHRONOUS-REACTIVE MODELS

Figure 6.4: An ill-formed feedback model that has no fixed point in state s2.

Figure 6.5: An ill-formed feedback model that has more than one fixed point
in state s1.

Example 6.5: Consider machine C shown in Figure 6.5. In state s1, both
s(n) = absent and s(n) = present are fixed points. Either choice is valid.
Since state s1 is reachable, this feedback model is ill formed.

If in a reachable state there is more than one fixed point, we declare the machine to
be ill formed. An alternative semantics would not reject such a model, but rather
would declare it to be nondeterministic. This would be a valid semantics, but it
would have the disadvantage that a composition of determinate state machines is not

140 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.6: A well-formed feedback model that is not constructive.

assured of being determinate. In fact, C in Figure 6.5 is determinate, and under this
alternative semantics, the feedback composition in the figure would not be deter-
minate. Determinism would not be a compositional property. Hence, we prefer to
reject such models.

6.2.3 Constructing a Fixed Point

If the type Vs of the signal s or the signals it is an aggregate of is finite, then one
way to find a fixed point is by exhaustive search. Try all values. If exactly one
fixed point is found, then the model is well formed. However, exhaustive search
is expensive (and impossible if the types are not finite). We can develop instead a
systematic procedure that for most, but not all well-formed models will find a fixed
point. The procedure is as follows. For each reachable state i,

1. Start with s(n) unknown.

2. Determine as much as you can about fi(s(n)),

where fi is the firing function in state i. Repeat until all values in s(n) become known
(whether they are present and what their values are), or until no more progress can
be made. If unknown values remain, then reject the model.

This procedure may reject models that have a unique fixed point.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 141

http://LeeSeshia.org

6.2. SYNCHRONOUS-REACTIVE MODELS

Example 6.6: Consider machine D shown in Figure 6.6. In state s1, if
the input is unknown, we cannot immediately tell what the output will be.
We have to try all the possible values for the input to determine that in fact
s(n) = absent for all n.

A state machine for which the procedure works in all reachable states is said to be
constructive (Berry, 1999). The example in Figure 6.6 is not constructive. For
non-constructive machines, we are forced to do exhaustive search or to invent some
more elaborate solution technique. Since exhaustive search is often too expensive
for practical use, many SR languages and modeling tools (see box on page 144)
reject non-constructive models.

Step 2 of the above procedure is key. How exactly can we determine the outputs
if the inputs are not all known? This requires what is called a must-may analysis
of the model. Examining the machine, we can determine what must be true of the
outputs and what may be true of the outputs.

Example 6.7: The model is Figure 6.2 is constructive. In state s1, we
can immediately determine that the machine may not produce an output.
Therefore, we can immediately conclude that the output is absent, even
though the input is unknown. Of course, once we have determined that
the output is absent, we now know that the input is absent, and hence the
procedure concludes.

In state s2, we can immediately determine that the machine must produce
an output, so we can immediately conclude that the output is present.

The above procedure can be generalized to an arbitrary model structure. Consider
for example Figure 6.1(a). There is no real need to convert it the form of Figure
6.1(d). Instead, we can just begin by labeling all signals unknown, and then in
arbitrary order, examine each actor to determine whatever can be determined about
the outputs, given its initial state. We repeat this until no further progress is made,
at which point either all signals become known, or we can reject the model as either

142 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

ill-formed or non-constructive. Once we know all signals, then all actors can make
state transitions, and we repeat the procedure in the new state for the next reaction.

The constructive procedure above can be adapted to support nondeterminate ma-
chines (see Exercise 4). But now, things become even more subtle, and there are
variants to the semantics. One way to handle nondeterminism is that when execut-
ing the constructive procedure, when encountering a nondeterministic choice, make
an arbitrary choice. If the result leads to a failure of the procedure to find a fixed
point, then we could either reject the model (not all choices lead to a well-formed or
constructive model) or reject the choice and try again.

In the SR model of computation, actors react simultaneously and instantaneously, at
least conceptually. Achieving this with realistic computation requires tight coordi-
nation of the computation. We consider next a family of models of computation that
require less coordination.

6.3 Dataflow Models of Computation

In this section, we consider MoCs that much more asynchronous than SR; reactions
may occur simultaneously, or they may not, and whether they do or not is not an
essential part of the semantics. The decision as to when a reaction occurs can be
much more decentralized, and can in fact reside with each individual actor. When
reactions are dependent on one another, the dependence is due to the flow of data,
rather than to the synchrony of events. If a reaction of actor A requires data produced
by a reaction of actor B, then the reaction of A must occur after the reaction of B.
An MoC where such data dependencies are the key constraint on reactions is called
a dataflow model of computation. There are several variations of dataflow. We
consider a few of them here.

6.3.1 Dataflow Principles

In dataflow models, the signals providing communication between actors are se-
quences of message, where each message is called a token. That is, a signal s is a
partial function of the form

s : N ⇀ Vs,

Lee & Seshia, Introduction to Embedded Systems, version 0.5 143

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

Synchronous-Reactive Languages

The synchronous-reactive MoC has a history dating at least back to the mid 1980s
when a suite of programming languages were developed. The term “reactive” comes
from a distinction in computational systems between transformational systems,
which accept input data, perform computation, and produce output data, and reac-
tive systems, which engage in an ongoing dialog with their environment (Harel and
Pnueli, 1985). Manna and Pnueli (1992) state

“The role of a reactive program ... is not to produce a final result but to
maintain some ongoing interaction with its environment.”

The distinctions between transformational and reactive systems led to the develop-
ment of a number of innovative programming languages. The synchronous lan-
guages (Benveniste and Berry, 1991) take a particular approach to the design of
reactive systems, in which pieces of the program react simultaneously and instan-
taneously at each tick of a global clock. First among these languages are Lustre
(Halbwachs et al., 1991), Esterel (Berry and Gonthier, 1992), and Signal (Guernic
et al., 1991). Statecharts (Harel, 1987) and its implementation in Statemate (Harel
et al., 1990) also have a strongly synchronous flavor.

SCADE (Berry, 2003) (safety critical application development environment), a
commercial product of Esterel Technologies (which no longer exists as an indepen-
dent company), builds on Lustre, borrows concepts from Esterel, and provides a
graphical syntax, where state machines are drawn and actor models are composed
in a similar manner to the figures in this text. One of the main attractions of syn-
chronous languages is their strong formal properties that yield quite effectively to
formal analysis and verification techniques. For this reason, SCADE models are
used in the design of safety-critical flight control software systems for commercial
aircraft made by Airbus.

The principles of synchronous languages can also be used in the style of a co-
ordination language rather than a programming language, as done in Ptolemy II
(Edwards and Lee, 2003) and ForSyDe (Sander and Jantsch, 2004). This allows for
“primitives” in a synchronous system to be complex components rather than built-
in language primitives. This approach allows for heterogeneous combinations of
MoCs, since the complex components may themselves be given as compositions of
further subcomponents under some other MoC.

144 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

where Vs is the type of the signal, and where the signal is defined on an initial
segment {0,1, · · · ,n} ⊂ N, or (for infinite executions) on the entire set N. Each
element s(n) of this sequences is a token. A (deterministic) actor will be described
as a function that maps input sequences to output sequences. We will actually use
two functions, an actor function, which maps entire input sequences to entire output
sequences, and firing function, which maps a finite portion of the input sequences
to output sequences, as illustrated in the following example.

Example 6.8: Consider an actor that has one input and one output port as
shown below

Suppose that the input type is Vx = R. Suppose that this is a Scale actor
parameterized by a parameter a ∈ R, similar to the one in Example 2.3,
which multiplies inputs by a. Then

F(x1,x2,x3, · · ·) = (ax1,ax2,ax3, · · ·).

Suppose that when the actor fires, it performs one multiplication in the
firing. Then the firing function f operates only on the first element of the
input sequence, so

f (x1,x2,x3, · · ·) = (ax1).

The output is a sequence of length one.

As illustrated in the previous example, the actor function F combines the effects of
multiple invocations of the firing function f . Moreover, the firing function can be
invoked with only partial information about the input sequence to the actor. In the
above example, the firing function can be invoked if one or more tokens are available
on the input. The rule requiring one token is called a firing rule for the Scale actor.
A firing rule specifies the number of tokens required on each input port in order to
fire the actor.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 145

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

The Scale actor in the above example is particularly simple because the firing rule
and the firing function never vary. Not all actors are so simple.

Example 6.9: Consider now a different actor Delay with parameter d ∈
R. The actor function is

D(x1,x2,x3, · · ·) = (d,x1,x2,x3, · · ·).

This actor prepends a sequence with a token with value d. This actor has
two firing functions, d1 and d2, and two firing rules. The first firing rule
requires no input tokens at all and produces an output sequence of length
one, so

d1(s) = (d),

where s is a sequence of any length, including length zero (the empty se-
quence). This firing rule is initially the one used, and it is used exactly
once. The second firing rule requires one input token and is used for all
subsequent firings. It triggers the firing function

d2(x1, · · ·) = (x1).

The actor consumes one input token and produces on its output the same
token. The actor can be modeled by a state machine, as shown in Figure
6.7. In that figure, the firing rules are implicit in the guards. The tokens
required to fire are exactly those required to evaluate the guards. The firing
function d1 is associated with state s1, and d2 with s2.

When dataflow actors are composed, with an output of one going to an input of
another, the communication mechanism is quite different from that of the previous
MoCs considered in this chapter. Since the firing of the actors is asynchronous, a
token sent from one actor to another must be buffered; it needs to be saved until the
destination actor is ready to consume it. When the destination actor fires, it con-
sumes one or more input tokens. After being consumed, a token may be discarded
(meaning that the memory in which it is buffered can be reused for other purposes).

Dataflow models pose a few interesting problems. One question is how to ensure
that the memory devoted to buffering of tokens is bounded. A dataflow model may

146 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.7: An FSM model for the Delay actor in Example 6.9.

be able to execute forever (or for a very long time); this is called an unbounded
execution. For an unbounded execution, we may have to take measures to ensure
that buffering of unconsumed tokens does not overflow the available memory.

Example 6.10: Consider the following cascade composition of dataflow
actors:

Since A has no input ports, its firing rule is simple. It can fire at any time.
Suppose that on each firing, A produces one token. What is to keep A
from firing at a faster rate than B? Such faster firing could result in an
unbounded build up of unconsumed tokens on the buffer between A and B.
This will eventually exhaust available memory.

In general, for dataflow models that are capable of unbounded execution, we will
need scheduling policies that deliver bounded buffers.

A second problem that may arise is deadlock. Deadlock occurs when there are
cycles, as in Figure 6.1, and a directed loop has insufficient tokens to satisfy any of
the firing rules of the actors in the loop. The Delay actor of Example 6.9 can help
prevent deadlock because it is able to produce an initial output token without having

Lee & Seshia, Introduction to Embedded Systems, version 0.5 147

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

Figure 6.8: SDF actor A produces M tokens when it fires, and actor B con-
sumes N tokens when it fires.

any input tokens available. Dataflow models with feedback will generally require
Delay actors (or something similar) in every cycle.

For general dataflow models, it can be difficult to tell whether the model will dead-
lock, and whether there exists an unbounded execution with bounded buffers. In
fact, these two questions are undecidable, meaning that there is no algorithm that
can answer the question in bounded time for all dataflow models (Buck, 1993). For-
tunately, there are useful constraints that we can impose on the design of actors that
make these questions decidable. We examine those constraints next.

6.3.2 Synchronous Dataflow

Synchronous dataflow (SDF) is a constrained form of dataflow where for each ac-
tor, every firing consumes a fixed number of input tokens on each input port and
produces a fixed number of output tokens on each output port (Lee and Messer-
schmitt, 1987).1

Consider a single connection between two actors, A and B, as shown in Figure 6.8.
The notation here means that when A fires, it produces M tokens on its output port,
and when B fires, it consumes N tokens on its input port. M and N are positive inte-
gers. Suppose that A fires qA times and B fires qB times. All tokens that A produces
are consumed by B if and only if the following balance equation is satisfied,

qAM = qBN. (6.2)

1Despite the term, synchronous dataflow is not synchronous in the sense of SR. There is no global
clock in SDF models, and firings of actors are asynchronous. For this reason, some authors use the
term static dataflow rather than synchronous dataflow. This does not avoid all confusion, however,
because Dennis (1974) had previously coined the term “static dataflow” to refer to dataflow graphs
where buffers could hold at most one token. Since there is no way to avoid a collision of terminology,
we stick with the original “synchronous dataflow” terminology used in the literature. The term SDF
arose from a signal processing concept, where two signals with sample rates that are related by a
rational multiple are deemed to be synchronous.

148 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Given values qA and qB satisfying (6.2), we can find a schedule that delivers un-
bounded execution with bounded buffers. An example of such a schedule fires A
repeatedly, qA times, followed by B repeatedly, qB times. It can repeat this sequence
forever without exhausting available memory.

Example 6.11: Suppose that in Figure 6.8, M = 2 and N = 3. Then qA = 3
and qB = 2 satisfy (6.2). Hence, the following schedule can be repeated
forever,

A,A,A,B,B.

An alternative schedule is also available,

A,A,B,A,B.

In fact, this latter schedule has an advantage over the former one in that it
requires less memory. B fires as soon as there are enough tokens, rather
than waiting for A to complete its entire cycle.

Another solution to (6.2) is qA = 6 and qB = 4. This solution includes
more firings in the schedule than are strictly needed to keep the system in
balance.

The equation is also satisfied by qA = 0 and qB = 0, but if the number of
firings of actors is zero, then no useful work is done. Clearly, this is not a
solution we want. Negative solutions are also not desirable.

Generally we will be interested in finding the least positive integer solution
to the balance equations.

In a more complicated SDF model, every connection between actors results in a
balance equation. Hence, the model defines a system of equations.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 149

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

Figure 6.9: A consistent SDF model.

Figure 6.10: An inconsistent SDF model.

Example 6.12: Figure 6.9 shows a network with three SDF actors. The
connections x, y, and z, result in the following system of balance equations,

qA = qB

2qB = qC

2qA = qC.

The least positive integer solution to these equations is qA = qB = 1, and
qC = 2, so the following schedule can be repeated forever to get an un-
bounded execution with bounded buffers,

A,B,C,C.

The balance equations do not always have a non-trivial solution, as illustrated in the
following example.

Example 6.13: Figure 6.10 shows a network with three SDF actors where
the only solution to the balance equations is the trivial one, qA = qB = qC =

150 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.11: An SDF model with initial tokens on a feedback loop.

0. A consequence is that there is no unbounded execution with bounded
buffers for this model. It cannot be kept in balance.

An SDF model that has a non-zero solution to the balance equations is said to be
consistent. If the only solution is zero, then it is inconsistent. An inconsistent
model has no unbounded execution with bounded buffers.

Lee and Messerschmitt (1987) showed that if the balance equations have a non-zero
solution, then they also have a solution where qi is a positive integer for all actors
i. Moreover, for connected models (where there is a communication path between
any two actors), they gave a procedure for finding the least positive integer solution.
Such a procedure forms the foundation for a scheduler for SDF models.

Consistency is sufficient to ensure bounded buffers, but it is not sufficient to ensure
that an unbounded execution exists. In particular, when there is feedback, as in
Figure 6.1, then deadlock may occur. Deadlock bounds an execution.

To allow for feedback, the SDF model treats Delay actors specially. Recall from
Example 6.9, that the Delay actor is able to produce output tokens before it receives
any input tokens, and then it subsequently behaves like a simple SDF actor that
copies inputs to outputs. In the SDF MoC, the initial tokens are understood to be an
initial condition for an execution, rather than part of the execution itself. Thus, the
scheduler will ensure that all initial tokens are produced before the SDF execution
begins. The Delay actor, therefore, can be replaced by initial tokens on a feedback
connection. It need not perform any operation at all at run time.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 151

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

Figure 6.12: Dynamic dataflow actors.

Example 6.14: Figure 6.11 shows an SDF model with initial tokens on a
feedback loop. The balance equations are

3qA = 2qB

2qB = 3qA.

The least positive integer solution is qA = 2, and qB = 3, so the model is
consistent. With four initial tokens on the feedback connection, as shown,
the following schedule can be repeated forever,

A,B,A,B,B.

Were there any fewer than four initial tokens, however, the model would
deadlock. If there were only three tokens, for example, then A could fire,
followed by B, but in the resulting state of the buffers, neither could fire
again.

In addition to the procedure for solving the balance equations, Lee and Messer-
schmitt (1987) gave a procedure that will either provide a schedule for an unbounded
execution or would prove that no such schedule exists. Hence, both bounded buffers
and deadlock are decidable for SDF models.

6.3.3 Dynamic Dataflow

Although the ability to guarantee bounded buffers and rule out deadlock is valuable,
it comes at a price. SDF is not very expressive. It cannot directly express, for
example, conditional firing, where an actor fires only if, for example, a token has

152 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.13: A DDF model that accomplishes conditional firing.

a particular value. Such conditional firing is supported by a more general dataflow
MoC known as dynamic dataflow (DDF). Unlike SDF actors, DDF actors can have
multiple firing rules, and they are not constrained to produce the same number of
output tokens on each firing. The Delay actor of Example 6.9 is directly supported
by the DDF MoC, without any need to special treatment of initial tokens. So are two
basic actors known as Switch and Select, shown in Figure 6.12.

The Select actor on the left has three firing rules. Initially, it requires one token on
the bottom input port. The type of that port is Boolean, so the value of the token
must be true or false. If a token with value true is received on that input port, then
the actor produces no output, but instead activates the next firing rule, which requires
one token on the top left input port, labeled T. When the actor next fires, it consumes
the token on the T port and sends it to the output port. If a token with value false is
received on the bottom input port, then the actor activates a firing rule that requires a
token on the bottom left input port labeled F. When it consumes that token, it again
sends it to the output port.

The Switch actor performs a complementary function. It has only one firing rule,
which requires a single token on both input ports. The token on the left input port
will be sent to either the T or the F output port, depending on the Boolean value of
the token received on the bottom input port. Hence, Switch and Select accomplish
conditional routing of tokens, as illustrated in the following example.

Example 6.15: Figure 6.13 uses Switch and Select to accomplish condi-
tional firing. Actor B produces a stream of Boolean-valued tokens x. This
stream is replicated by the fork to provide the control inputs y and z to the

Lee & Seshia, Introduction to Embedded Systems, version 0.5 153

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

Switch and Select actors. Based on the value of the control tokens on
these streams, the tokens produced by actor A are sent to either C or D,
and the resulting outputs are collected and sent to E. This model is the
DDF equivalent of the familiar if-then-else programming construct
in imperative languages.

Addition of Switch and Select to the actor library means that we can no longer al-
ways find a bounded buffer schedule, nor can be provide assurances that the model
will not deadlock. Buck (1993) showed that bounded buffers and deadlock are un-
decidable for DDF models. Thus, in exchange for the increased expressiveness and
flexibility, we have paid a price. The models are not as readily analyzed.

Switch and Select are the dataflow analogs of the goto statement in imperative
languages. They provide low-level control over execution by conditionally routing
tokens. Like goto statements, using them can result in models that are very difficult
to understand. Dijkstra (1968) indicted the goto statement, discouraging its use,
advocating instead the use of structured programming. Structured programming
replaces goto statements with nested if-then-else, do-while, for loops,
and recursion. Fortunately, structured programming is also available for dataflow
models, as we discuss next.

6.3.4 Structured Dataflow

Figure 6.14 shows an alternative way to accomplish conditional firing that has many
advantages over the DDF model in Figure 6.13. The grey box in the figure is an
example of a higher-order actor called Conditional. A higher-order actor is an
actor that has one or more models as parameters. In the example in the figure,
Conditional is parameterized by two sub-models, one containing the actor C and
the other containing the actor D. When Conditional fires, it consumes one token
from each input port and produces one token on its output port, so it is an SDF actor.
The action it performs when it fires, however, is dependent on the value of the token
that arrives at the lower input port. If that value is true, then actor C fires. Otherwise,
actor D fires.

This style of conditional firing is called structured dataflow, because, much like
structured programming, control constructs are nested hierarchically. Arbitrary data-

154 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.14: Structured dataflow approach to conditional firing.

dependent token routing is avoided (which is analogous to avoiding arbitrary branches
using goto instructions). Moreover, when using such Conditional actors, the overall
model is still an SDF model. In the example in Figure 6.14, every actor consumes
and produces exactly one token on every port. Hence, the model is analyzable for
deadlock and bounded buffers.

This style of structured dataflow was introduced in LabVIEW, a design tool devel-
oped by National Instruments (Kodosky et al., 1991). In addition to a conditional
similar to that in Figure 6.14, LabVIEW provides structured dataflow constructs for
iterations (analogous to for and do-while loops in an imperative language), for
case statements (which have an arbitrary number of conditionally executed sub-
models), and for sequences (which cycle through a finite set of submodels). It is
also possible to support recursion using structured dataflow (Lee and Parks, 1995),
but without careful constraints, boundedness again becomes undecidable.

6.3.5 Process Networks

A model of computation that is closely related to dataflow models is Kahn process
networks (or simply, process networks or PN), named after Gilles Kahn, who in-
troduced them (Kahn, 1974). The relationship between dataflow and PN is studied in
detail by Lee and Parks (1995) and Lee and Matsikoudis (2009), but the short story
is quite simple. Whereas in the dataflow MoC, actors fire, in PN, each actor executes
concurrently in its own process. That is, instead of being defined by its firing rules

Lee & Seshia, Introduction to Embedded Systems, version 0.5 155

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

and firing functions, a PN actor is defined by a (typically non-terminating) program
that reads data tokens from input ports and writes data tokens to output ports. All
actors execute simultaneously (conceptually; whether they actually execute simulta-
neously or are interleaved is irrelevant).

In the original paper, Kahn (1974) gave very elegant mathematical conditions on
the actors that would ensure that a network of such actors was determinate, mean-
ing that the sequence of tokens on every connection between actors is unique, and
specifically independent of how the processes are scheduled. Thus, Kahn showed
that concurrent execution was possible without nondeterminism.

Three years later, Kahn and MacQueen (1977) gave a simple, easily implemented
mechanism for programs that ensures that the mathematical conditions are met to
ensure determinism. A key part of the mechanism is to perform blocking reads on
input ports whenever a process is to read input data. Specifically, blocking reads
means that if the process chooses to access data through an input port, it issues a
read request and blocks until the data becomes available. It cannot test the input port
for the availability of data and then perform a conditional branch based on whether
data are available, because such a branch would introduce schedule-dependent be-
havior. Blocking reads are closely related to firing rules; firing rules specify the
tokens required to continue computing (with a new firing function); a blocking read
specifies a single token required to continue computing (by continuing execution of
the process). When a process writes to an output port, it performs a nonblocking
write, meaning that the write succeeds immediately and returns. The process does
not block to wait for the receiving process to be ready to receive data. This is exactly
how writes to output ports work in dataflow MoCs as well. Thus, the only material
difference between dataflow and PN is that with PN, the actor is not broken down
into firing functions. It is designed as a continuously executing program.

Kahn and MacQueen (1977) called the processes in a PN network coroutines for an
interesting reason. A routine or subroutine is a program fragment that is “called”
by another program. The subroutine executes to completion before the calling frag-
ment can continue executing. The interactions between processes in a PN model are
more symmetric, in that there is no caller and callee. When a process performs a
blocking read, it is in a sense invoking a routine in the upstream process that pro-
vides the data. Similarly, when it performs a write, it is in a sense invoking a routine
in the downstream process to process the data. But the relationship between the
producer and consumer of the data is much more symmetric than with subroutines.

156 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

Figure 6.15: A Petri net model of two concurrent programs with a mutual
exclusion protocol.

Just like dataflow, the PN MoC poses challenging questions about boundedness of
buffers and about deadlock. PN is expressive enough that these questions are unde-
cidable. An elegant solution to the boundedness question is given by Parks (1995)
and elaborated by Geilen and Basten (2003).

An interesting variant of process networks performs blocking writes rather than
nonblocking writes. That is, when a process writes to an output port, it blocks until
the receiving process is ready to receive the data. Such an interaction between pro-
cesses is called a rendezvous. Rendezvous forms the basis for well known process
formalisms such as communicating sequential processes (CSP) (Hoare, 1978) and
the calculus of communicating systems (CCS) (Milner, 1980). It also forms the
foundation for the Occam programming language (Galletly, 1996), which enjoyed
some success for a period of time in the 1980s and 1990s for programming parallel
computers.

In both the SR and dataflow models of computation considered so far, time plays a
minor role. In dataflow, time plays no role. In SR, computation occurs simultane-
ously and instantaneously at each of a sequence of ticks of a global clock. Although
the term “clock” implies that time plays a role, it actually does not. In the SR MoC,
all that matters is the sequence. The physical time at which the ticks occur is ir-
relevant to the MoC. It is just a sequence of ticks. Many modeling tasks, however,
require a more explicit notion of time. We examine next MoCs that have such a
notion.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 157

http://LeeSeshia.org

6.3. DATAFLOW MODELS OF COMPUTATION

Petri Nets

Petri nets, named after Carl Adam Petri, are a popular modeling formalism related
to dataflow (Murata, 1989). They have two types of elements, places and transi-
tions, depicted as white circles and rectangles, respectively, as shown here:

A place can contain any number of tokens, depicted as black circles. A transition
is enabled if all places connected to it as inputs contain at least one token. Once
a transition is enabled, it can fire, consuming one token from each input place and
putting one token on each output place. The state of a network, called its marking, is
the number of tokens on each place in the network. The figure above shows a simple
network with its marking before and after the firing of the transition. If a place
provides input to more than one transition, then the network is nondeterministic. A
token on that place may trigger a firing of either destination transition.

An example of a Petri net model is shown in Figure 6.15. This network models
two concurrent programs with a mutual exclusion protocol. That is, each of the two
programs has a section called a critical section with the constraint that only one of
the programs can be in its critical section at any time. In the model, program A is
in its critical section if there is a token on place a2, and program B is in its critical
section if there is a token on place b1. The job of the mutual exclusion protocol is
to ensure that these two places cannot simultaneously have a token.

If the initial marking of the model is as shown in the figure, then both top transi-
tions are enabled, but only one can fire (there is only one token in the place labeled
mutex). Which one fires is chosen nondeterministically. Suppose program A fires.
After this firing, there will be a token in place a2, so the corresponding bottom tran-
sition becomes enabled. Once that transition fires, the model returns to its initial
marking. It is easy to see that the mutual exclusion protocol is correct in this model.

Unlike dataflow buffers, places do not preserve an ordering of tokens. Petri nets
with a finite number of markings are equivalent to FSMs.

158 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

6.4 Timed Models of Computation

For cyber-physical systems, the time at which things occur in software can matter,
because the software interacts with physical processes. In this section, we consider
a few concurrent MoCs that explicitly refer to time. We describe three timed MoCs,
each of which have many variants. Our treatment here is necessarily brief. A com-
plete study of these MoCs would require a much bigger volume.

6.4.1 Time-Triggered Models

Kopetz and Grunsteidl (1994) introduced mechanisms for triggering distributed com-
putations periodically according to a distributed clock that measures the passage
of time. The result is a system architecture called a time-triggered architecture
(TTA). A key contribution was to show how a TTA could tolerate certain kinds of
faults, such that failures in part of the system could not disrupt the behaviors in
other parts of the system (see also Kopetz (1997) and Kopetz and Bauer (2003)).
Henzinger et al. (2001) lifted the key idea of TTA to the programming language
level, providing a well-defined semantics for modeling distributed time-triggered
systems. Since then, these techniques have come into practical use in the design of
safety-critical avionics and automotive systems, becoming a key part of standards
such as FlexRay, a networking standard developed by a consortium of automotive
companies.

A time-triggered MoC is similar to SR in that there is a global clock that coordinates
the computation, but instead of the computations being simultaneous and instanta-
neous, the computations take time. Specifically, time-triggered MoCs associate with
a computation a logical execution time. The inputs to the computation are provided
at ticks of the global clock, but the outputs are not visible to other computations
until the next tick of the global clock. Between ticks, there is no interaction between
the computations, so concurrency difficulties such as race conditions do not exist.
Since the computations are not (logically) instantaneous, there are no difficulties
with feedback, and all models are constructive.

The Simulink modeling system, sold by The MathWorks, supports a time-triggered
MoC, and in conjunction with another product called Real-Time Workshop, can

Lee & Seshia, Introduction to Embedded Systems, version 0.5 159

http://LeeSeshia.org

6.4. TIMED MODELS OF COMPUTATION

Models of Time
How to model physical time is surprisingly subtle. How should we define simul-
taneity across a distributed system? A deeply thoughtful discussion of this question
is considered by Galison (2003). What does it mean for one event to cause another?
Can an event that causes another be simultaneous with it? Several thoughtful essays
on this topic are given in Price and Corry (2007).

In Chapter 2, we assume time is represented by a variable t ∈ R or t ∈ R+. This
model is sometimes referred to as Newtonian time. It assumes a globally shared
absolute time, where any reference anywhere to the variable t will yield the same
value. This notion of time is often useful for modeling even if it does not perfectly
reflect physical realities, but it has its deficiencies. Consider for example Newton’s
cradle, a toy with five steel balls suspended by strings. If you lift one ball and
release it, it strikes the second ball, which does not move. Instead, the fifth ball
reacts by rising. Consider the momentum of the middle ball as a function of time.
The middle ball does not move, so its momentum must be everywhere zero. But the
momentum of the first ball is somehow transfered to the fifth ball, passing through
the middle ball. So the momentum cannot be always zero. Let m : R→ R represent
the momentum of this ball and τ be the time of the collision. Then

m(t) =
{

M if t = τ
0 otherwise

for all t ∈ R. In a cyber-physical system, we may, however, want to represent this
function in software, in which case a sequence of samples will be needed. But how
can such sample unambiguously represent the rather unusual structure of this signal?

One option is to use superdense time (Manna and Pnueli, 1993; Maler et al.,
1992; Lee and Zheng, 2005; Cataldo et al., 2006), where instead of R, time is repre-
sented by a set R×N. A time value is a tuple (t,n), where t represents Newtonian
time and n represents a sequence index within an instant. In this representation,
the momentum of the middle ball can be unambiguously represented by a sequence
where m(τ,0) = 0, m(τ,1) = M, and m(τ,2) = 0. Such a representation also handles
events that are simultaneous and instantaneous but also causally related.

Another alternative for time is partially ordered time, where two time values
may or may not be ordered relative to each other. When there is a chain of causal
relationships between them, then they must be ordered. Otherwise not.

160 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

translate such models in embedded C code. In LabVIEW, from National Instru-
ments, timed loops accomplish a similar capability within a dataflow MoC.

In the simplest form, a time-triggered model specifies periodic computation with a
fixed time interval (the period) between ticks of the clock. Giotto (Henzinger et al.,
2001) supports modal models, where the periods differ in different modes. Some
authors have further extended the concept of logical execution time to non-periodic
systems (Liu and Lee, 2003; Ghosal et al., 2004).

Time triggered models are conceptually simple, but computations are tied closely to
a periodic clock. The model becomes awkward when actions are not periodic. DE
systems, considered next, encompass a richer set of timing behaviors.

6.4.2 Discrete Event Systems

Discrete-event systems (DE systems) have been used for decades as a way to build
simulations for an enormous variety of applications, including for example digital
networks, military systems, and economic systems. A pioneering formalism for
DE models is due to Zeigler (1976), who called the formalism DEVS, abbreviating
discrete event system specification. DEVS is an extension of Moore machines that
associates a non-zero lifespan with each state, thus endowing the Moore machines
with an explicit notion of the passage of time (vs. a sequence of reactions).

The key idea in a DE MoC is that events are endowed with a time stamp, a value in
some model of time (see box on page 160). Normally, two distinct time stamps must
be comparable. That is, they are either equal, or one is earlier than the other. A DE
model is a network of actors where each actor reacts to input events in time-stamp
order and produces output events in time-stamp order.

Example 6.16: The clock signal with period P of Example 6.1 consists
of events with time stamps nP for all n ∈ Z.

To execute a DE model, we can use an event queue, which is a list of events sorted
by time stamp. The list begins empty. Each actor in the network is interrogated
for any initial events it wishes to place on the event queue. These events may be

Lee & Seshia, Introduction to Embedded Systems, version 0.5 161

http://LeeSeshia.org

6.4. TIMED MODELS OF COMPUTATION

destined for another actor, or they may be destined for the actor itself, in which case
they will cause a reaction of the actor to occur at the appropriate time. The execution
continues by selecting the earliest event in the event queue and determining which
actor should receive that event. The value of that event (if any) is presented as an
input to the actor, and the actor reacts (“fires”). The reaction can produce output
events, and also events that simply request a later firing of the same actor at some
specified time stamp.

At this point, variants of DE MoCs behave differently. Some variants, such as
DEVS, require that outputs produced by the actor have a strictly larger time stamp
than that of the input just presented. From a modeling perspective, every actor im-
poses some non-zero delay, in that its reactions (the outputs) become visible to other
actors strictly later than the inputs that triggered the reaction. Other variants permit
the actor to produce output events with the same time stamp as the input. That is,
they can react instantaneously. As with SR models of computation, such instanta-
neous reactions can create significant subtleties because inputs become simultaneous
with outputs.

The subtleties introduced by simultaneous events can be resolved by treating DE as
a generalization of SR (Lee and Zheng, 2007). In this variant of a DE semantics,
execution proceeds as follows. Again, we use an event queue and interrogate the
actors for initial events to place on the queue. We select the event from the queue
with the least time stamp, and all other events with the same time stamp, present
those events to actors in the model as inputs, and then fire all actors in the manner of a
constructive fixed-point iteration, as normal with SR. In this variant of the semantics,
any outputs produced by an actor must be simultaneous with the inputs (they have
the same time stamp), so they participate in the fixed point. If the actor wishes to
produce an output event at a later time, it does so by requesting a firing at a later
time (which results in the posting of an event on the event queue).

6.4.3 Continuous-Time Systems

In Chapter 2 we consider models of continuous-time systems based on ordinary
differential equations (ODEs). Specifically, we consider equations of the form

ẋ(t) = f (x(t), t),

162 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

where x : R→Rn is a vector-valued continuous-time function. An equivalent model
is an integral equation of the form

x(t) = x(0)+
Z t

0
ẋ(τ)dτ (6.3)

= x(0)+
Z t

0
f (x(τ),τ)dτ. (6.4)

In Chapter 2, we show that a model of a system given by such ODEs can be de-
scribed as an interconnection of actors, where the communication between actors is
via continuous-time signals. Equation (6.4) can be represented as such an intercon-
nection as shown in Figure 6.16, which conforms to the feedback pattern of Figure
6.1(d).

Example 6.17: The feedback control system of Figure 2.3, using the
helicopter model of Example 2.3, can be redrawn as shown in Figure 6.17,

Probing Further: Discrete Event Semantics

Discrete-event models of computation have been a subject of study for many years,
with several textbooks available (Zeigler et al., 2000; Cassandras, 1993; Fishman,
2001). The subtleties in the semantics are considerable (see Lee (1999); Cataldo
et al. (2006); Liu et al. (2006); Liu and Lee (2008)). Instead of discussing the formal
semantics here, we describe how a DE model is executed. Such a description is, in
fact, a valid way of giving the semantics of a model. The description is called an
operational semantics (Scott and Strachey, 1971; Plotkin, 1981).

DE models are often quite large and complex, so execution performance becomes
very important. Because of the use of a single event queue, parallelizing or distribut-
ing execution of DE models can be challenging (Misra, 1986; Fujimoto, 2000). A
recently proposed strategy called PTIDES (for programming temporally integrated
distributed embedded systems), leverages network time synchronization to provide
efficient distributed execution (Zhao et al., 2007; Lee et al., 2009). The claim is
that the execution is efficient enough that DE can be used not only as a simulation
technology, but also as an implementation technology. That is, the DE event queue
and execution engine become part of the deployed embedded software. As of this
writing, that claim has not been proven on any practical examples.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 163

http://LeeSeshia.org

6.4. TIMED MODELS OF COMPUTATION

Figure 6.16: Actor model of a system described by equation (6.4).

Figure 6.17: The feedback control system of Figure 2.3, using the helicopter
model of Example 2.3, redrawn to conform to the pattern of Figure 6.16.

which conforms to the pattern of Figure 6.16. In this case, x = θ̇y is a
scalar-valued continuous-time function (or a vector of length one). The
function f is defined as follows,

f (x(t), t) = (K/Iyy)(ψ(t)−x(t)),

and the initial value of the integrator is

x(0) = θ̇y(0).

Such models, in fact, are actor compositions under a continuous-time model of
computation, but unlike the previous MoCs, this one cannot strictly be executed on
a digital computer. A digital computer cannot directly deal with the time continuum.
It can, however, be approximated, often quite accurately.

164 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

...

h

t

x(t).

f (x(t), t)

h 2h 3h

(a)

t

x(t).

f (x(t), t)

(b)

...

f (x(0), 0)

Figure 6.18: (a) Forward Euler approximation to the integration in (6.4),
where x is assumed to be a scalar. (b) A better approximation that uses
a variable step size and takes into account the slope of the curve.

The approximate execution of a continuous-time model is accomplished by a solver,
which constructs a numerical approximation to the solution of an ODE. The study of
algorithms for solvers is quite old, with the most commonly used techniques dating
back to the 19th century. Here, we will consider only one of the simplest of solvers,
which is known as a forward Euler solver.

A forward Euler solver estimates the value of x at fixed time points 0,h,2h,3h, · · · ,
where h is called the step size. The integration is approximated as follows,

x(h) = x(0)+h f (x(0),0)
x(2h) = x(h)+h f (x(h),h)
x(3h) = x(2h)+h f (x(2h),2h)
· · ·

x((k +1)h) = x(kh)+h f (x(kh),kh).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 165

http://LeeSeshia.org

6.4. TIMED MODELS OF COMPUTATION

This process is illustrated in Figure 6.18(a), where the “true” value of ẋ is plotted
as a function of time. The true value of x(t) is the area under that curve between
0 and t, plus the initial value x(0). At the first step of the algorithm, the increment
in area is approximated as the area of a rectangle of width h and height f (x(0),0).
This increment yields an estimate for x(h), which can be used to calculate ẋ(h) =
f (x(h),h), the height of the second rectangle. And so on.

You can see that the errors in approximation will accumulate over time. The algo-
rithm can be improved considerably by two key techniques. First, a variable-step
solver will vary the step size based on estimates of the error to keep the error small.
Second, a more sophisticated solver will take into account the slope of the curve and
use trapezoidal approximations as suggested in Figure 6.18(b). A family of such
solvers known as Runge-Kutta solvers are widely used. But for our purposes here, it
does not matter what solver is used. All that matters is that (a) the solver determines
the step size, and (b) at each step, the solver performs some calculation to update the
approximation to the integral.

When using such a solver, we can interpret the model in Figure 6.16 in a manner
similar to SR and DE models. The f actor is memoryless, so it simply performs
a calculation to produce an output that depends only on the input and the current
time. The integrator is a state machine whose state is updated at each reaction by
the solver, which uses the input to determine what the update should be. The state
space of this state machine is infinite, since the state variable x(t) is a vector of real
numbers.

Hence, a continuous-time model can be viewed as an SR model with a time step
between global reactions determined by a solver (Lee and Zheng, 2007). Specifi-
cally, a continuous-time model is a network of actors, each of which is a cascade
composition of a simple memoryless computation actor and a state machine, and the
actor reactions are simultaneous and instantaneous. The times of the reactions are
determined by a solver. The solver will typically consult the actors in determining
the time step, so that for example events like level crossings can be captured pre-
cisely. Hence, despite the additional complication of having to provide a solver, the
mechanisms required to achieve a continuous-time model of computation are not
much different from those required to achieve SR and DE.

A popular software tool that uses a continuous-time MoC is Simulink, from The
MathWorks, which represents models similarly as block diagrams, which are in-
terconnections of actors. Continuous-time models can also be simulated using the

166 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

textual tool MATLAB from the same vendor. MATRIXx, from National Instru-
ments, also supports graphical continuous-time modeling. Continuous-time models
can also be integrated within LabVIEW models, either graphically using the Con-
trol Design and Simulation Module or textually using the programming language
MathScript.

6.5 Summary

This chapter has provided a whirlwind tour of a rather large topic, concurrent mod-
els of computation. It begins with synchronous-reactive models, which are closest to
the synchronous composition of state machines considered in the previous chapter.
It then considers dataflow models, where execution can be more loosely coordinated.
Only data precedences impose constraints on the order of actor computations. The
chapter then concludes with a quick view of a few models of computation that ex-
plicitly include a notion of time. Such MoCs are particularly useful for modeling
cyber-physical systems.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 167

http://LeeSeshia.org

EXERCISES

Exercises

1. Show how each of the following actor models can be transformed into a feed-
back system by using a reorganization similar to that in Figure 6.1(b). That is,
the actors should be aggregated into a single side-by-side composite actor.

(a)

(b)

(c)

2. Consider the following state machine in a feedback composition:

168 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

(a) Is it well-formed? Is it constructive?

(b) If it is well-formed and constructive, then find the output symbols for the
first 10 reactions. If not, explain where the problem is.

(c) Show the composition machine, assuming that the composition has no
input and that the only output is b.

3. For the following model, determine whether it is well formed and constructive,
and if so, determine the sequence of values of the signals s1 and s2.

4. For the following model, determine whether it is well formed and constructive,
and if so, determine the possible sequences of values of the signals s1 and s2.
Note that machine A is nondeterministic.

5. Recall the traffic light controller of Figure 3.10. Consider connecting the out-
puts of this controller to a pedestrian light controller, whose FSM is given in
Figure 5.10. Using your favorite modeling software that supports state ma-
chines (such as LabVIEW Statecharts, Simulink/Stateflow , or Ptolemy II),
construct the composition of the above two FSMs along with a deterministic

Lee & Seshia, Introduction to Embedded Systems, version 0.5 169

http://LeeSeshia.org

EXERCISES

extended state machine modeling the environment and generating input sym-
bols timeR, timeG, timeY , and isCar. For example, the environment FSM can
use an internal counter to decide when to generate these symbols.

6. Consider the following SDF model:

The numbers adjacent to the ports indicate the number of tokens produced or
consumed by the actor when it fires. Answer the following questions about
this model.

(a) Let qA,qB, and qC denote the number of firings of actors A, B, and C, re-
spectively. Write down the balance equations and find the least positive
integer solution.

(b) Find a schedule for an unbounded execution that minimizes the buffer
sizes on the two communication channels. What is the resulting size of
the buffers?

7. For each of the following dataflow models, determine whether there is an un-
bounded execution with bounded buffers. If there is, determine the minimum
buffer size.

(a)

(b)

where n is some integer.

170 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

6. CONCURRENT MODELS OF COMPUTATION

(c)

where D produces an arbitrary boolean sequence.

(d) For the same dataflow model as in part (c), assume you can specify a
periodic boolean output sequence produced by D. Find such a sequence
that yields bounded buffers, give a schedule that minimizes buffer sizes,
and give the buffer sizes.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 171

http://LeeSeshia.org

EXERCISES

172 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Part II

Design of Embedded Systems

173

Chapter 7

Embedded Processors

Contents
7.1 Types of Processors . 177

7.1.1 Microcontrollers . 177

7.1.2 DSP Processors . 177

Sidebar: Microcontrollers . 178

Sidebar: The x86 Architecture 179

Sidebar: DSP Processors . 180

7.1.3 Graphics Processors 184

Sidebar: Circular Buffers . 185

7.2 Parallelism . 186
7.2.1 Parallelism vs. Concurrency 186

7.2.2 Pipelining . 189

7.2.3 Instruction-Level Parallelism 193

7.2.4 Multicore Architectures 198

Sidebar: Fixed-Point Numbers 199

Sidebar: Fixed-Point Numbers (continued) 200

Sidebar: Fixed-Point Arithmetic in C 201

7.3 Summary . 202
Exercises . 203

175

In general-purpose computing, the variety of instruction set architectures today is
limited, with the Intel x86 architecture overwhelmingly dominating all. There is no
such dominance in embedded computing. On the contrary, the variety of proces-
sors can be daunting to a system designer. Our goal in this chapter is to give the
reader the tools and vocabulary to understand the options and to critically evaluate
the properties of processors. We particularly focus on the mechanisms that provide
concurrency and control over timing, because these issues loom large in the design
of cyber-physical systems.

When deployed in a product, embedded processors typically have a dedicated func-
tion. They control an automotive engine or measure ice thickness in the arctic. They
are not asked to perform arbitrary functions with user-defined software. Conse-
quently, the processors can be more specialized. Making them more specialized
can bring enormous benefits. For example, they may consume far less energy, and
consequently be usable with small batteries for long periods of time. Or they may
include specialized hardware to perform operations that would be costly to perform
on general-purpose hardware, such as image analysis.

When evaluating processors, it is important to understand the difference between an
instruction set architecture (ISA) and a processor realization or a chip. The latter
is a piece of silicon sold by a semiconductor vendor. The former is a definition of the
instructions that the processor can execute and certain structural constraints (such as
word size) that realizations must share. x86 is an ISA. There are many realizations.
An ISA is an abstraction shared by many realizations. A single ISA may appear
in many different chips, often made by different manufacturers, and often having
widely varying performance profiles.

The advantage of sharing an ISA in a family of processors is that software tools,
which are costly to develop, may be shared, and (sometimes) the same programs may
run correctly on multiple realizations. This latter property, however, is rather treach-
erous, since an ISA does not normally include any constraints on timing. Hence,
although a program may execute logically the same way on multiple chips, the sys-
tem behavior may be radically different when the processor is embedded in a cyber-
physiscal system.

176 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

7.1 Types of Processors

As a consequence of the huge variety of embedded applications, there is a huge vari-
ety of processors that are used. They range from very small, slow, inexpensive, low-
power devices, to high-performance, special-purpose devices. This section gives an
overview of some of the available types of processors.

7.1.1 Microcontrollers

A microcontroller (µC) is a small computer on a single integrated circuit consist-
ing of a relatively simple central processing unit (CPU) combined with peripheral
devices such as memories, I/O devices, and timers. By some accounts, more than
half of all CPUs sold worldwide are microcontrollers, although such a claim is hard
to substantiate because the difference between microcontrollers and general-purpose
processors is indistinct. The simplest microcontrollers operate on 8-bit words and
are suitable for applications that require small amounts of memory and simple logi-
cal functions (vs. performance-intensive arithmetic functions). They may consume
extremely small amounts of energy, and often include a sleep mode that reduces the
power consumption to nanowatts. Embedded applications such as sensor network
nodes and surveillance devices have been demonstrated that can operate on a small
battery for several years.

Microcontrollers can get quite elaborate. Distinguishing them from general-purpose
processors can get difficult. The Intel Atom, for example, is a family of x86 CPUs
used mainly in netbooks and other small mobile computers. Because these proces-
sors are designed to use relatively little energy without losing too much performance
relative to processors used in higher-end computers, they are suitable for some em-
bedded applications and in servers where cooling problematic. AMD’s Geode is
another example of a processor near the blurry boundary between general-purpose
processors and microcontrollers.

7.1.2 DSP Processors

Many embedded applications do quite a bit of signal processing. A signal is a col-
lection of sampled measurements of the physical world, typically taken at a regular
rate called the sample rate. A motion control application, for example, may read po-
sition or location information from sensors at sample rates ranging from a few Hertz

Lee & Seshia, Introduction to Embedded Systems, version 0.5 177

http://LeeSeshia.org

7.1. TYPES OF PROCESSORS

(Hz, or samples per second) to a few hundred Hertz. Audio signals are sampled at
rates ranging from 8,000 Hz (or 8 kHz, the sample rate used in telephony for voice
signals) to 44.1 kHz (the sample rate of CDs). Ultrasonic applications (such as med-

Microcontrollers

Most semiconductor vendors include one or more families of microcontrollers in
their product line. Some of the architectures are quite old. The Motorola 6800 and
Intel 8080 are 8-bit microcontrollers that appeared on the market in 1974. Descen-
dants of these architectures survive today, for example in the form of the Freescale
6811 . The Zilog Z80 is a fully-compatible descendant of the 8080 that became one
of the most widely manufactured and widely used microcontrollers of all time. A
derivative of the Z80 is the Rabbit 2000 designed by Rabbit Semiconductor.

Another very popular and durable architecture is the Intel 8051, an 8-bit micro-
controller developed by Intel in 1980. The 8051 ISA is today supported by many
vendors, including at least Atmel, Infineon Technologies, Dallas Semiconductor,
NXP, ST Microelectronics, Texas Instruments, and Cypress Semiconductor. The
Atmel AVR 8-bit microcontroller, developed by Atmel in 1996, was one of the first
microcontrollers to use on-chip flash memory for program storage. Although Atmel
says AVR is not an acronym, it is believed that the architecture was conceived by
two students at the Norwegian Institute of Technology, Alf-Egil Bogen and Vegard
Wollan, so it may have originated as Alf and Vegard’s RISC.

Many 32-bit microcontrollers implement some variant of an ARM instruction set,
developed by ARM Limited. ARM originally stood for Advanced RISC Machine,
and before that Acorn RISC Machine, but today it is simply ARM. Processors that
implement the ARM ISA are widely used in mobile phones to realize the user inter-
face functions, as well as in many other embedded systems. Semiconductor vendors
license the instruction set from ARM Limited and produce their own chips. ARM
processors are currently made by at least Alcatel, Atmel, Broadcom, Cirrus Logic,
Freescale, LG, Marvell Technology Group, NEC, NVIDIA, NXP, Samsung, Sharp,
ST Microelectronics, Texas Instruments, VLSI Technology, and Yamaha.

Other notable embedded microcontroller architectures include the Motorola
ColdFire (later the Freescale ColdFire), the Hitachi H8 and SuperH, the MIPS
(originally developed by a team led by John Hennessy at Stanford University), the
PIC (originally Programmable Interface Controller, from Microchip Technology),
and the PowerPC (created in 1991 by an alliance of Apple, IBM, and Motorola).

178 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

ical imaging) and high-performance music applications may sample sound signals
at much higher rates. Video typically uses sample rates of 25 or 30 Hz for con-
sumer devices to much higher rates for specialty measurement applications. Each
sample, of course, contains an entire image (called a frame), which itself has many
samples (called pixels) distributed in space rather than time. Software-defined radio
applications have sample rates that can range from hundreds of kHz (for baseband
processing) to several GHz (billions of Hertz). Other embedded applications that
make heavy use of signal processing include interactive games; radar, sonar, and LI-
DAR (light detection and ranging) imaging systems; video analytics (the extraction
of information from video, for example for surveillance); driver assist systems for
cars; medical electronics; and scientific instrumentation.

Signal processing applications all share certain characteristics. First, they deal with
large amounts of data. The data may represent samples in time of a physical proces-
sor (such as samples of a wireless radio signal), samples in space (such as images),
or both (such as video, radar, etc.). Second, they typically perform sophisticated
mathematical operations on the data, including filtering, system identification, fre-
quency analysis, machine learning, and feature extraction. These operations are
mathematically intensive.

Processors designed specifically to support numerically intensive signal processing
applications are called DSP processors, or DSPs (digital signal processors), for

The x86 Architecture

The dominant ISA for desktop and portable computers is known as the x86. This
term originates with the Intel 8086, a 16-bit microprocessor chip designed by Intel in
1978. The 8086 was used in the original IBM PC, and the processor family has dom-
inated the PC market ever since. Subsequent processors in this family were given
names ending in “86,” and generally maintained backward compatibility. The Intel
80386 was the first 32-bit version of this instruction set, introduced in 1985. Today,
the term “x86” usually refers to the 32-bit version, with 64-bit versions designated
“x86-64.” The Intel Atom, introduced in 2008, is an x86 processor with signif-
icantly reduced energy consumption. Although it is aimed primarily at netbooks
and other small mobile computers, it is also an attractive option for some embedded
applications. The x86 architecture has also been implemented in processors from
AMD, Cyrix, and several other manufacturers.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 179

http://LeeSeshia.org

7.1. TYPES OF PROCESSORS

short. To get some insight into the structure of such processors and the implications
for the embedded software designer, it is worth understanding the structure of typical
signal processing algorithms.

A canonical signal processing algorithm, used in some form in all of the above
applications, is finite impulse response (FIR) filtering. The simplest form of this
algorithm is straightforward, but has profound implications for hardware. In this
simplest form, an input signal x consists of a very long sequence of numerical values,
so long that for design purposes it should be considered infinite. Such an input can
be modeled as a function x : N→ D, where D is a set of values in some data type.1

1For a review of this notation, see Appendix A on page 411.

DSP Processors

Specialized computer architectures for signal processing have been around for quite
some time (Allen, 1975). Single-chip DSP microprocessors first appeared in the
early 1980s, beginning with the Western Electric DSP1 from Bell Labs, the S28211
from AMI, the TMS32010 from Texas Instruments, the uPD7720 from NEC, and
a few others. Early applications of these devices included voiceband data modems,
speech synthesis, consumer audio, graphics, and disk drive controllers. A compre-
hensive overview of DSP processor generations through the mid-1990s can be found
in Lapsley et al. (1997).

Central characteristics of DSPs include a hardware multiply-accumulate unit; sev-
eral variants of the Harvard architecture (to support multiple simultaneous data and
program fetches); and addressing modes supporting auto increment, circular buffers,
and bit reversed addressing (the latter to support FFT calculation). Most support
fixed-point data precisions of 16-24 bits, typically with much wider accumulators
(40-56 bits) so that a large number of successive multiply-accumulate instructions
can be executed without overflow. A few DSPs have appeared with floating point
hardware, but these have not dominated the marketplace.

DSPs are difficult to program compared to RISC architectures, primarily because
of complex specialized instructions, a pipeline that is exposed to the programmer,
and asymmetric memory architectures. Until the late 1990s, these devices were
almost always programmed in assembly language. Even today, C programs make
extensive use of libraries that are hand-coded in assembly language to take advantage
of the most esoteric features of the architectures.

180 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

z −1

1/41/4

z −1 z −1

1/41/4

tap

x(n) x(n − 1) x(n − 2) x(n − 3)

a0 a1 a2 a3

y(n)

Figure 7.1: Structure of a tapped delay line implementation of the FIR filter
of example 7.1. This diagram can be read as a dataflow diagram. For each
n ∈ N, each component in the diagram consumes one input value from each
input path and produces one output value on each output path. The boxes
labeled z−1 are unit delays. Their task is to produce on the output path
the previous value of the input (or an initial value if there was no previous
input). The triangles multiply their input by a constant, and the circles add
their inputs.

For example, D could be the set of all 16-bit integers, in which case, x(0) is the first
input value (a 16-bit integer), x(1) is the second input value, etc. For mathematical
convenience, we can augment this to x : Z→ D by defining x(n) = 0 for all n < 0.
For each input value x(n), an FIR filter must compute an output value y(n) according
to the formula,

y(n) =
N−1

∑
i=0

aix(n− i) , (7.1)

where N is the length of the FIR filter, and the coefficients ai are called its tap
values. You can see from this formula why it is useful to augment the domain of
the function x, since the computation of y(0), for example, involves values x(−1),
x(−2), etc.

Example 7.1: Suppose N = 4 and a0 = a1 = a2 = a3 = 1/4. Then for all
n ∈ N,

y(n) = (x(n)+ x(n−1)+ x(n−2)+ x(n−3))/4 .

Each output sample is the average of the most recent four input samples.
The structure of this computation is shown in Figure 7.1. In that figure,

Lee & Seshia, Introduction to Embedded Systems, version 0.5 181

http://LeeSeshia.org

7.1. TYPES OF PROCESSORS

input values come in from the left and propagate down the delay line,
which is tapped after each delay element. This structure is called a tapped
delay line.

The rate at which the input values x(n) are provided and must be processed is called
the sample rate. If you know the sample rate and N, you can determine the number
of arithmetic operations that must be computed per second.

Example 7.2: Suppose that an FIR filter is provided with samples at a
rate of 1 MHz (one million samples per second), and that N = 32. Then
outputs must be computed at a rate of 1 MHz, and each output requires 32
multiplications and 31 additions. A processor must be capable of sustain-
ing a computation rate of 63 million arithmetic operations per second to
implement this application. Of course, to sustain the computation rate, it
is necessary not only that the arithmetic hardware be fast enough, but also
that the mechanisms for getting data in and out of memory and on and off
chip be fast enough.

An image can be similarly modeled as a function x : H ×V → D, where H ⊂ N
represents the horizontal index, V ⊂N represents the vertical index, and D is the set
of all possible pixel values. A pixel (or picture element) is a sample representing the
color and intensity of a point in an image. There are many ways to do this, but all
use one or more numerical values for each pixel. The sets H and V depend on the
resolution of the image.

Example 7.3: Analog television is steadily being replaced by digital for-
mats such as ATSC, a set of standards developed by the Advanced Tele-
vision Systems Committee. In the US, the vast majority of over-the-air
NTSC transmissions were replaced with ATSC on June 12, 2009. ATSC
supports a number of frame rates ranging from just below 24 Hz to 60 Hz
and a number of resolutions. High-definition video under the ATSC stan-
dard supports for example a resolution of 1080 by 1920 pixels at a frame

182 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

rate of 30 Hz. Hence, H = {0, · · · ,1919} and V = {0, · · · ,1079}. This
resolution is called 1080p in the industry. Professional video equipment
today goes up to four times this resolution (4320 by 7680). Frame rates
can also be much higher than 30 Hz. Very high frame rates are useful for
capturing extremely fast phenomena in slow motion.

For a grayscale image, a typical filtering operation will construct a new image y from
an original image x according to the following formula,

∀ i ∈ H, j ∈V, y(i, j) =
i+N

∑
n=i−N

j+M

∑
m= j−M

an,mx(i−n, j−m) , (7.2)

where an,m are the filter coefficients. This is a two-dimensional FIR filter. Such a
calculation requires defining x outside the region H×V . There is quite an art to this
(to avoid edge effects), but for our purposes here, it suffices to get a sense of the
structure of the computation without being concerned for this detail.

A color image will have multiple color channels. These may represent luminance
(how bright the pixel is) and chrominance (what the color of the pixel is), or they
may represent colors that can be composed to get an arbitrary color. In the latter
case, a common choice is an RGBA format, which has four channels representing
red, green, blue, and the alpha channel, which represents transparency. For example,
a value of zero for R, G, and B represents the color black. A value of zero for A
represents fully transparent (invisible). Each channel also has a maximum value,
say 1.0. If all four channels are at the maximum, the resulting color is a fully opaque
white.

The computational load of the filtering operation in (7.2) depends on the number of
channels, the number of filter coefficients (the values of N and M), the resolution
(the sizes of the sets H and V), and the frame rate.

Example 7.4: Suppose that a filtering operation like (7.2) with N = 1
and M = 1 (minimal values for useful filters) is to be performed on high-
definition video signal as in Example 7.3. Then each pixel of the output
image y requires performing 9 multiplications and 8 additions. Suppose we

Lee & Seshia, Introduction to Embedded Systems, version 0.5 183

http://LeeSeshia.org

7.1. TYPES OF PROCESSORS

have a color image with three channels (say, RGB, without transparency),
then this will need to performed 3 times for each pixel. Thus, each frame
of the resulting image will require 1080×1920×3×9 = 55,987,200 mul-
tiplications, and a similar number of additions. At 30 frames per second,
this translates into 1,679,616,000 multiplications per second, and a sim-
ilar number of additions. Since this is about the simplest operation one
may perform on a high-definition video signal, we can see that processor
architectures handling such video signals must be quite fast indeed.

In addition to the large number of arithmetic operations, the processor has to handle
the movement of data down the delay line, as shown in Figure 7.1 (see box on page
185). By providing support for delay lines and multiply-accumulate instructions, as
shown in Example 7.6, DSP processors can realize one tap of an FIR filter in one
cycle. In that cycle, they multiply two numbers, add the result to an accumulator,
and increment or decrement two pointers using modulo arithmetic.

7.1.3 Graphics Processors

A graphics processing unit (GPU) is a specialized processor designed especially to
perform the calculations required in graphics rendering. Such processors date back
to the 1970s, when they were used to render text and graphics, to combine multiple
graphic patterns, and to draw rectangles, triangles, circles, and arcs. Modern GPUs
support 3D graphics, shading, and digital video. Dominant providers of GPUs today
are Intel, NVIDIA and AMD.

Some embedded applications, particularly games, are a good match for GPUs. More-
over, GPUs have evolved towards more general programming models, and hence
have started to appear in other compute-intensive applications, such as instrumen-
tation. GPUs are typically quite power hungry, and therefore today are not a good
match for energy constrained embedded applications.

184 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

Circular Buffers

An FIR filter requires a delay-line like that shown in Figure 7.1. A naive implemen-
tation would allocate an array in memory, and each time an input sample arrives,
move each element in the array to the next higher location to make room for the new
element in the first location. This would be enormously wasteful of memory band-
width. A better approach is to use a circular buffer, where an array in memory is
interpreted as having a ring-like structure, as shown below for a length-8 delay line:

0
1

2
34

5

6
7

p

Here, 8 successive memory locations, labeled 0 to 7, store the values in the delay
line. A pointer p, initialized to location 0, provides access.

An FIR filter can use this circular buffer to implement the summation of (7.1).
One implementation first accepts a new input value x(n), and then calculates the
summation backwards, beginning with the i = N− 1 term, where in our example,
N = 8. Suppose that when the nth input arrives, the value of p is some number
pi ∈ {0, · · · ,7} (for the first input x(0), pi = 0). The program writes the new input
x(n) into the location given by p and then increments p, setting p = pi + 1. All
arithmetic on p is done modulo 8, so for example, if pi = 7, then pi + 1 = 0. The
FIR filter calculation then reads x(n−7) from location p = pi + 1 and multiplies it
by a7. The result is stored in an accumulator register. It again increments p by one,
setting it to p = pi +2. It next reads x(n−6) from location p = pi +2, multiplies it by
a6, and adds the result to the accumulator (this explains the name “accumulator” for
the register, since it accumulates the products in the tapped delay line). It continues
until it reads x(n) from location p = pi +8, which because of the modulo operation
is the same location that the latest input x(n) was written to, and multiplies that value
by a0. It again increments p, getting p = pi + 9 = pi + 1. Hence, at the conclusion
of this operation, the value of p is pi + 1, which gives the location into which the
next input x(n+1) should be written.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 185

http://LeeSeshia.org

7.2. PARALLELISM

7.2 Parallelism

Most processors today provide various forms of parallelism. These mechanisms
strongly affect the timing of the execution of a program, so embedded system de-
signers have to understand them. This section provides an overview of the several
forms and their consequences for system designers.

7.2.1 Parallelism vs. Concurrency

Concurrency is central to embedded systems. A computer program is said to be
concurrent if different parts of the program conceptually execute simultaneously. A
program is said to be parallel if different parts of the program physically execute
simultaneously on distinct hardware (such as on multicore machines, servers in a
server farm, or distinct microprocessors).

Non-concurrent programs specify a sequence of instructions to execute. A program-
ming language that expresses a computation as a sequence of operations is called
an imperative language. C is an imperative language. When using C to write con-
current programs, we must step outside the language itself, typically using a thread
library. A thread library uses facilities not provided by C, but rather provided by
the operating system and/or the hardware. Java is a mostly imperative language ex-
tended with constructs that directly support threads. Thus, one can write concurrent
programs in Java without stepping outside the language.

Every (correct) execution of a program in an imperative language must behave as if
the instructions were executed exactly in the specified sequence. It is often possible,
however, to execute instructions in parallel or in an order different from that specified
by the program and still get behavior that matches what would have happened had
they been executed in sequence.

Example 7.5: Consider the following C statements:

double pi, piSquared, piCubed;
pi = 3.14159;
piSquared = pi * pi ;
piCubed = pi * pi * pi;

186 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

The last two assignment statements are independent, and hence can be
executed in parallel or in reverse order without changing the behavior of
the program. Had we written them as follows, however, they would no
longer be independent:

double pi, piSquared, piCubed;
pi = 3.14159;
piSquared = pi * pi ;
piCubed = piSquared * pi;

In this case, the last statement depends on the third statement in the sense
that the third statement must complete execution before the last statement
starts.

A compiler may analyze the dependencies between operations in a program and pro-
duce parallel code, if the target machine supports it. This analysis is called dataflow
analysis. Many microprocessors today support parallel execution, using multi-issue
instruction streams or VLIW (very large instruction word) architectures. Processors
with multi-issue instruction streams can execute independent instructions simulta-
neously. The hardware analyzes instructions on-the-fly for dependencies, and when
there is no dependency, executes more than one instruction at a time. In the latter,
VLIW machines have assembly-level instructions that specify multiple operations
to be performed together. In this case, the compiler is usually required to produce
the appropriate parallel instructions. In these cases, the dependency analysis is done
at the level of assembly language or at the level of individual operations, not at the
level of lines of C. A line of C may specify multiple operations, or even complex
operations like procedure calls. In both cases (multi-issue and VLIW), an impera-
tive program is analyzed for concurrency in order to enable parallel execution. The
overall objective is to speed up execution of the program. The goal is improved
performance, where the presumption is that finishing a task earlier is always better
than finishing it later.

In the context of embedded systems, however, concurrency plays a part that is much
more central than merely improving performance. Embedded programs interact with
physical processes, and in the physical world, many activities progress at the same
time. An embedded program often needs to monitor and react to multiple concurrent

Lee & Seshia, Introduction to Embedded Systems, version 0.5 187

http://LeeSeshia.org

7.2. PARALLELISM

sources of stimulus, and simultaneously control multiple output devices that affect
the physical world. Embedded programs are almost always concurrent programs,
and concurrency is an intrinsic part of the logic of the programs. It is not just a
way to get improved performance. Indeed, finishing a task earlier is not necessarily
better than finishing it later. Timeliness matters, of course; actions performed in the
physical world often need to be done at the right time (neither early nor late). Picture
for example an engine controller for a gasoline engine. Firing the spark plugs earlier
is most certainly not better than firing them later. They must be fired at the right
time.

Just as imperative programs can be executed sequentially or in parallel, concurrent
programs can be executed sequentially or in parallel. Sequential execution of a
concurrent program is done typically today by a multitasking operating system,
which interleaves the execution of multiple tasks in a single sequential stream of
instructions. Of course, the hardware may parallelize that execution if the processor
has a multi-issue or VLIW architecture, getting a path from concurrent program to
sequential stream and back to concurrent program, where the latter translation is
done to improve performance. These multiple translations greatly complicate the
problem of ensuring that things occur at the right time. That problem is addressed
in Chapter 11.

This part studies techniques used to build concurrent programs. We proceed bottom
up, discussing first in this chapter parallelism in the hardware and its implications for
programmers. The next chapter covers the support for concurrent tasks at the level
of the microprocessor hardware and instruction-set architecture (ISA), including in-
terrupts, threads, and processes. The chapter after that discusses synchronization
of concurrent tasks, including semaphores and mutual exclusion. We then conclude
this part by discussing patterns of concurrency that provide more disciplined and un-
derstandable interactions between concurrent components by using message passing
and more structured concurrent models of computation such as process networks and
dataflow.

Parallelism in the hardware, the subject of this chapter, exists to improve perfor-
mance for computation-intensive applications. From the programmer’s perspective,
concurrency arises as a consequence of the hardware designed to improve perfor-
mance, not as a consequence of the application problem being solved. In other
words, the application does not (necessarily) demand that multiple activities pro-
ceed simultaneously, it just demands that things be done very quickly. Of course,

188 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

many interesting applications will combine both forms of concurrency, arising from
parallelism and from application requirements.

The sorts of algorithms found in compute-itensive embedded programs has a pro-
found affect on the design of the hardware. We focus on hardware approaches that
deliver parallelism, namely pipelining, instruction-level parallelism, and multicore
architectures. All have a strong influence on the programming models for embed-
ded software. The reader may wish to review Chapter 8 for an overview of memory
systems, which strongly influence how parallelism is handled.

7.2.2 Pipelining

Most modern processors are pipelined. A simple five-stage pipeline for a 32-bit
machine is shown in Figure 7.2. In the figure, the shaded rectangles are latches,
which are clocked at processor clock rate. On each edge of the clock, the value at
the input is stored in the latch register. The output is then held constant until the next
edge of the clock, allowing the circuits between the latches to settle. This diagram
can be viewed as a synchronous-reactive model of the behavior of the processor.

In the fetch (leftmost) stage of the pipeline, a program counter (PC) provides an
address to the instruction memory. The instruction memory provides encoded in-

PC

In
st

ru
ct

io
n

m
em

or
y

M
ux

Ad
d

4

fetch decode execute memory writeback

Re
gi

st
er

ba
nk

M
ux

A
LU

D
ec

od
e Ze

ro
?

branch
taken

control hazard (conditional branch)
data hazard (computed branch)

da
ta

m
em

or
y

M
ux

data hazard (memory read or ALU result)

Figure 7.2: Simple pipeline (after Patterson and Hennessey (1996)).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 189

http://LeeSeshia.org

7.2. PARALLELISM

structions, which in the figure are assumed to be 32 bits wide. In the fetch stage,
the PC is incremented by 4 (bytes), to become the address of the next instruction,
unless a conditional branch instruction is providing an entirely new address for the
PC. The decode pipeline stage extracts register addresses from the 32-bit instruction
and fetches the data in the specified registers from the register bank. The execute
pipeline stage operates on the data fetched from the registers or on the PC (for a com-
puted branch) using an arithmetic logic unit (ALU), which performs arithmetic and
logical operations. The memory pipeline stage reads or writes to a memory location
given by a register. The writeback pipeline stage stores results in the register file.

DSP processors normally add an extra stage or two that performs a multiplication,
provide separate ALUs for address calculation, and provide a dual data memory
for simultaneous access to two operands (this latter design is known as a Harvard
architecture). But the simple version without the separate ALUs suffices to illustrate
the issues that an embedded system designer faces.

The portions of the pipeline between the latches operate in parallel. Hence, we can
see immediately that there are simultaneously five instructions being executed, each
at a different stage of execution. This is easily visualized with a reservation table
like that in Figure 7.3. The table shows hardware resources that may be simultane-
ously used on the left. In this case, the register bank appears three times because the
pipeline of Figure 7.2 assumes that two reads and write of the register file can occur
in each cycle.

instruction memory
register bank read 1

ALU
data memory

A

register bank read 2

register bank write

A
A

A
A

A

cycle
1 2 3 4 5 6 7 8

B
B
B

B
B

B

C
C
C

C
C

C

D
D
D

D
D

D

hardware resources:
E

E
E

E
E

E

9

Figure 7.3: Reservation table for the pipeline shown in Figure 7.2.

190 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

The reservation table in Figure 7.3 shows a sequence A,B,C,D,E of instructions in
a program. In cycle 5, E is being fetched while D is reading from the register bank,
while C is using the ALU, while B is reading from or writing to data memory, while
A is writing results to register bank. The write by A occurs in cycle 5, but the read
by B occurs in cycle 3. Thus, the value that B reads will not be the value that A
writes. This phenomenon is known as a data hazard, one form of pipeline hazard.
Pipeline hazards are caused by the dashed lines in Figure 7.2. Programmers normally
expect that if instruction A is before instruction B, then any results computed by A
will be available to B, so this behavior may not be acceptable.

Computer architects have tackled the problem of pipeline hazards in a variety of
ways. The simplest technique is known as an explicit pipeline. In this technique,
the pipeline hazard is simply documented, and the programmer (or compiler) must
deal with it. For the example where B reads a register written by A, the compiler may
insert three no-op instructions (which do nothing) between A and B to ensure that
the write occurs before the read. These no-op instructions form a pipeline bubble
that propagates down the pipeline.

A more elaborate technique is to provide interlocks. In this technique, the instruc-
tion decode hardware, upon encountering instruction B that reads a register written
by A, will detect the hazard and delay the execution of B until A has completed the
writeback stage. For this pipeline, B should be delayed by three clock cycles to
permit A to complete, as shown in Figure 7.4. This can be reduced to two cycles if

instruction memory
register bank read 1

ALU
data memory

A

register bank read 2

register bank write

A
A

A
A

A

cycle
1 2 3 4 5 6 7 8

B
B
B

B
B

B

C
C
C

C
C

C

D
D
D

D
D

D

hardware resources:
E

E
E

E
E

E

9 10 11 12

in
te

rlo
ck

Figure 7.4: Reservation table for the pipeline shown in Figure 7.2 with inter-
locks, assuming that instruction B reads a register that is written by instruc-
tion A.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 191

http://LeeSeshia.org

7.2. PARALLELISM

slightly more complex forwarding logic is provided, which detects that A is writing
the same location that B is reading, and directly provides the data rather than requir-
ing the write to occur before the read. Interlocks therefore provide hardware that
automatically inserts pipeline bubbles.

A still more elaborate technique is out-of-order execution, where hardware is pro-
vided that detects a hazard, but instead of simply delaying execution of B, proceeds
to fetch C, and if C does not read registers written by either A or B, and does not
write registers read by B, then proceeds to execute C before B. This further reduces
the number of pipeline bubbles.

Another form of pipeline hazard illustrated in Figure 7.2 is a control hazard. In
the figure, a conditional branch instruction changes the value of the PC if a specified
register has value zero. The new value of the PC is provided (optionally) by the result
of an ALU operation. In this case, if A is a conditional branch instruction, then A has
to have reached the memory stage before the PC can be updated. The instructions
that follow A in memory will have been fetched and will be at the decode and execute
stages already by the time it is determined that those instructions should not in fact
be executed.

Like data hazards, there are multiple techniques for dealing with control hazards. A
delayed branch simply documents the fact that the branch will be taken some num-
ber of cycles after it is encountered, and leaves it up to the programmer (or compiler)
to ensure that the instructions that follow the conditional branch instruction are ei-
ther harmless (like no-ops) or do useful work that does not depend on whether the
branch is taken. An interlock provides hardware to insert bubbles as needed, just as
with data hazards. In the most elaborate technique, speculative execution, hardware
estimates whether the branch is likely to be taken, and begins executing the instruc-
tions it expects to execute. If its expectation is not met, then it undoes any side
effects (such as register writes) that the speculatively executed instructions caused.

Except for explicit pipelines and delayed branches, all of these techniques introduce
variability in the timing of execution of an instruction sequence. Analysis of the
timing of a program can become extremely difficult when there is a deep pipeline
with elaborate forwarding and speculation. Explicit pipelines are relatively com-
mon in DSP processors, which are often applied in contexts where precise timing
is essential. Out-of-order and speculative execution are common in general-purpose
processors, where timing matters only in an aggregate sense. An embedded system

192 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

designer needs to understand the requirements of the application and avoid proces-
sors where the requisite level of timing precision is unachievable.

7.2.3 Instruction-Level Parallelism

Achieving high performance demands parallelism in the hardware. Such parallelism
can take two broad forms, multicore architectures, described later in Section 7.2.4,
or instruction-level parallelism (ILP), which is the subject of this section. A pro-
cessor supporting ILP is able to perform multiple independent operations in each
instruction cycle. We discuss four major forms of ILP, CISC instructions, subword
parallelism, superscalar, and VLIW.

CISC Instructions

A processor with complex (and typically, rather specialized) instructions is called a
CISC machine (complex instruction set computer). The philosophy behind such
processors is distinctly different from that of RISC machines (reduced instruction
set computers) (Patterson and Ditzel, 1980). DSPs are typically CISC machines,
and include instructions specifically supporting FIR filtering (and often other algo-
rithms such as FFTs (fast Fourier transforms) and Viterbi decoding). In fact, to
qualify as a DSP, a processor must be able to perform FIR filtering in one instruction
cycle per tap.

Example 7.6: The Texas Instruments TMS320C54x family of DSP pro-
cessors is intended to be used in power-constrained embedded applications
that demand high signal processing performance, such as wireless commu-
nication systems and personal digital assistants (PDAs). The inner loop of
the FIR computation of (7.1) is

1 RPT numberOfTaps - 1
2 MAC *AR2+, *AR3+, A

The first instruction illustrates the zero-overhead loops commonly found
in DSPs. The instruction that comes after it will execute a number of
times equal to one plus the argument of the RPT instruction. The MAC

Lee & Seshia, Introduction to Embedded Systems, version 0.5 193

http://LeeSeshia.org

7.2. PARALLELISM

instruction is a multiply-accumulate instruction, also prevalent in DSP
architectures. It has three arguments specifying the following calculation,

a := a+ x∗ y ,

where a is the contents of an accumulator register named A, and x and y are
values found in memory. The addresses of these values are contained by
auxiliary registers AR2 and AR3. These registers are incremented automat-
ically after the access. Moreover, these registers can be set up to implement
circular buffers, as described in the box on page 185. The C54x processor
includes a section of on-chip memory that supports two accesses in a sin-
gle cycle, and as long as the addresses refer to this section of the memory,
the MAC instruction will execute in a single cycle. Thus, each cycle, the
processor performs two memory fetches, one multiplication, one ordinary
addition, and two (possibly modulo) address increments. All DSPs have
similar capabilities.

CISC instructions can get quite esoteric.

Example 7.7: The coefficients of the FIR filter in (7.1) are often sym-
metric, meaning that N is even and

ai = aN−i−1 .

The reason for this is that such filters have linear phase (intuitively, this
means that symmetric input signals result in symmetric output signals, or
that all frequency components are delayed by the same amount). In this
case, we can reduce the number of multiplications by rewriting (7.1) as

y(n) =
(N/2)−1

∑
i=0

ai(x(n− i)+ x(n−N + i+1)) .

The Texas Instruments TMS320C54x instruction set includes a FIRS in-
struction that functions similarly to the MAC in Example 7.6, but using this
calculation rather than that of (7.1). This takes advantage of the fact that

194 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

the C54x has two ALUs, and hence can do twice as many additions as
multiplications. The time to execute an FIR filter now reduces to 1/2 cycle
per tap.

CISC instruction sets have their disadvantages. For one, it is extremely challenging
(perhaps impossible) for a compiler to make optimal use of such an instruction set.
As a consequence, DSP processors are commonly used with code libraries written
and optimized in assembly language.

In addition, CISC instruction sets can have subtle timing issues that can interfere
with achieving hard-real-time deadlines. In the above examples, the layout of data
in memory strongly affects execution times. Even more subtle, the use of zero-
overhead loops (the RPT instruction above) can introduce some subtle problems.
On the TI C54x, interrupts are disabled during repeated execution of the instruction
following the RPT. This can result in unexpectedly long latencies in responding to
interrupts.

Subword Parallelism

Many embedded applications operate on data types that are considerably smaller
than the word size of the processor.

Example 7.8: In Examples 7.3 and 7.4, the data types are typically 8-bit
integers, each representing a color intensity. The color of a pixel may be
represented by three bytes in the RGB format. Each of the RGB bytes has
a value ranging from 0 to 255 representing the intensity of the correspond-
ing color. It would be wasteful of resources to use, say, a 64-bit ALU to
process a single 8-bit number.

To support such data types, some processors support subword parallelism, where a
wide ALU is divided into narrower slices enabling simultaneous arithmetic or logical
operations on smaller words.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 195

http://LeeSeshia.org

7.2. PARALLELISM

Example 7.9: Intel introduced subword parallelism into the widely used
general purpose Pentium processor and called the technology MMX (Eden
and Kagan, 1997). MMX instructions divide the 64-bit datapath into slices
as small as 8 bits, supporting simultaneous identical operations on multi-
ple bytes of image pixel data. The technology has been used to enhance
the performance of image manipulation applications as well as applica-
tions supporting video streaming. Similar techniques were introduced by
Sun Microsystems for SparcTMprocessors (Tremblay et al., 1996) and by
Hewlett Packard for the PA RISC processor (Lee, 1996). Many processor
architectures designed for embedded applications, including many DSP
processors, also support subword parallelism.

A vector processor is one where the instruction set includes operations on multiple
data elements simultaneously. Subword parallelism is a particular form of vector
processing.

Superscalar

Superscalar processors use fairly conventional sequential instruction sets, but the
hardware can simultaneously dispatch multiple instructions to distinct hardware units
when it detects that such simultaneous dispatch will not change the behavior of the
program. That is, the execution of the program is identical to what it would have
been if it had been executed in sequence. Such processors even support out-of-order
execution, where instructions later in the stream are executed before earlier instruc-
tions. Superscalar processors have a significant disadvantage for embedded systems,
which is that execution times may be extremely difficult to predict, and in the context
of multitasking (interrupts and threads), may not even be repeatable. The execution
times may be very sensitive to the exact timing of interrupts, in that small variations
in such timing may have big effects on the execution times of programs.

196 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

VLIW

Processors intended for embedded applications often use VLIW architectures in-
stead of superscalar in order to get more repeatable and predictable timing. VLIW
(very large instruction word) processors include multiple function units, like su-
perscalar processors, but instead of dynamically determining which instructions
can be executed simultaneously, each instruction specifies what each function unit
should do in a particular cycle. That is, a VLIW instruction set combines multi-
ple independent operations into a single instruction. Like superscalar architectures,
these multiple operations are executed simultaneously on distinct hardware. Unlike
superscalar, however, the order and simultaneity of the execution is fixed in the pro-
gram rather than being decided on-the-fly. It is up to the programmer (working at
assembly language level) or the compiler to ensure that the simultaneous operations
are indeed independent. In exchange for this additional complexity in programming,
execution times become repeatable and (often) predictable.

Example 7.10: In Example 7.7, we saw the specialized instruction FIRS
of the C54x architecture that specifies operations for two ALUs and one
multiplier. This can be thought of as a primitive form of VLIW, but subse-
quent generations of processors are much more explicit about their VLIW
nature. The Texas Instruments TMS320C55x, the next generation beyond
the C54x, includes two multiply-accumulate units, and can support instruc-
tions that look like this:

1 MAC *AR2+, *CDP+, AC0
2 :: MAC *AR3+, *CDP+, AC1

Here, AC0 and AC1 are two accumulator registers and CDP is a specialized
register for pointing to filter coefficients. The notation :: means that these
two instructions should be issued and executed in the same cycle. It is up
to the programmer or compiler to determine whether these instructions can
in fact be executed simultaneously. Assuming the memory addresses are
such that the fetches can occur simultaneously, these two MAC instructions
execute in a single cycle, effectively dividing in half the time required to
execute an FIR filter.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 197

http://LeeSeshia.org

7.2. PARALLELISM

For applications demanding higher performance still, VLIW architectures can get
quite elaborate.

Example 7.11: The Texas Instruments c6000 family of processors have a
VLIW instruction set. Included in this family are three subfamilies of pro-
cessors, the c62x and c64x fixed-point processors and the c67x floating-
point processors. These processors are designed for use in wireless infras-
tructure (cellular base stations, adaptive antennas, etc.), telecommunica-
tions infrastructure (voice over IP, video conferencing, etc.), and imaging
applications (medical imaging, surveillance, machine vision or inspection,
radar, etc.).

Example 7.12: The TriMedia processor family from NXP, is aimed at
digital television, and can perform operations like that in (7.2) very ef-
ficiently. NXP Semiconductors used to be part of Philips, a diversified
consumer electronics company that, among many other products, makes
flat-screen TVs. The strategy in the TriMedia architecture is to make
it easier for a compiler to generate efficient code, reducing the need for
assembly-level programming (though it includes specialized CISC instruc-
tions that are difficult for a compiler to exploit). It makes things easier for
the compiler by having a larger register set than is typical (128 registers) a
RISC-like instruction set, where several instructions can be issued simul-
taneously, and hardware supporting IEEE 754 floating point operations.

7.2.4 Multicore Architectures

A multicore machine is a combination of several processors on a single chip. Al-
though multicore machines have existed since the early 1990s, they only recently
have penetrated into general-purpose computing, accounting for much of the interest
in them today. Heterogeneous multicore machines combine a variety of processor
types on a single chip, vs. multiple instances of the same processor type.

198 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

Example 7.13: Texas Instruments OMAP (open multimedia application
platform) architectures are widely used in cell phones, which normally
combine one or more DSP processors with one or more processors that are
closer in style to general-purpose processors. The DSP processors handle
the radio, speech, and media processing (audio, images, and video). The

Fixed-Point Numbers

Many embedded processors provide hardware only for integer arithmetic. Integer
arithmetic, however, can be used for non-whole numbers, with some care. Given,
say, a 16-bit integer, a programmer can imagine a binary point, which is like a
decimal point, except that it separates bits rather than digits of the number. For
example, a 16-bit integer can be used to represent numbers in the range −1.0 to 1.0
(roughly) by placing a (conceptual) binary point just below the high-order bit of the
number, as shown below:

binary point

high-order bit
low-order bit

Without the binary point, a number represented by the 16 bits is a whole number x ∈
{−215, · · · ,215− 1} (assuming the twos-complement binary representation, which
has become nearly universal for signed integers). With the binary point, we interpret
the 16 bits to represent a number y = x/215. Hence, y ranges from −1 to 1− 2−15.
This is known as a fixed-point number. The format of this fixed-point number can
be written 1.15, indicating that there is one bit to the left of the binary point and 15
to the right. When two such numbers are multiplied at full precision, the result is a
32-bit number. The binary point is located as follows:

binary point

high-order bit low-order bit

... Continued on page 200.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 199

http://LeeSeshia.org

7.2. PARALLELISM

Fixed-Point Numbers (continued)

The location of the binary point follows from the law of conservation of bits.
When multiplying two numbers with formats n.m and p.q, the result has format
(n+ p).(m+q). Processors often support such full-precision multiplications, where
the result goes into an accumulator register that has at least twice as many bits as
the ordinary data registers. To write the result back to a data register, however, we
have to extract 16 bits from the 32 bit result. If we extract the shaded bits on page
200, then we preserve the position of the binary point, and the result still represents
a number roughly in the range −1 to 1.

There is a loss of information, however, when we extract 16 bits from a 32-bit
result. First, there is a possibility of overflow, because we are discarding the high-
order bit. Suppose the two numbers being multiplied are both −1, which has binary
representation in twos complement as follows:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When these two number are multiplied, the result has the following bit pattern:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

which in twos complement, represents 1, the correct result. However, when we
extract the shaded 16 bits, the result is now −1! Indeed, 1 is not representable in the
fixed-point format 1.15, so overflow has occurred. Programmers must guard against
this, for example by ensuring that all numbers are strictly less than 1 in magnitude,
prohibiting −1.

A second problem is that when we extract the shaded 16 bits from a 32-bit result,
we discard 15 low-order bits. There is a loss of information here. If we simply
discard the low-order 15 bits, the strategy is known as truncation. If instead we first
add the following bit pattern the 32-bit result, then the result is known as rounding:

00 0 0 0 0 0 0 0 0 0 0 0 0 000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rounding chooses the result that closest to the full-precision result, while truncation
chooses the closest result that is smaller in magnitude.

DSP processors typically perform the above extraction with either rounding or
truncation in hardware when data is moved from an accumulator to a general-
purpose register or to memory.

200 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

Fixed-Point Arithmetic in C

Most C programmers will use float or double data types when performing arith-
metic on non-whole numbers. However, many embedded processors lack hardware
for floating-point arithmetic. Thus, C programs that use the float or double data
types often result in unacceptably slow execution, since floating point must be em-
ulated in software. Programmers are forced to use integer arithmetic to implement
operations on numbers that are not whole numbers. How can they do that?

First, a programmer can interpret a 32-bit int differently from the standard rep-
resentation, using the notion of a binary point, explained in the boxes on pages 199
and 200. However, when a C program specifies that two ints be multiplied, the
result is an int, not the full precision 64-bit result that we need. In fact, the strategy
outlined on page 199, of putting one bit to the left of the binary point and extracting
the shaded bits from the result, will not work, because most of the shaded bits will
be missing from the result. For example, suppose we want to multiply 0.5 by 0.5.
This number can be represented in 32-bit ints as follows:

0 1 0
Without the binary point (which is invisible to C and to the hardware, residing only
in the programmer’s mind), this bit pattern represents the integer 231, a large number
indeed. When multiplying these two numbers, the result is 262, which is not repre-
sentable in an int. Typical processors will set an overflow bit in the processor status
register (which the programmer must check) and deliver as a result the number 0,
which is the low-order 32 bits of the product. To guard against this, a programmer
can shift each 32 bit integer to the right by 16 bits before multiplying. In that case,
the result of the multiply 0.5×0.5 is the following bit pattern:

0 0 1 0
With the binary point as shown, this result is interpreted as 0.25, the correct answer.
Of course, shifting data to the right by 16 bits discards the 16 low-order bits in the
int. There is a loss of precision that amounts to truncation. The programmer may
wish to round instead, adding the int 215 to the numbers before shifting to the right
16 times. Floating-point data types make things easier. The hardware (or software)
keeps track of the amount shifting required and preserves precision when possible.
However, not all embedded processors with floating-point hardware conform with
the IEEE 754 standard. This can complicate the design process for the programmer,
because numerical results will not match those produced by a desktop computer.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 201

http://LeeSeshia.org

7.3. SUMMARY

other processors handle the user interface, database functions, networking,
and downloadable applications. Specifically, the OMAP4440 includes a 1
GHz dual-core ARM Cortex processor, a C64x DSP, a GPU, and an image
signal processor.

For embedded applications, multicore architectures have a significant potential ad-
vantage over single-core architectures because real-time and safety-critical tasks can
have a dedicated processor. This is the reason for the heterogeneous architectures
used for cell phones, since the radio and speech processing functions are hard-real-
time functions with considerable computational load. In such architectures, user
applications cannot interfere with real-time functions.

This lack of interference is more problematic in general-purpose multicore architec-
tures. It is common, for example, to use multi-level caches, where the second or
higher level is shared among the cores. Unfortunately, such sharing makes it very
difficult to isolate the real-time behavior of the programs on separate cores, since
each program can trigger cache misses in another core. Such multi-level caches are
not suitable for real-time applications.

A very different type of multicore architecture that is sometimes used in embedded
applications uses one or more soft cores together with custom hardware on a field-
programmable gate array (FPGA). FPGAs are chips whose hardware function is
programmable using hardware design tools. Soft cores are processors implemented
on FPGAs. The advantage of soft cores is that they can be tightly coupled to custom
hardware more easily than off-the-shelf processors.

7.3 Summary

The choice of processor architecture for an embedded system has important conse-
quences for the programmer. Programmers may need to use assembly language to
take advantage of esoteric architectural features. For applications that require precise
timing, it may be difficult to control the timing of a program because of techniques
in the hardware for dealing with pipeline hazards and parallel resources.

202 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

7. EMBEDDED PROCESSORS

Exercises

1. Consider the reservation table in Figure 7.4. Suppose that the processor in-
cludes forwarding logic that is able to tell that instruction A is writing to the
same register that instruction B is reading from, and that therefore the result
written by A can be forwarded directly to the ALU before the write is done.
Assume the forwarding logic itself takes no time. Give the revised reservation
table. How many cycles are lost to the pipeline bubble?

2. Consider the following instruction, discussed in Example 7.6:

1 MAC *AR2+, *AR3+, A

Suppose the processor has three ALUs, one for each arithmetic operation on
the addresses contained in registers AR2 and AR3 and one to perform the
addition in the MAC multiply-accumulate instruction. Assume these ALUs
each require one clock cycle to execute. Assume that a multiplier also requires
one clock cycle to execute. Assume further that the register bank supports
two reads and two writes per cycle, and that the accumulator register A can be
written separately and takes no time to write. Give a reservation table showing
the execution of a sequence of such instructions.

3. Assuming fixed-point numbers with format 1.15 as described in the boxes on
pages 199 and 200, show that the only two numbers that cause overflow when
multiplied are −1 and −1. That is, if either number is anything other than −1
in the 1.15 format, then extracting the 16 shaded bits in the boxes does not
result in overflow.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 203

http://LeeSeshia.org

EXERCISES

204 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 8

Memory Architectures

Contents
8.1 Memory Technologies . 206

8.1.1 RAM . 206
8.1.2 Non-Volatile Memory 207

8.2 Memory Hierarchy . 209
8.2.1 Memory Maps . 209
Sidebar: Harvard Architecture 211
8.2.2 Register Files . 212
8.2.3 Scratchpads and Caches 213

8.3 Memory Models . 218
8.3.1 Memory Addresses . 218
8.3.2 Stacks . 219
8.3.3 Memory Protection Units 220
8.3.4 Dynamic Memory Allocation 220
8.3.5 Memory Model of C 221

8.4 Summary . 222
Exercises . 224

Many processor architects argue that memory systems have more impact on overall
system performance than data pipelines. This depends, of course, on the application,
but for many applications it is true. There are three main sources of complexity in

205

8.1. MEMORY TECHNOLOGIES

memory. First, it is commonly necessary to mix a variety of memory technologies in
the same embedded system. Many memory technologies are volatile, meaning that
the contents of the memory is lost if power is lost. Most embedded systems need at
least some non-volatile memory and some volatile memory. Moreover, within these
categories, there are several choices, and the choices have significant consequences
for the system designer. Second, memory hierarchy is often needed because mem-
ories with larger capacity and/or lower power consumption are slower. To achieve
reasonable performance at reasonable cost, faster memories must be mixed with
slower memories. Third, the address space of a processor architecture is divided up
to provide access to the various kinds of memory, to provide support for common
programming models, and to designate addresses for interaction with devices other
than memories, such as I/O devices. In this chapter, we discuss these three issues in
order.

8.1 Memory Technologies

In embedded systems, memory issues loom large. The choices of memory technolo-
gies have important consequences for the system designer. For example, a program-
mer may need to worry about whether data will persist when the power is turned
off or a power-saving standby mode is entered. A memory whose contents are lost
when the power is cut off is called a volatile memory. In this section, we discuss
some the available technologies and their tradeoffs.

8.1.1 RAM

In addition to the register file, a microcomputer typically includes some amount of
RAM (random access memory), which is a memory where individual items (bytes
or words) can be written and read one at a time relatively quickly. SRAM (static
RAM) is faster than DRAM (dynamic RAM), but it is also larger (each bit takes
up more silicon area). DRAM holds data for only a short time, so each memory
location must be periodically refreshed. SRAM holds data for as long as power is
maintained. Both types of memories lose their contents if power is lost, so both are
volatile memory, although arguably DRAM is more volatile than SRAM because it
loses its contents even if power is maintained.

206 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

Most embedded computer systems include an SRAM memory. Many also include
DRAM because it can be impractical to provide enough memory with SRAM tech-
nology alone. A programmer that is concerned about the time it takes a program to
execute must be aware of whether memory addresses being accessed are mapped to
SRAM or DRAM. Moreover, the refresh cycle of DRAM can introduce variability
to the access times because the DRAM may be busy with a refresh at the time that
access is requested. In addition, the access history can affect access times. The time
it takes to access one memory address may depend on what memory address was
last accessed.

A manufacturer of a DRAM memory chip will specify that each memory location
must be refreshed, say, every 64 ms, and that a number of locations (a “row”) are
refreshed together. The mere act of reading the memory will refresh the locations
that are read (and locations on the same row), but since applications may not access
all rows within the specified time interval, DRAM has to be used with a controller
that ensures that all locations are refreshed sufficiently often to retain the data. The
memory controller will stall accesses if the memory is busy with a refresh when the
access is initiated. This introduces variability in the timing of the program.

8.1.2 Non-Volatile Memory

Embedded systems invariably need to store data even when the power is turned off.
There are several options for this. One, of course, is to provide battery backup so
that power is never lost. Batteries, however, wear out, and there are better options
available, known collectively as non-volatile memories. An early form of non-
volatile memory was magnetic core memory or just core, where a ferromagnetic
ring was magnetized to store data. The term “core” persists in computing to refer
to computer memories, although this may change as multicore machines become
ubiquitous.

The most basic non-volatile memory today is ROM (read-only memory) or mask
ROM, the contents of which is fixed at the chip factory. This can be useful for mass
produced products that only need to have a program and constant data stored, and
these data never change. Such programs are known as firmware, suggesting that
they are not as “soft” as software. There are several variants of ROM that can be
programmed in the field, and the technology has gotten good enough that these are
almost always used today over mask ROM. EEPROM, electrically-erasable pro-

Lee & Seshia, Introduction to Embedded Systems, version 0.5 207

http://LeeSeshia.org

8.1. MEMORY TECHNOLOGIES

grammable ROM, comes in several forms, but all are capable of being written to.
The write time is typically much longer than the read time, and the number of writes
is limited during the lifetime of the device. A particularly useful form of EEPROM
is flash memory. Flash is commonly used to store firmware and user data that needs
to persist when the power is turned off.

Flash memories, invented by Dr. Fujio Masuoka at Toshiba around 1980, are a par-
ticularly convenient form of non-volatile memory, but they present some interesting
challenges for embedded systems designers. Typically, flash memories have reason-
ably fast read times, but not as fast as SRAM and DRAM, so frequently accessed
data will typically have to be moved from the flash to RAM before being used by a
program. The write times are much longer than the read times, and the total number
of writes are limited, so these memories are not a substitute for working memory.

There are two types of flash memories, known as NOR and NAND flash. NOR flash
has longer erase and write times, but it can be accessed like a RAM. NAND flash
is less expensive and has faster erase and write times, but data must be read a block
at a time, where a block is hundreds to thousands of bits. This means that from
a system perspective it behaves more like a secondary storage device like a hard
disk or optical media like CD or DVD. Both types of flash can only be erased and
rewritten a bounded number of times, typically under 1,000,000 for NOR flash and
under 10,000,000 for NAND flash, as of this writing.

The longer access times, limited number of writes, and block-wise accesses (for
NAND flash), all complicate the software design problem for embedded system de-
signers. These properties must be taken into account.

Disk memories are also non-volatile. They can store very large amounts of data, but
access times can become quite large. In particular, the mechanics of a spinning disk
and a read-write head require that the controller wait until the head is positioned
over the requested location before the data at that location can be read. The time
this takes is highly variable. Disks are also more vulnerable to vibration than the
solid-state memories discussed above, and hence are more difficult to use in many
embedded applications.

208 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

8.2 Memory Hierarchy

Many applications require substantial amounts of memory, more than what is avail-
able on-chip in a microcomputer. Many processors use a memory hierarchy, which
combines different memory technologies to increase the overall memory capacity
while optimizing cost, latency, and energy consumption. Typically, a relatively small
amount of on-chip SRAM will be used with a larger amount of off-chip DRAM.
These can be further combined with a third level, such as disk drives, which have
very large capacity, but lack random access and hence can be quite slow to read and
write.

The application programmer may not be aware that memory is fragmented across
these technologies. A commonly used scheme called virtual memory makes the
diverse technologies look to the programmer like a contiguous address space. The
operating system and/or the hardware provides address translation, which converts
logical addresses in the address space to physical locations in one of the available
memory technologies. This translation is often assisted by a specialized piece of
hardware called a translation lookaside buffer (TLB), which can speed up some
address translations. For an embedded system designer, these techniques can create
serious problems because they make it very difficult to predict or understand how
long memory accesses will take. Thus, embedded system designers typically need
to understand the memory system more deeply than general-purpose programmers.

8.2.1 Memory Maps

A memory map for a processor defines how addresses get mapped to hardware. The
total size of the address space is constrained by the address width of the processor.
A 32-bit processor, for example, can address 232 locations, or 4 gigabytes (GB),
assuming each address refers to one byte. The address width typically matches the
word width, except for 8-bit processors, where the address width is typically higher
(often 16 bits). An ARM CortexTM- M3 architecture, for example, has the memory
map shown in Figure 8.1. Other architectures will have other layouts, but the pattern
is familiar.

Notice that this architecture separates addresses used for program memory (labeled
A in the figure) from those used for data memory (B and D). This (typical) pattern
allows these memories to be accessed via separate buses, permitting instructions and

Lee & Seshia, Introduction to Embedded Systems, version 0.5 209

http://LeeSeshia.org

8.2. MEMORY HIERARCHY

program memory
(�ash)

data memory
(SRAM)

peripherals
(memory-mapped registers)

data memory
(DRAM)

0x00000000

0x1FFFFFFF
0x20000000

0x3FFFFFFF
0x40000000

0x5FFFFFFF
0x60000000

0x9FFFFFFF

} 0.
5

G
B

} 0.
5

G
B

} 0.
5

G
B

1.
0

G
B}

external devices
(memory mapped)

0xA0000000

0xDFFFFFFF

1.
0

G
B}

peripherals

0xE0000000

0xFFFFFFFF} 0.
5

G
B

private peripheral bus

A

B

C

D

E

F

G

Figure 8.1: Memory map of an ARM CortexTM- M3 architecture.

210 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

data to be fetched simultaneously. This effectively doubles the memory bandwidth.
Such a separation of program memory from data memory is known as a Harvard
architecture. It contrasts with the classical von Neumann architecture, which
stores program and data in the same memory.

Any particular realization in silicon of this architecture is constrained by this mem-
ory map. For example, the Luminary Micro1 LM3S8962 controller, which includes
an ARM CortexTM - M3 core, has 256 KB of on-chip flash memory, nowhere near
the total of 0.5 GB that the architecture allows. This memory is mapped to addresses
0x00000000 through 0x0003FFFF. The remaining addresses that the architec-
ture allows for program memory, 0x00040000 through 0x1FFFFFFF are “re-
served,” meaning that they should not be used by a compiler targeting this particular
device.

The LM3S8962 also has 64 KB of SRAM, mapped to addresses 0x20000000
through 0x2000FFFF, a small portion of area D in the figure. It also includes
a number of on-chip peripherals, which are devices that are accessed by the pro-
cessor using some of the memory addresses in the range from 0x40000000 to
0x5FFFFFFF (area C). These include timers, GPIO, UARTs, ADCs, and other I/O
devices. Each of these devices occupies a few of the memory addresses by providing
memory-mapped registers. Some of these registers may be written to by the pro-
cessor to configure and/or control the peripheral, or to provide data to be produced
on an output. Some of the registers may be read to retrieve input data obtained by

1Luminary Micro was acquired by Texas Instruments in 2009.

Harvard Architecture

The term “Harvard architecture” comes from the Mark I computer, which used dis-
tinct memories for program and data. The Mark I was made with electro-mechanical
relays by IBM and shipped to Harvard in 1944. The machine stored instructions on
punched tape and data in electro-mechanical counters. It was called the Automatic
Sequence Controlled Calculator (ASCC) by IBM, and was devised by Howard H.
Aiken to numerically solve differential equations. Rear Admiral Grace Murray Hop-
per of the United States Navy and funding from IBM were instrumental in making
the machine a reality.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 211

http://LeeSeshia.org

8.2. MEMORY HIERARCHY

the peripheral. A few of the addresses in the private peripheral bus region are used
to access the interrupt controller.

The LM3S8962 is mounted on a printed circuit board that will provide additional de-
vices such as DRAM data memory and additional external devices. As shown in Fig-
ure 8.1, these will be mapped to memory addresses in the range from 0x60000000
to 0xDFFFFFFF (area E). For example, Luminary Micro sells a Stellaris R© LM3S8962
Evaluation Board that includes no additional external memory, but does add a few
external devices such as an LCD display, a MicroSD slot for additional flash mem-
ory, and a USB interface.

This leaves many memory addresses unused. ARM has introduced a clever way to
take advantage of these unused addressed called bit banding, where some of the
unused addresses can be used to access individual bits rather than entire bytes or
words in the memory and peripherals. This makes certain operations more efficient,
since extra instructions to mask the desired bits become unnecessary.

8.2.2 Register Files

The most tightly integrated memory in a processor is the register file. Each regis-
ter in the file stores a word. The size of a word is a key property of a processor
architecture. It is one byte on an 8-bit microcontroller, four bytes on a 32-bit mi-
croprocessor, and eight bytes on a 64-bit microprocessor. The register file may be
implemented directly using flip flops in the processor circuitry, or the registers may
be collected into a single memory bank, typically using the same SRAM technology
discussed above.

The number of registers in a processor is usually small. The reason for this is not so
much the cost of the register file hardware, but rather the cost of bits in an instruction
word. An instruction set architecture (ISA) typically provides instructions that can
access one, two, or three registers. To efficiently store programs in memory, these
instructions cannot require too many bits to encode them, and hence they cannot
devote too many bits to identifying the registers. If the register file has 16 registers,
then each reference to a register requires 4 bits. If an instruction can refer to 3
registers, that requires a total of 12 bits. If an instruction word is 16 bits, say, then
this leaves only 4 bits for other information in the instruction, such as the identity of

212 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

the instruction itself, which also must be encoded in the instruction. This identifies,
for example, whether the instruction specifies that two registers should be added or
subtracted, with the result stored in the third register.

8.2.3 Scratchpads and Caches

Many embedded applications mix memory technologies. For example, a close mem-
ory (SRAM) is typically used to store working data temporarily while the program
operates on it. If the close memory has a distinct set of addresses and the program
is responsible for moving data into it or out of it to the distant memory, then it is
called a scratchpad. If the close memory duplicates data in the distant memory
with the hardware automatically handling the copying to and from, then it is called a
cache. For embedded applications with tight real-time constraints, cache memories
present some formidable obstacles because their timing behavior can vary substan-
tially in ways that are difficult to predict. On the other hand, manually managing the
data in a scratchpad memory can be quite tedious for a programmer, and automatic
compiler-driven methods for doing so are in their infancy.

As explained in Section 8.2.1, an architecture will typically support a much larger
address space than what can actually be stored in the physical memory in an im-
plementation of the processor. If the processor is equipped with a memory man-
agement unit (MMU), then programs reference logical addresses and the MMU
translates these to physical addresses. For example, using the memory map in
Figure 8.1, a process might be allowed to use logical addresses 0x60000000 to
0x9FFFFFFF (area D in the figure), for a total of 1 GB of addressable data mem-
ory. The MMU may implement a cache that uses however much physical memory
is present in area B. When the program provides a memory address, the MMU de-
termines whether that location is cached in area B, and if it is, translates the address
and completes the fetch. If it is not, then we have a cache miss, and the MMU han-
dles fetching data from the secondary memory (in area D) into the cache (area B).
If the location is also not present in area D, then the MMU triggers a page fault,
which can result in software handling movement of data from disk into the memory.
Thus, the program is given the illusion of a vast amount of memory, with the cost
that memory access times become quite difficult to predict. It is not uncommon for
memory access times to vary by a factor of 1000 or more, depending on how the
logical addresses happen to be disbursed across the physical memories.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 213

http://LeeSeshia.org

8.2. MEMORY HIERARCHY

Parameter Description
m Number of physical address bits
S = 2s Number of (cache) sets
E Number of lines per set
B = 2b Block size in bytes
t = m− s−b Number of tag bits
C Overall cache size in bytes

Table 8.1: Summary of cache parameters.

Given this sensitivity of execution time to the memory architecture, it is important
to understand the organization and operation of caches. That is the focus of this
section.

Basic Cache Organization

Suppose that each address in a memory system comprises m bits, for a maximum
of M = 2m unique addresses. A cache memory is organized as an array of S = 2s

cache sets. Each cache set in turn comprises E cache lines. A cache line stores
a single block of B = 2b bytes of data, along with valid and tag bits. The valid
bit indicates whether the cache line stores meaningful information, while the tag
(comprising t = m− s− b bits) uniquely identifies the block that is stored in the
cache line. Figure 8.2 depicts the basic cache organization and address format.

Thus, a cache can be characterized by the tuple (m,S,E,B). These parameters are
summarized in Table 8.1. The overall cache size C is given as C = S×E×B bytes.

Suppose a program reads the value stored at address a. Let us assume for the rest of
this section that this value is a single data word w. The CPU first sends address a to
the cache to determine if it is present there. The address a can be viewed as divided
into three segments of bits: the top t bits encode the tag, the next s bits encode the
set index, and the last b bits encode the position of the word within a block. If w is
present in the cache, the memory access is a cache hit; otherwise, it is a cache miss.

Caches are categorized into classes based on the value of E. We next review these
categories of cache memories, and describe briefly how they operate.

214 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

. .
 .

Set 0

Set 1

Set S

Tag Set index Block offset
m-1 0

s bitst bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

Figure 8.2: Cache Organization and Address Format. A cache can be
viewed as an array of sets, where each set comprises of one or more cache
lines. Each cache line includes a valid bit, tag bits, and a cache block.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 215

http://LeeSeshia.org

8.2. MEMORY HIERARCHY

Direct-Mapped Caches

A cache with exactly one line per set (E = 1) is called a direct-mapped cache. For
such a cache, given a word w requested from memory, where w is stored at address
a, there are three steps in determining whether w is a cache hit or a miss:

1. Set Selection: The s bits encoding the set are extracted from address a and
used as an index to select the corresponding cache set.

2. Line Matching: The next step is to check whether a copy of w is present in the
unique cache line for this set. This is done by checking the valid and tag bits
for that cache line. If the valid bit is set and the tag bits of the line match those
of the address a, then the word is present in the line and we have a cache hit.
If not, we have a cache miss.

3. Word Selection: Once the word is known to the present in the cache block, we
use the b bits of the address a encoding the word’s position within the block
to read that data word.

On a cache miss, the word w must be requested from the next level in the memory
hierarchy. Once this block has been fetched, it will replace the block that currently
occupies the cache line for w.

While a direct-mapped cache is simple to understand and to implement, it can suffer
from conflict misses. A conflict miss occurs when words in two or more blocks that
map to the same cache line are repeatedly accessed so that accesses to one block
evict the other, resulting in a string of cache misses. Set-associative caches can help
to resolve this problem.

Set-Associative Caches

A set-associative cache can store more than one cache line per set. If each set in
a cache can store E lines, where 1 < E < C/B, then the cache is called an E-way
set-associative cache. The word “associative” comes from associative memory,
which is a memory that is addressed by its contents. That is, each word in the
memory is stored along with a unique key and is retrieved using the key rather than
the physical address indicating where it is stored. An associative memory is also
called a content-addressable memory.

216 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

For a set-associative cache, accessing a word w at address a consists of the following
steps:

1. Set Selection: This step is identical to a direct-mapped cache.

2. Line Matching: This step is more complicated than for a direct-mapped cache
because there could be multiple lines that w might lie in; i.e., the tag bits of a
could match the tag bits of any of the lines in its cache set. Operationally, each
set in a set-associative cache can be viewed as an associative memory, where
the keys are the concatenation of the tag and valid bits, and the data values are
the contents of the corresponding block.

3. Word Selection: Once the cache line is matched, the word selection is per-
formed just as for a direct-mapped cache.

In the case of a miss, cache line replacement can be more involved than it is for a
direct-mapped cache. For the latter, there is no choice in replacement since the new
block will displace the block currently present in the cache line. However, in the case
of a set-associative cache, we have an option to select the cache line from which to
evict a block. A common policy is least-recently used (LRU), in which the cache
line whose most recent access occurred the furthest in the past is evicted. Another
common policy is first-in, first-out (FIFO), where cache line that is evicted is the
one that has been in the cache for the longest, regardless of when it was last accessed.
Good cache replacement policies are essential for good cache performance. Note
also that implementing these cache replacement policies requires additional memory
to remember the access order, with the amount of additional memory differing from
policy to policy and implementation to implementation.

A fully-associative cache is one where E = C/B, i.e., there is only one set. For
such a cache, line matching can be quite expensive for a large cache size because an
associative memory is expensive. Hence, fully-associative caches are typically only
used for small caches, such as the translation lookaside buffers (TLBs) mentioned
earlier.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 217

http://LeeSeshia.org

8.3. MEMORY MODELS

8.3 Memory Models

A memory model defines how memory is used by programs. The hardware, the
operating system (if any), and the programming language and its compiler all con-
tribute to the memory model. This section discusses a few of the common issues
that arise with memory models.

8.3.1 Memory Addresses

At a minimum, a memory model defines a range of memory addresses accessible to
the program. In C, these addresses are stored in pointers. In a 32-bit architecture,
memory addresses are 32-bit unsigned integers, capable of representing addresses 0
to 232−1, which is about four billion addresses. Each address refers to a byte (eight
bits) in memory. The C char data type references a byte. The C int data type
references a sequence of four bytes, able to represent integers from −231 to 231−1.
A double data type refers to a sequence of eight bytes encoded according to the
IEEE floating point standard (IEEE 754).

Since a memory address refers to a byte, when writing a program that directly ma-
nipulates memory addresses, there are two critical compatibility concerns. The first
is the alignment of the data. An int will typically occupy four consecutive bytes
starting at an address that is a multiple of four. In hexadecimal notation these ad-
dresses always end in 0, 4, 8, or c.

The second concern is the byte order. The first byte (at an address ending in 0, 4,
8, or c), may represent the eight low order bits of the int (a representation called
little endian), or it may represent the eight high order bits of the int (a representa-
tion called big endian). Unfortunately, although many data representation questions
have become universal standards (such as the bit order in a byte), the byte order
is not one those questions. Intel’s x86 architectures and ARM processors, by de-
fault, use a little-endian representation, whereas IBM’s PowerPC uses big endian.
Some processors support both. Byte order also matters in network protocols, which
generally use big endian.

The terminology comes from Gullivers Travels, by Jonathan Swift, where a royal
edict in Lilliput requires cracking open one’s soft-boiled egg at the small end, while
in the rival kingdom of Blefuscu, inhabitants crack theirs at the big end.

218 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

8.3.2 Stacks

A stack is a region of memory that is dynamically allocated to the program in a
last-in, first-out (LIFO) pattern. A stack pointer (typically a register) contains the
memory address of the top of the stack. When an item is pushed onto the stack, the
stack pointer is incremented and the item is stored at the new location referenced
by the stack pointer. When an item is popped off the stack, the memory location
referenced by the stack pointer is (typically) copied somewhere else (e.g. into a
register) and the stack pointer is decremented.

Stacks are typically used to implement procedure calls. Given a procedure call in
C, for example, the compiler produces code that pushes onto the stack the location
of the instruction to execute upon returning from the procedure, the current value
of some or all of the machine registers, and the arguments to the procedure, and
then sets the program counter equal to the location of the procedure code. The data
for a procedure that is pushed onto the stack is known as the stack frame of that
procedure. When a procedure returns, the compiler pops its stack frame, retrieving
finally the program location at which to resume execution.

For embedded software, it can be disastrous if the stack pointer is incremented
beyond the memory allocated for the stack. Such a stack overflow can result in
overwriting memory that is being used for other purposes, leading to unpredictable
results. Bounding the stack usage, therefore, is an important part of the design prob-
lem. Note that this becomes particularly difficult with recursive programs, where a
procedure calls itself. Embedded software designers often avoid using recursion to
circumvent this difficulty.

More subtle errors can arise as a result of misuse or misunderstanding of the stack.
Consider the following C program:

1 int* foo(int a) {
2 int b;
3 b = a * 10;
4 return &b;
5 }
6 int main(void) {
7 int* c;
8 c = foo(10);
9 ...

Lee & Seshia, Introduction to Embedded Systems, version 0.5 219

http://LeeSeshia.org

8.3. MEMORY MODELS

10 }

The variable b is a local variable, with its memory on the stack. When the procedure
returns, the variable c will contain a pointer to memory location above the stack
pointer. The contents of that memory location will be overwritten when items are
next pushed onto the stack. It is therefore incorrect for the procedure foo to return
a pointer to b. By the time that pointer is de-referenced (i.e. if a line in main refers
to *c after line 8), the memory location may contain something entirely different
from what was assigned in foo. Unfortunately, C provides no protection against
such errors.

8.3.3 Memory Protection Units

A key issue in systems that support multiple simultaneous tasks is preventing one
task from disrupting the execution of another. This is particularly important in em-
bedded applications that permit downloads of third party software, but it can also
provide an important defense against software bugs in safety-critical applications.

Many processors provide memory protection in hardware. Tasks are assigned their
own address space, and if a task attempts to access memory outside its own address
space, a segmentation fault or other exception results. This will typically result in
termination of the offending application.

8.3.4 Dynamic Memory Allocation

General-purpose software applications often have indeterminate requirements for
memory, depending on parameters and/or user input. To support such applications,
computer scientists have developed dynamic memory allocation schemes, where a
program can at any time request that the operating system allocate additional mem-
ory. The memory is allocated from a data structure known as a heap, which facil-
itates keeping track of which portions of memory are in use by which application.
Memory allocation occurs via an operating system call (such as malloc in C).
When the program no longer needs access to memory that has been so allocated, it
deallocates the memory (by calling free in C).

Support for memory allocation often (but not always) includes garbage collection.
For example, garbage collection is intrinsic in the Java programming language. A

220 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

garbage collector is a task that runs either periodically or when memory gets tight
that analyzes the data structures that a program has allocated and automatically frees
any portions of memory that are no longer referenced within the program. When
using a garbage collector, in principle, a programmer does not need to worry about
explicitly freeing memory.

With or without garbage collection, it is possible for a program to inadvertently
accumulate memory that is never freed. This is known as a memory leak, and for
embedded applications, which typically must continue to execute for a long time,
it can be disastrous. The program will eventually fail when physical memory is
exhausted.

Another problem that arises with memory allocation schemes is memory fragmen-
tation. This arises when a program chaotically allocates and deallocates memory in
varying sizes. A fragmented memory has allocated and free memory chunks inter-
spersed, and often the free memory chunks become too small to use. In this case,
defragmentation is required.

Defragmentation and garbage collection are both very problematic for real-time sys-
tems. Straightforward implementations of these tasks require all other executing
tasks to be stopped while the defragmentation or garbage collection is performed.
Implementations using such “stop the world” techniques can have substantial pause
times, running sometimes for many milliseconds. Other tasks cannot execute during
this time because references to data within data structures (pointers) are inconsistent
during the task. A technique that can reduce pause times is incremental garbage
collection, which isolates sections of memory and garbage collects them separately.
As of this writing, such techniques are experimental and not widely deployed.

8.3.5 Memory Model of C

C programs store data on the stack, on the heap, and in memory locations fixed by
by the compiler. Consider the following C program:

1 int a = 2;
2 void foo(int b, int* c) {
3 ...
4 }
5 int main(void) {
6 int d;

Lee & Seshia, Introduction to Embedded Systems, version 0.5 221

http://LeeSeshia.org

8.4. SUMMARY

7 int* e;
8 d = ...; // Assign some value to d.
9 e = malloc(sizeInBytes); // Allocate memory for e.

10 *e = ...; // Assign some value to e.
11 foo(d, e);
12 ...
13 }

In this program, the variable a is a global variable because it is declared outside
any procedure definition. The compiler will assign it a fixed memory location. The
variables b and c are parameters, which are allocated locations on the stack when
the procedure foo is called (a compiler could also put them in registers rather than
on the stack). The variables d and e are automatic variables or local variables.
They are declared within the body of a procedure (in this case, main). The compiler
will allocate space on the stack for them.

When the procedure foo is called on line 11, the stack location for b will acquire
a copy of the value of variable d assigned on line 8. This is an example of pass
by value, where a parameter’s value is copied onto the stack for use by the called
procedure. The data referred to by the pointer e, on the other hand, is stored in
memory allocated on the heap, and then it is passed by reference (the pointer to
it e is passed by value). The address is stored in the stack location for c. If foo
includes an assignment to *c, then then after foo returns, that value can be read by
dereferencing e.

8.4 Summary

An embedded system designer needs to understand the memory architecture of the
target computer and the memory model of the programming language. Incorrect
uses of memory can lead to extremely subtle errors, some of which will not show up
in testing. Errors that only show up in a fielded product can be disastrous, for both
the user of the system and the technology provider.

Specifically, a designer needs to understand which portions of the address space
refer to volatile and non-volatile memory. For time-sensitive applications (which
is most embedded systems), the designer also needs to be aware of the memory
technology and cache architecture (if any) in order to understand execution times of

222 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

the program. In addition, the programmer needs to understand the memory model
of the programming language in order to avoid reading data that may be invalid. In
addition, the programmer needs to be very careful with dynamic memory allocation,
particularly for embedded systems that are expected to run for a very long time.
Exhausting the available memory can cause system crashes.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 223

http://LeeSeshia.org

EXERCISES

Exercises

1. Consider the function compute variance listed below, which computes
the variance of integer numbers stored int the array data.

1 int data[N];
2

3 int compute_variance() {
4 int sum1 = 0, sum2 = 0, result;
5 int i;
6

7 for(i=0; i < N; i++) {
8 sum1 += data[i];
9 }

10 sum1 /= N;
11

12 for(i=0; i < N; i++) {
13 sum2 += data[i] * data[i];
14 }
15 sum2 /= N;
16

17 result = (sum2 - sum1*sum1);
18

19 return result;
20 }

Suppose this program is executing on a 32-bit processor with a direct-mapped
cache with parameters (m,S,E,B) = (32,8,1,8). We make the following ad-
ditional assumptions:

• An int is 4 bytes wide.

• sum1, sum2, result, and i are all stored in registers.

• data is stored in memory starting at address 0x0.

Answer the following questions:

(a) Consider the case where N is 16. How many cache misses will there be?

(b) Now suppose that N is 32. Recompute the number of cache misses.

(c) Now consider executing for N = 16 on a 2-way set-associative cache with
parameters (m,S,E,B) = (32,8,2,4). In other words, the block size is
halved, while there are two cache lines per set. How many cache misses
would the code suffer?

224 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

8. MEMORY ARCHITECTURES

2. Recall from Section 8.2.3 that caches use the middle range of address bits as
the set index and the high order bits as the tag. Why is this done? How might
cache performance be affected if the middle bits were used as the tag and the
high order bits were used as the set index?

Lee & Seshia, Introduction to Embedded Systems, version 0.5 225

http://LeeSeshia.org

EXERCISES

226 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 9

Input and Output

Contents
9.1 I/O Hardware . 228

9.1.1 General-Purpose Digital I/O 230

9.1.2 Serial Interfaces . 233

9.1.3 Parallel Interfaces . 237

9.1.4 Buses . 238

9.2 Sequential Software in a Concurrent World 239
9.2.1 Interrupts and Exceptions 239

9.2.2 Atomicity . 242

Sidebar: Basics: Timers . 242

9.2.3 Interrupt Controllers 244

9.2.4 Modeling Interrupts 245

9.3 The Analog/Digital Interface 249
9.3.1 Digital to Analog and Analog to Digital Converters . . . 250

9.3.2 Signal Conditioning 252

9.3.3 Sampling and Aliasing 255

Sidebar: Probing Further: Impulse Trains 257

9.4 Summary . 259
Exercises . 260

227

9.1. I/O HARDWARE

Because cyber-physical systems integrate computing and physical dynamics, the
mechanisms in processors that support interaction with the outside world are central
to any design. A system designer has to confront a number of issues. First, the
mechanical and electrical properties of the interfaces are important. Incorrect use of
parts may cause a system to malfunction or may reduce its useful lifetime. Second,
in the physical world, many things happen at once. Software, by contrast, is mostly
sequential. Reconciling these two disparate properties is a major challenge, and is
often the biggest risk factor in the design of embedded systems. Incorrect interac-
tions between sequential code and concurrent events in the physical world can cause
dramatic system failures. Third, the physical world functions in a multidimensional
continuum of time and space. It is an analog world. The world of software, how-
ever, is digital, and strictly quantized. Measurements of physical phenomena must
be quantized in both magnitude and time before software can operate on them. And
commands to the physical world that originate from software will also be intrinsi-
cally quantized. Understanding the effects of this quantization is essential. In this
chapter, we deal with these three issues in order.

9.1 I/O Hardware

Embedded processors, be they microcontrollers, DSP processors, or general-purpose
processors, typically include a number of input and output (I/O) mechanisms on
chip, exposed to designers as pins of the chip. In this section, we review some of the
more common interfaces provided, illustrating their properties through the following
running example.

Example 9.1: Figure 9.1 shows an evaluation board for the Luminary
Micro Stellaris R© microcontroller, which is an ARM CortexTM- M3 32-
bit processor. The microcontroller itself is in the center below the graph-
ics display. Many of the pins of the microcontroller are available at the
connectors shown on either side of the microcontroller and at the top and
bottom of the board. Such a board would typically be used to prototype an
embedded application, and in the final product it would be replaced with a
custom circuit board that includes only the hardware required by the appli-
cation. An engineer will develop software for the board using an integrated

228 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable
�ash

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

Figure 9.1: Stellaris R©LM3S8962 evaluation board (Luminary Micro R©,
2008a). (Luminary Micro was acquired by Texas Instruments in 2009.)

development environment (IDE) provided by the vendor and load the soft-
ware onto flash memory to be inserted into the slot at the bottom of the
board. Alternatively, software might be loaded onto the board through the
USB interface at the top from the development computer.

The evaluation board in the above example is more than a processor since it includes
a display and various hardware interfaces (switches and a speaker, for example).
Such a board is often called a single-board computer or a microcomputer board.
We next discuss a few of the interfaces provided by a microcontroller or single-board
computer. For a more comprehensive description of the many kinds of I/O interfaces
in use, we recommend Valvano (2007) and Derenzo (2003).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 229

http://LeeSeshia.org

9.1. I/O HARDWARE

9.1.1 General-Purpose Digital I/O

Embedded system designers frequently need to connect specialized or custom hard-
ware to embedded processors. Many embedded processors have a number general-
purpose I/O pins (GPIO), which enable the software to either read or write voltage
levels representing a logical zero or one. If the processor supply voltage is VDD, in
active high logic a voltage close to VDD represents a logical one, and a voltage near
zero represents a logical zero. In active low logic, these interpretations are reversed.

In many designs, a GPIO pin may be configurable as an output by writing to a
memory-mapped register. This enables software to then write to another memory-
mapped register to set the output voltage to be either high or low. By this mechanism,
software can directly control external physical devices.

However, caution is in order. When interfacing hardware to GPIO pins, a designer
needs to understand the specifications of the device. In particular, the voltage and
current levels vary by device. If a GPIO pin produces an output voltage of VDD when
given a logical one, then the designer needs to know the current limitations before
connecting a device to it. If a device with a resistance of R ohms is connected to it,
for example, then Ohm’s law tells us that the output current will be

I = VDD/R .

It is essential to keep this current within specified tolerances. Going outside these
tolerances could cause the device to overheat and fail. A power amplifier may be
needed to deliver adequate current. An amplifier may also be needed to change
voltage levels.

Example 9.2: The GPIO pins of the Luminary Micro Stel-
laris R©microcontroller shown in Figure 9.1 may be configured to source
or sink varying amounts of current up to 18 mA. There are restrictions
on what combinations of pins can handle such relatively high currents.
For example, Luminary Micro R© (2008b) states “The high-current GPIO
package pins must be selected such that there are only a maximum of two
per side of the physical package ... with the total number of high-current
GPIO outputs not exceeding four for the entire package.” Such constraints
are designed to prevent overheating of the device.

230 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

In addition, it may be important to maintain electrical isolation between processor
circuits and external devices. The external devices may have messy (noisy) electrical
characteristics that will make the processor unreliable if the noise spills over into the
power or ground lines of the processor. Or the external device may operate in a
very different voltage or power regime compared to the processor. Isolation devices
that may be used include opto isolators and transformers. The former convert an
electrical signal in one electrical domain into light, and detect the light in the other
electrical domain and convert it back to an electrical signal. The latter uses inductive
coupling.

GPIO pins can also be configured as inputs, in which case software will be able to
react to externally provided voltage levels. An input pin may be Schmitt triggered,
for example, in which case they have hysteresis, similar to the thermostat of Example
3.5. A Schmitt triggered input pin is less vulnerable to noise. It is named after Otto
H. Schmitt, who invented it in 1934 while he was a graduate student studying the
neural impulse propagation in squid nerves.

Example 9.3: The GPIO pins of the microcontroller shown in Figure 9.1,
when configured as inputs, are Schmitt triggered.

In many applications, several devices may share a single electrical connection. The
designer must take care to ensure that these devices do not simultaneously drive the
voltage of this single electrical connection to different values, resulting in a short
circuit that can cause overheating and device failure.

Example 9.4: Consider a factory floor where several independent mi-
crocontrollers are all able to turn off a piece of machinery by asserting a
logical zero on an output GPIO line. Such a design may provide additional
safety because the microcontrollers may be redundant, so that failure of
one does not prevent a safety-related shutdown from occurring. If all of
these GPIO lines are wired together to a single control input of the piece
of machinery, then we have to take precautions to ensure that the micro-
controllers do not short each other out. This would occur if one micro-
controller attempts to drive the shared line to a high voltage while another
attempts to drive the same line to a low voltage.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 231

http://LeeSeshia.org

9.1. I/O HARDWARE

microcontroller

register

drive
transistor

GPIO
pin

Figure 9.2: An open collector circuit for a GPIO pin.

GPIO outputs may use open collector circuits, as shown in Figure 9.2. In such a cir-
cuit, writing a logical one into the (memory mapped) register turns on the transistor,
which pulls the voltage on the output pin down to (near) zero. Writing a logical zero
into the register turns off the transistor, which leaves the output pin unconnected, or
“open.”

A number of open collector interfaces may be connected as shown in Figure 9.3. The
shared line is connected to a pull-up resistor, which brings the voltage of the line
up to VDD when all the transistors are turned off. If any one transistor is turned on,
then it will bring the voltage of the entire line down to (near) zero without creating
a short circuit with the other GPIO pins. Logically, all registers must have zeros in
them for the output to be high. If any one of the registers has a one in it, then the
output will be low. Assuming active high logic, the logical function being performed
is NAND, so such a circuit is called a wired NAND. By varying the configuration,
one can similarly create wired OR or wired AND.

The term “open collector” comes from the name for the terminal of a bipolar tran-
sistor. In CMOS technologies, this type of interface will typically be called an open
drain interface. It functions essentially in the same way.

Example 9.5: The GPIO pins of the microcontroller shown in Figure 9.1,
when configured as outputs, may be specified to be open drain circuits.
They may also optionally provide the pull-up resistor, which conveniently
reduces the number of external discrete components required on a printed
circuit board.

232 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

microcontroller
microcontroller

microcontroller

register

drive
transistor

pull-up
resistor

VDD

GPIO pin
GPIO pin

GPIO pin

Figure 9.3: A number of open collector circuits wired together.

GPIO outputs may also be realized with tristate logic, which means that in addition
to producing an output high or low voltage, the pin may be simply turned off. Like an
open-collector interface, this can facilitate sharing the same external circuits among
multiple devices. Unlike an open-collector interface, a tristate design can assert both
high and low voltages, rather than just one of the two.

9.1.2 Serial Interfaces

One of the key constraints faced by embedded processor designers is the need to
have physically small packages and low power consumption. A consequence is that
the number of pins on the processor integrated circuit is limited. Thus, each pin
must be used efficiently. In addition, when wiring together subsystems, the number
of wires needs to be limited to keep the overall bulk and cost of the product in
check. Hence, wires must also be used efficiently. One way to use pins and wires
efficiently is to send information over them serially as sequences of bits. Such an
interface is called a serial interface. A number of standards have evolved for serial
interfaces. Using a standard interface (usually) enables connecting devices from
different manufacturers.

An old but persistent standard, RS-232, standardized by the Electronics Industries
Association (EIA), was first introduced in 1962 to connect teletypes to modems.
This standard defines electrical signals and connector types; it persists because of its
simplicity and because of continued prevalence of aging industrial equipment that

Lee & Seshia, Introduction to Embedded Systems, version 0.5 233

http://LeeSeshia.org

9.1. I/O HARDWARE

DB-9 serial port DB-25 parallel port

USB IEEE 488

Figure 9.4: Connectors for serial and parallel interfaces.

uses it. The standard defines how one device can transmit a byte to another device
asynchronously (meaning that the devices do not share a clock signal). On older PCs,
an RS-232 connection may be provided via a DB-9 connector, as shown in Figure
9.4. A microcontroller will typically use a universal asynchronous receiver/trans-
mitter (UART) to convert the contents of an 8-bit register into a sequence of bits for
transmission over an RS-232 serial link.

For an embedded system designer, a major issue to consider is that RS-232 interfaces
can be quite slow and may slow down the application software, if the programmer
is not very careful.

Example 9.6: All variants of the Atmel AVR microcontroller include a
UART that can be used to provide an RS-232 serial interface. To send a
byte over the serial port, an application program may include the lines

1 while(!(UCSR0A & 0x20));
2 UDR0 = x;

where x is a variable of type uint8 t (a C data type specifying an 8-bit
unsigned integer). The symbols UCSR0A and UDR0 are defined in header

234 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

files provided in the AVR IDE. They are defined to refer to memory loca-
tions corresponding to memory-mapped registers in the AVR architecture.

The first line above executes an empty while loop until the serial transmit
buffer is empty. The AVR architecture indicates that the transmit buffer is
empty by setting the 6-th bit of the memory mapped register UCSR0A to 1.
When that bit becomes 1, the expression !(UCSR0A & 0x20) becomes
0 and the while loop stops looping. The second line loads the value to be
sent, which is whatever the variable x contains, into the memory-mapped
register UDR0.

Suppose you wish to send a sequence of 8 bytes stored in an array y. You
could do this with the C code

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];
4 }

How long would it take to execute this code? Suppose that the serial port is
set to operate at 57600 baud, or bits per second (this is quite fast for an RS-
232 interface). Then after loading UDR0 with an 8-bit value, it will take
8/57600 seconds or about 139 microseconds for the 8-bit value to be sent.
Suppose that the frequency of the processor is operating at 18 MHz (rel-
atively slow for a microcontroller). Then except for the first time through
the for loop, each while loop will need to consume approximately 2500
cycles, during which time the processor is doing no useful work.

To receive a byte over the serial port, a programmer may use the following
C code:

1 while(!(UCSR0A & 0x80));
2 return UDR0;

In this case, the while loop waits until the UART has received an incom-
ing byte. The programmer must ensure that there will be an incoming byte,
or this code will execute forever. If this code is again enclosed in a loop to
receive a sequence of bytes, then the while loop will need to consume a
considerable number of cycles each time it executes.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 235

http://LeeSeshia.org

9.1. I/O HARDWARE

For both sending and receiving bytes over a serial port, a programmer may
use an interrupt instead to avoid having an idle processor that is waiting
for the serial communication to occur. Interrupts will be discussed below.

The RS-232 mechanism is very simple. The sender and receiver first must agree on a
transmission rate (which due to the age of the standard is slow by modern standards).
The sender initiates transmission of a byte with a start bit, which alerts the receiver
that a byte is coming. The sender then clocks out the sequence of bits at the agreed-
upon rate, following them by one or two stop bits. The receiver’s clock resets upon
receiving the start bit and is expected to track the sender’s clock closely enough to
be able to sample the incoming signal sequentially and recover the sequence of bits.
There are many descendants of the standard that support higher rate communication,
such as RS-422, RS-423, etc.

Newer devices designed to connect to personal computers typically use universal
serial bus (USB) interfaces, standardized by a consortium of vendors. USB 1.0
appeared in 1996 and supports a data rate of 12 Mbits/sec. USB 2.0 appeared in
2000 and supports data rates up to 480 Mbits/sec. USB 3.0 appeared in 2008 and
supports data rates up to 4.8 Gbits/sec.

USB is electrically simpler than RS-232 and uses simpler, more robust connectors,
as shown in Figure 9.4. But the USB standard defines much more than electri-
cal transport of bytes, and more complicated control logic is required to support it.
Since modern peripheral devices such as printers, disk drives, and audio and video
devices all include microcontrollers, supporting the more complex USB protocol is
reasonable for these devices.

Another serial interface that is widely implemented in embedded processors is known
as JTAG (joint test action group), or more formally as the IEEE 1149.1 standard
test access port and boundary-scan architecture. This interface appeared in the mid
1980s to solve the problem that integrated circuit packages and printed circuit board
technology had evolved to the point that testing circuits using electrical probes had
become difficult or impossible. Points in the circuit that needed to be accessed be-
came inaccessible to probes. The notion of a boundary scan allows the state of a
logical boundary of a circuit (what would traditionally have been pins accessible to
probes) to be read or written serially through pins that are made accessible. Today,
JTAG ports are widely used to provide a debug interface to embedded processors,

236 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

enabling a PC-hosted debugging environment to examine and control the state of
an embedded processor. The JTAG port is used, for example, to read out the state
of processor registers, to set breakpoints in a program, and to single step through
a program. A newer variant is serial wire debug (SWD), which provides similar
functionality with fewer pins.

There are several other serial interfaces in use today, including for example I2C
(inter-integrated circuit), SPI (serial peripheral interface bus), PCI Express (periph-
eral component interconnect express), FireWire, MIDI (musical instrument digital
interface), and serial versions of SCSI. Each of these has its use. Also, network
interfaces are typically serial.

9.1.3 Parallel Interfaces

A serial interface sends or receives a sequence of bits sequentially over a single line.
A parallel interface uses multiple lines to simultaneously send bits. Of course,
each line of a parallel interface is also a serial interface, but the logical grouping and
coordinated action of these lines is what makes the interface a parallel interface.

Historically, one of the most widely used parallel interfaces is the IEEE-1284 printer
port, which on the IBM PC used a DB-25 connector, as shown in Figure 9.4. This
interface originated in 1970 with the Centronics model 101 printer, and hence is
sometimes called a Centronics printer port. Today, printers are typically connected
using USB or wireless networks.

With careful programming, a group of GPIO pins can be used together to realize a
parallel interface. In fact, embedded system designers sometimes find themselves
using GPIO pins to emulate an interface not supported directly by their hardware.

It seems intuitive that parallel interfaces should deliver higher performance than
serial interfaces, because more wires are used for the interconnection. However,
this is not necessarily the case. A significant challenge with parallel interfaces is
maintaining synchrony across the multiple wires. This becomes more difficult as
the physical length of the interconnection increases. This fact, combined with the
requirement for bulkier cables and more I/O pins has resulted in many traditionally
parallel interfaces being replaced by serial interfaces.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 237

http://LeeSeshia.org

9.1. I/O HARDWARE

9.1.4 Buses

A bus is an interface shared among multiple devices, in contrast to a point-to-point
interconnection linking exactly two devices. Busses can be serial interfaces (such as
USB) or parallel interfaces. A widespread parallel bus is SCSI (pronounced scuzzy,
for small computer system interface), commonly used to connect hard drives and
tape drives to computers. Recent variants of SCSI interfaces, however, depart from
the traditional parallel interface to become serial interfaces. SCSI is an example of a
peripheral bus architecture, used to connect computers to peripherals such as sound
cards and disk drives.

Other widely used peripheral bus standards include the ISA bus (industry standard
architecture, used in the ubiquitous IBM PC architecture), PCI (peripheral compo-
nent interface), and Parallel ATA (advanced technology attachment). A somewhat
different kind of peripheral bus standard is IEEE-488, originally developed more
than 30 years ago to connect automated test equipment to controlling computers.
This interface was designed at Hewlett-Packard and is also widely known as HP-IB
(Hewlett-Packard interface bus) and GPIB (general purpose interface bus). Many
networks also use a bus architecture.

Because a bus is shared among several devices, any bus architecture must include
a media-access control (MAC) protocol to arbitrate competing accesses. A simple
MAC protocol has a single bus master that interrogates bus slaves. USB uses such
a mechanism. An alternative is a time-triggered bus, where devices are assigned
time slots during which they can transmit (or not, if they have nothing to send). A
third alternative is a token ring, where devices on the bus must acquire a token be-
fore they can use the shared medium, and the token is passed around the devices
according to some pattern. A fourth alternative is to use a bus arbiter, which is a cir-
cuit that handles requests for the bus according to some priorities. A fifth alternative
is collision sense multiple access (CSMA), where devices simply begin using the
medium, detect collisions, and try again later when a collision occurs.

In all cases, sharing of the physical medium has implications on the timing of appli-
cations.

Example 9.7: A peripheral bus provides a mechanism for external de-
vices to communicate with a CPU. If an external device needs to transfer
a large amount of data to the main memory, it may be inefficient and/or

238 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

disruptive to require the CPU to perform each transfer. An alternative is
direct memory access (DMA). In the DMA scheme used on the ISA bus,
the transfer is performed by a separate device called a DMA controller
which takes control of the bus and transfers the data. In some more re-
cent designs, such as PCI, the external device directly takes control of the
bus and performs the transfer without the help of a dedicated DMA con-
troller. In both cases, the CPU is free to execute software while the transfer
is occurring, but if the executed code needs access to the memory or the
peripheral bus, then the timing of the program is disrupted by the DMA.
Such timing effects can be difficult to analyze.

9.2 Sequential Software in a Concurrent World

As we saw in Example 9.6, when software interacts with the external world, the
timing of the execution of the software may be strongly affected. Software is in-
trinsically sequential, typically executing as fast as possible. The physical world,
however, is concurrent, with many things happening at once, and with the pace at
which they happen determined by their physical properties. Bridging this mismatch
in semantics is one of the major challenges that an embedded system designer faces.
In this section, we discuss some of the key mechanisms for accomplishing this.

9.2.1 Interrupts and Exceptions

An interrupt is a mechanism for pausing execution of whatever a processor is cur-
rently doing and executing a pre-defined code sequence called an interrupt service
routine (ISR) or interrupt handler. Three kinds of events may trigger an interrupt.
One is a hardware interrupt, some external hardware changes the voltage level on
an interrupt request line. In the case of a software interrupt, the program that is
executing triggers the interrupt by executing a special instruction or by writing to a
memory-mapped register. A third variant is called an exception, where the interrupt
is triggered by internal hardware that detects a fault, such as a segmentation fault.

For the first two variants, once the ISR completes, the program that was interrupted
resumes where it left off. In the case of an exception, once the ISR has completed,

Lee & Seshia, Introduction to Embedded Systems, version 0.5 239

http://LeeSeshia.org

9.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

the program that triggered the exception is not normally resumed. Instead, the pro-
gram counter is set to some fixed location where, for example, the operating system
may terminate the offending program.

Upon occurrence of an interrupt trigger, the hardware must first decide whether to
respond. If interrupts are disabled, it will not respond. The mechanism for enabling
or disabling interrupts varies by processor. Moreover, it may be that some interrupts
are enabled and others are not. Interrupts and exceptions generally have priorities,
and an interrupt will be serviced only if the processor is not already in the middle of
servicing an interrupt with a higher priority. Typically, exceptions have the highest
priority and are always serviced.

When the hardware decides to service an interrupt, it will usually first disable in-
terrupts, push the current program counter and processor status register(s) onto the
stack, and begin executing the instruction at a designated address, which will nor-
mally contain a jump to an ISR. The ISR must store on the stack the values currently
in any registers that it will use, and restore their values before returning from the
interrupt, so that the interrupted program can resume where it left off. Either the
interrupt service routine or the hardware must also re-enable interrupts before re-
turning from the interrupt.

Example 9.8: The ARM CortexTM- M3 is a 32-bit microcontroller used
for example in industrial automation applications. It includes a system
timer called SysTick. This timer can be used to trigger an ISR to execute
every 1ms. Suppose for example that every 1ms we would like to count
down from some initial count until the count reaches zero, and then stop
counting down. The following C code defines an ISR that does this:

1 volatile uint timerCount = 0;
2 void countDown(void) {
3 if (timerCount != 0) {
4 timerCount--;
5 }
6 }

Here, the variable timerCount is a global variable, and it is decre-
mented each time countDown() is invoked, until it reaches zero. We
will specify below that this is to occur once per millisecond by registering

240 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

countDown() as an ISR. The variable timerCount is marked with
the C volatile keyword, which tells the compiler that the value of the vari-
able will change at unpredictable times during execution of the program.
This prevents the compiler from performing certain optimizations, such as
caching the value of the variable in a register and reading it repeatedly. Us-
ing a C API provided by Luminary Micro R© (2008c), we can specify that
countDown() should be invoked as an interrupt service routine once per
millisecond as follows:

1 SysTickPeriodSet(SysCtlClockGet() / 1000);
2 SysTickIntRegister(&countDown);
3 SysTickEnable();
4 SysTickIntEnable();

The first line sets the number of clock cycles between “ticks” of
the SysTick timer. The timer will request an interrupt on each tick.
SysCtlClockGet() is a library procedure that returns the number of
cycles per second of the target platform’s clock (e.g., 50,000,000 for a
50 MHz part). The second line registers the ISR by providing a func-
tion pointer for the ISR (the address of the countDown() procedure).
(Note: Some configurations do not support run-time registration of ISRs,
as shown in this code. See the documentation for your particular system.)
The third line starts the clock, enabling ticks to occur. The fourth line
enables interrupts.

The timer service we have set up can be used, for example, to perform
some function for two seconds and then stop. A program to do that is:

1 int main(void) {
2 timerCount = 2000;
3 ... initialization code from above ...
4 while(timerCount != 0) {
5 ... code to run for 2 seconds ...
6 }
7 }

Lee & Seshia, Introduction to Embedded Systems, version 0.5 241

http://LeeSeshia.org

9.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

Processor vendors provide many variants of the mechanisms used in the previous
example, so you will need to consult the vendor’s documentation for the particular
processor you are using. Since the code is not portable (it will not run correctly on
a different processor), it is wise to isolate such code from your application logic and
document carefully what needs to be re-implemented to target a new processor.

9.2.2 Atomicity

An interrupt service routine can be invoked between any two instructions of the
main program (or between any two instructions of a lower priority ISR). One of
the major challenges for embedded software designers is that reasoning about the
possible interleavings of instructions can become extremely difficult. In the previous
example, the interrupt service routine and the main program are interacting through
a shared variable, namely timerCount. The value of that variable can change
between any two atomic operations of the main program. Unfortunately, it can be
quite difficult to know what operations are atomic. The term “atomic” comes from
the Greek work for “indivisible,” and it is far from obvious to a programmer what
operations are indivisible. If the programmer is writing assembly code, then it may
be safe to assume that each assembly language instruction is atomic, but many ISAs
include assembly level instructions that are not atomic.

Basics: Timers

Microcontrollers almost always include some number of peripheral devices called
timers. A programmable interval timer (PIT), the most common type, sim-
ply counts down from some value to zero. The initial value is set by writing to a
memory-mapped register, and when the value hits zero, the PIT raises an interrupt
request. By writing to a memory-mapped control register, a timer might be set up to
trigger repeatedly without having to be reset by the software. Such repeated triggers
will be more precisely periodic than what you would get if the ISR restarts the timer
each time it gets invoked. This is because the time between when the count reaches
zero in the timer hardware and the time when the counter gets restarted by the ISR
is difficult to control and variable. For example, if the timer reaches zero at a time
when interrupts happen to be disabled, then there will be a delay before the ISR gets
invoked. It cannot be invoked before interrupts are re-enabled.

242 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

Example 9.9: The ARM instruction set includes a LDM instruction,
which loads multiple registers from consecutive memory locations. It can
be interrupted part way through the loads (ARM Limited, 2006).

At the level of a C program, it can be even more difficult to know what operations
are atomic. Consider a single, innocent looking statement

timerCount = 2000;

On an 8-bit microcontroller, this statement may take more than one instruction cycle
to execute (an 8-bit word cannot store both the instruction and the constant 2000;
in fact, the constant alone does not fit in an 8-bit word). An interrupt could occur
part way through execution of those cycles. Suppose that the ISR also writes to the
variable timerCount. In this case, the final value of the timerCount variable
may be composed of 8 bits set in the ISR and the remaining bits set by the above
line of C, for example. The final value could be very different from 2000, and also
different from the value specified in the interrupt service routine. Will this bug occur
on a 32-bit microcontroller? The only way to know for sure is to fully understand
the ISA and the compiler. In such circumstances, there is no advantage to having
written the code in C instead of assembly language.

Bugs like this in a program are extremely difficult to identify and correct. Worse, the
problematic interleavings are quite unlikely to occur, and hence may not show up in
testing. For safety-critical systems, programmers have to make every effort to avoid
such bugs. One way to do this is to build programs using higher-level concurrent
models of computation, as discussed in Chapter 6. Of course, the implementation of
those models of computation needs to be correct, but presumably, that implementa-
tion is constructed by experts in concurrency, rather than by application engineers.

When working at the level of C and ISRs, a programmer must carefully reason about
the order of operations. Although many interleavings are possible, operations given
as a sequence of C statements must execute in order (or more precisely, must behave
as if they had executed in order, if out-of-order execution is possible).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 243

http://LeeSeshia.org

9.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

Example 9.10: In example 9.8, the programmer can rely on the state-
ments within main() executing in order. Notice that in that example, the
statement

timerCount = 2000;

appears before

SysTickIntEnable();

The latter statement enables the SysTick interrupt. Hence, the former state-
ment cannot be interrupted by the SysTick interrupt.

9.2.3 Interrupt Controllers

An interrupt controller is the logic in the processor that handles interrupts. It sup-
ports some number of interrupts and some number of priority levels. Each interrupt
has an interrupt vector, which is the address of an ISR or an index into an array
called the interrupt vector table that contains the addresses of all the ISRs.

Example 9.11: The Luminary Micro LM3S8962 controller, shown in
Figure 9.1, includes an ARM CortexTM - M3 core microcontroller that
supports 36 interrupts with eight priority levels. If two interrupts are as-
signed the same priority number, then the one with the lower vector will
have priority over the one with the higher vector.

When an interrupt is asserted by changing a voltage on a pin, the response may be
either level triggered or edge triggered. For level-triggered interrupts, the hard-
ware asserting the interrupt will typically hold the voltage on the line until it gets
an acknowledgement, which indicates that the interrupt is being handled. For edge-
triggered interrupts, the hardware asserting the interrupt changes the voltage for only

244 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

a short time. In both cases, open collector lines can be used so that the same the phys-
ical line can be shared among several devices (of course, the ISR will require some
mechanism to determine which device asserted the interrupt, for example by reading
a memory-mapped register in each device that could have asserted the interrupt).

Sharing interrupts among devices can be tricky, and careful consideration must be
given to prevent low priority interrupts from blocking high priority interrupts. As-
serting interrupts by writing to a designated address on a bus has the advantage that
the same hardware can support many more distinct interrupts, but the disadvantage
that peripheral devices get more complex. They have to implement an interface to
the memory bus.

9.2.4 Modeling Interrupts

The behavior of interrupts can be quite difficult to fully understand, and many catas-
trophic system failures are caused by unexpected behaviors. Unfortunately, the logic
of interrupt controllers is often described in processor documentation very impre-
cisely, leaving many possible behaviors unspecified. One way to make this logic
more precise is to model it as an FSM.

Example 9.12: The program of Example 9.8, which performs some action
for two seconds, is shown in Figure 9.5 together with two finite state ma-
chines that model the ISR and the main program. The states of the FSMs
correspond to positions in the execution labeled A through E, as shown in
the program listing. These positions are between C statements, so we are
assuming here that these statements are atomic operations (a questionable
assumption in general).

We may wish to determine whether the program is assured of always reach-
ing position C. In other words, can we assert with confidence that the pro-
gram will eventually move beyond whatever computation it was to perform
for two seconds? A state machine model will help us answer that question.

The key question now becomes how to compose these state machines to
correctly model the interaction between the two pieces of sequential code
in the procedures ISR and main. It is easy to see that asynchronous com-
position is not the right choice because the interleavings are not arbitrary.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 245

http://LeeSeshia.org

9.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
}
… whatever comes next

E
D

A
B

C

Figure 9.5: State machine models and main program for a program that does
something for two seconds and then continues to do something else.

246 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

In particular, main can be interrupted by ISR, but ISR cannot be inter-
rupted by main. Asynchronous composition would fail to capture this
asymmetry.

Assuming the interrupt is always serviced immediately upon being re-
quested, we wish to have a model something like that shown in Figure
9.6. In that figure, a two-state FSM models whether an interrupt is being
serviced. The transition from Inactive to Active is triggered by a pure in-
put assert, which models the timer hardware requesting interrupt service.
When the ISR completes its execution, another pure input return triggers a
return to the Inactive state. Notice here that the transition from Inactive to
Active is a preemptive transition, suggesting that it should be taken imme-
diately when assert occurs, and that it is a reset transition, suggesting that
the state refinement of Active should begin in its initial state upon entry.

If we combine Figures 9.5 and 9.6 we get the hierarchical FSM in Figure
9.7. Notice that the return signal is both an input and an output now. It
is an output produced by the state refinement of Active, and it is an input
to the top-level FSM, where it triggers a transition to Inactive. Having an
output that is also an input provides a mechanism for a state refinement to
trigger a transition in its container state machine.

To determine whether the program reaches state C, we can study the flat-
tened state machine shown in Figure 9.8. Studying that machine carefully,
we see that in fact there is no assurance that state C will be reached! If, for
example, assert is present on every reaction, then C is never reached.

Could this happen in practice? With this program, it is improbable, but not
impossible. It could happen if the ISR itself takes longer to execute than
the time between interrupts. Is there any assurance that this will not hap-
pen? Unfortunately, our only assurance is a vague notion that processors
are faster than that. There is no guarantee.

In the above example, modeling the interaction between a main program and an
interrupt service routine exposes a potential flaw in the program. Although the flaw
may be unlikely to occur in practice in this example, the fact that the flaw is present
at all is disturbing. In any case, it is better to know that the flaw is present, and to
decide that the risk is acceptable, than to not know it is present.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 247

http://LeeSeshia.org

9.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

E
D

A
B

C

Figure 9.6: Sketch of a state machine model for the interaction between an
ISR and the main program.

Figure 9.7: Hierarchical state machine model for the interaction between an
ISR and the main program.

248 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

Figure 9.8: Flattened version of the hierarchical state machine in Figure 9.7.

Interrupt mechanisms can be quite complex. Software that uses these mechanisms
to provide I/O to an external device is called a device driver. Writing device drivers
that are correct and robust is a challenging engineering task requiring a deep un-
derstanding of the architecture and considerable skill reasoning about concurrency.
Many failures in computer systems are caused by unexpected interactions between
device drivers and other programs.

9.3 The Analog/Digital Interface

Cyber-physical systems typically require that measurements of physical properties
be taken and processed by computers that then issue commands to actuators to have
some effect on the physical world. At the boundary of the cyber and physical worlds,
measurements must be converted to digital data, and digital data must be converted
to analog effects on the physical world. Issues that arise in these conversions include

Lee & Seshia, Introduction to Embedded Systems, version 0.5 249

http://LeeSeshia.org

9.3. THE ANALOG/DIGITAL INTERFACE

distortion due to quantization and sampling and dealing with noise in the physical
environment. We discuss those issues in this section.

9.3.1 Digital to Analog and Analog to Digital Converters

An analog signal varies continuously in both time and amplitude. Mathematically,
such a signal might be represented as a function x : R→ R, where the domain rep-
resents time and the codomain represents amplitude. A simple conversion of such a
signal to digital form is performed by an analog comparator, which compares the
value against a threshold and produces a binary value, zero or one. For example, we
could define a function q : R→{0,1} by

q(t) =
{

0 if x < 0
1 otherwise

for all t ∈ R. Such a signal is discrete in amplitude, but still has a continuous time
base. This signal is quantized, in this case rather harshly so that the quantized signal
can only take on one of two values. The signal q can be viewed as an approximation
of the signal x, albeit not necessarily a very good approximation.

Suppose that we set up a software system to examine this signal at regularly spaced
times called the sample period. For example, given an analog circuit that produces
the signal q as an input to a GPIO pin, we could set up a timer interrupt to regularly
examine the value at that pin and convert it to a boolean value in software. The
resulting signal is a function y : Z→{0,1} given by

y(n) = q(nT)

for all n ∈ Z, where T is the sample period. This is a digital signal because it is
discrete in both time and amplitude.

A better approximation of the original signal x might allow more than two possible
values for each sample. The values could be, for example, those that can be rep-
resented by some fixed-point numbering scheme as explained in the box on page
199. An analog to digital converter (ADC) is a hardware device that performs
such a conversion. It has two key parameters, the sample period T and the number
of bits b in the digital representation of the results. For the analog comparator dis-
cussed above, b = 1. The choice of b and T represents a tradeoff between cost and
precision.

250 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

Example 9.13: For audio signals from a compact disc (CD), T = 1/44,100
and b = 16. This sample period is (barely) adequate to accurately repre-
sent frequency ranges audible to the human ear. And 16 bits is (barely)
adequate to reduce quantization noise (the distortion resulting from quan-
tization) to inaudible levels.

For a given value b, there are 2b possible values, so having a larger value for b re-
sults in a closer approximation to the analog signal x. Moreover, as T decreases,
the amount of the signal’s temporal detail that is preserved in its digital representa-
tion increases. In practice, the larger b is, the more difficult it is to make T small.
Thus, high-precision ADCs (those with large b) tend to support slower sampling
rates (larger T).

Example 9.14: The ATSC digital video coding standard includes a format
where the frame rate is 30 frames per second and each frame contains
1080× 1920 = 2,073,600 pixels. An ADC that is converting one color
channel to a digital representation must therefore perform 2,073,600 ×
30 = 62,208,000 conversions per second, which yields a sample period T
of approximately 16 nsec. With such a short sample period, increasing b
becomes very expensive. For video, a choice of b = 8 is generally adequate
to yield good visual fidelity and can be realized at reasonable cost.

A digital to analog converter (DAC) performs the converse conversion. Given a
sampling period T and a sequence of digital values, each with b bits, it produces a
continuous-time signal (a voltage vs. time) that, were it to be sampled by an ADC
with paramters T and b would yield the same digital sequence (or, at least, a similar
digital sequence).

The design of ADC and DAC hardware is itself quite an art. The effects of choices
of T and b are also quite nuanced. Considerable expertise in signal processing is
required to fully understand the implications of choices. In the remainder of this
section, we give only a cursory view of this rather sophisticated topic. We begin

Lee & Seshia, Introduction to Embedded Systems, version 0.5 251

http://LeeSeshia.org

9.3. THE ANALOG/DIGITAL INTERFACE

with a discussion of how to mitigate the affect of noise in the environment, showing
the intuitive result that it is beneficial to filter out frequency ranges that are not of
interest. We then follow with a section on how to understand the effects of sampling,
reviewing the Nyquist-Shannon sampling theorem, which gives us the guideline that
we should sample continuous time signals at rates at least twice as high as the largest
frequency of interest.

9.3.2 Signal Conditioning1

Sensors convert physical measurements into data. Invariably, they are far from per-
fect, in that the data they yield gives information about the physical phenomenon
that we wish to observe and other phenomena that we do not wish to observe. Re-
moving or attenuating the effects of the phenomena we do not wish to observe is
called signal conditioning.

Suppose that a sensor yields a continuous-time signal x. We model it as a sum of a
desired part xd and an undesired part xn,

x(t) = xd(t)+ xn(t). (9.1)

The undesired part is called noise. To condition this signal, we would like to remove
or reduce xn without affecting xd . In order to do this, of course, there has to be some
meaningful difference between xn and xd . Often, the two parts differ considerably in
their frequency content.

Example 9.15: Consider using an accelerometer to measure the orien-
tation of a slowly moving object. The accelerometer reacts to changes in
orientation because they change the direction of the gravitational field with
respect to its axis. But it will also report acceleration due to vibration. Let
xd be the signal due to orientation and xn be the signal due to vibration.
We will assume that xn has higher frequency content than xd . Thus, by
frequency-selective filtering, we can reduce the effects of vibration.

1This section may be skipped on a first reading. It requires a background in signals and systems at
the level typically covered in a sophomore or junior engineering course.

252 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

To understand the degree to which frequency selective filtering helps, we need to
have a model of both the desired signal xd and the noise xn. Reasonable models
are usually statistical, and analysis of the signals requires using the techniques of
random processes. Although such analysis is beyond the scope of this text, we
can gain insight that is useful in many practical circumstances through a purely
deterministic analysis.

Our approach will be to condition the signal x = xd + xn by filtering it with an LTI
system S called a conditioning filter. Let the output of the conditioning filter be
given by

y = S(x) = S(xd + xn) = S(xd)+S(xn),

where we have used the linearity assumption on S. Let the error signal be defined to
be

r = y− xd .

This signal tells us how far off the filtered output is from the desired signal. The
energy in the signal r is defined to be

||r||2 =
∞Z
−∞

r2(t)dt.

We define the signal to noise ratio (SNR) to be

SNR =
||xd ||2

||r||2
.

Combining the above definitions, we can write this as

SNR =
||xd ||2

||S(xd)− xd +S(xn)||2
. (9.2)

It is customary to give SNR in decibels, written dB, defined as follows,

SNRdB = 10log10(SNR).

Note that for typical signals in the real world, the energy is effectively infinite if the
signal goes on forever. A statistical model, therefore, would use the power, defined
as the expected energy per unit time. But since we are avoiding using statistical
methods here, we will stick to energy as the criterion.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 253

http://LeeSeshia.org

9.3. THE ANALOG/DIGITAL INTERFACE

A reasonable design objective for a conditioning filter is to maximize the SNR. Of
course, it will not be adequate to use a filter that maximizes the SNR only for partic-
ular signals xd and xn. We cannot know when we design the filter what these signals
are, so the SNR needs to be maximized in expectation. That is, over the ensemble of
signals we might see when operating the system, weighted by their likelihood, the
expected SNR should be maximized.

Although determination of this filter requires statistical methods beyond the scope
of this text, we can draw some intuitively appealing conclusions by examining (9.2).
The numerator is not affected by S, so we can ignore it and minimize the denomina-
tor. It is easy to show that the denominator is bounded as follows,

||r||2 ≤ ||S(xd)− xd ||2 + ||S(xn)||2 (9.3)

which suggests that we may be able to minimize the denominator by making S(xd)
close to xd (i.e. make ||S(xd)− xd ||2 small) while making ||S(xn)||2 small. That is,
the filter S should do minimal damage to the desired signal xd while filtering out as
much as much as possible of the noise. This, of course, is obvious.

As illustrated in Example 9.15, xd and xn often differ in frequency content. We can
get further insight using Parseval’s theorem, which relates the energy to the Fourier
transform,

||r||2 =
∞Z
−∞

(r(t))2dt =
1

2π

∞Z
−∞

|R(ω)|2dω =
1

2π
||R||2

where R is the Fourier transform of r.

The filter S is an LTI system. It is defined equally well by the function S : (R→
R)→ (R→ R), by its impulse response h : R→ R, a continuous-time signal, or
by its transfer function H : R→ C, the Fourier transform of the impulse response.
Using the transfer function and Parseval’s theorem, we can write

SNR =
||Xd ||2

||HXd−Xd +HXn||2
, (9.4)

where Xd is the Fourier transform of xd and Xn is the Fourier transform of xn. In
Problem 7, we explore a very simple strategy that chooses the transfer function so
that H(ω) = 1 in the frequency range where xd is present, and H(ω) = 0 otherwise.
This strategy is not exactly realizable in practice, but an approximation of it will
work well for the problem described in Example 9.15.

254 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

Note that it is easy to adapt the above analysis to discrete-time signals. If r : Z→ R
is a discrete-time signal, its energy is

||r||2 =
∞

∑
n=−∞

(r(n))2.

If its discrete-time Fourier transform (DTFT) is R, then Parseval’s relation becomes

||r||2 =
∞

∑
n=−∞

(r(n))2 =
1

2π

πZ
−π

|R(ω)|2dω.

Note that the limits on the integral are different, covering one cycle of the periodic
DTFT. All other observations above carry over unchanged.

9.3.3 Sampling and Aliasing2

Almost every embedded system will sample and digitize sensor data. In this section,
we review the phenomenon of aliasing. We use a mathematical model for sampling
by using the Dirac delta function δ. Define a pulse stream by

∀ t ∈ R, p(t) =
∞

∑
k=−∞

δ(t− kT).

Consider a continuous-time signal x that we wish to sample with sampling period
T . That is, we define a discrete-time signal y : Z→ R by y(n) = x(nT). Construct
first an intermediate continuous-time signal w(t) = x(t)p(t). We can show that the
Fourier transform of w is equal to the DTFT of y. This gives us a way to relate the
Fourier transform of x to the DTFT of its samples y.

Recall that multiplication in the time domain results in convolution in the frequency
domain, so

W (ω) =
1

2π
X(ω)∗P(ω) =

1
2π

∞Z
−∞

X(Ω)P(ω−Ω)dΩ.

2This section may be skipped on a first reading. It requires a background in signals and systems at
the level typically covered in a sophomore or junior engineering course.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 255

http://LeeSeshia.org

9.3. THE ANALOG/DIGITAL INTERFACE

It can be shown (see box on page 257) that the Fourier transform of p(t) is

P(ω) =
2π
T

∞

∑
k=−∞

δ(ω− k
2π
T

),

so

W (ω) =
1

2π

∞Z
−∞

X(Ω)
2π
T

∞

∑
k=−∞

δ(ω−Ω− k
2π
T

)dΩ

=
1
T

∞

∑
k=−∞

∞Z
−∞

X(Ω)δ(ω−Ω− k
2π
T

)dΩ

=
1
T

∞

∑
k=−∞

X(ω− k
2π
T

)

where the last equality follows from the sifting property of Dirac delta functions.
The next step is to show that

Y (ω) = W (ω/T),

which follows easily from the definition of the DTFT Y and the Fourier transform
W . From this, the Nyquist-Shannon sampling theorem follows,

Y (ω) =
1
T

∞

∑
k=−∞

X
(

ω−2πk
T

)
.

This relates the Fourier transform X of the signal being sampled x to the DTFT Y of
the discrete-time result y.

This important relation says that the DTFT Y of y is the sum of the Fourier transform
X with copies of it shifted by multiples of 2π/T . Also, the frequency axis is normal-
ized by dividing ω by T . There are two cases to consider, depending on whether the
shifted copies overlap.

First, if X(ω) = 0 outside the range −π/T < ω < π/T , then the copies will not
overlap, and in the range −π < ω < π,

Y (ω) =
1
T

X
(ω

T

)
. (9.5)

256 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

In this range of frequencies, Y has the same shape as X , scaled by 1/T . This re-
lationship between X and Y is illustrated in Figure 9.9, where X is drawn with a
triangular shape.

In the second case, illustrated in Figure 9.10, X does have non-zero frequency com-
ponents higher than π/T . Notice that in the sampled signal, the frequencies in the
vicinity of π are distorted by the overlapping of frequency components above and
below π/T in the original signal. This distortion is called aliasing distortion.

Probing Further: Impulse Trains

Consider a signal p consisting of periodically repeated Dirac delta functions with
period T ,

∀ t ∈ R, p(t) =
∞

∑
k=−∞

δ(t− kT).

This signal has the Fourier series expansion

∀ t ∈ R, p(t) =
∞

∑
m=−∞

1
T

eiω0mt ,

where the fundamental frequency is ω0 = 2π/T . The Fourier series coefficients can
be given by

∀ m ∈ Z, Pm =
1
T

T/2Z
−T/2

[
∞

∑
k=−∞

δ(t− kT)

]
eiω0mtdt.

The integral is over a range that includes only one of the delta functions. The kernel
of the integral is zero except when t = 0, so by the sifting rule of the Dirac delta
function, the integral evaluates to 1. Thus, all Fourier series coefficients are Pm =
1/T . Using the relationship between the Fourier series and the Fourier Transform of
a periodic signal, we can write the continuous-time Fourier transform of p as

∀ ω ∈ R, P(ω) =
2π
T

∞

∑
k=−∞

δ
(

ω− 2π
T

k
)

.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 257

http://LeeSeshia.org

9.3. THE ANALOG/DIGITAL INTERFACE

ω

π−π
ω

X(ω)

Y(ω)

1

π/T−π/T

1/T
......

3π−3π

Figure 9.9: Relationship between the Fourier transform of a continuous-time
signal and the DTFT of its discrete-time samples. The DTFT is the sum of the
Fourier transform and its copies shifted by multiples of 2π/T , the sampling
frequency in radians per second. The frequency axis is also normalized.

ω

ω

−π π

X(ω)

Y(ω)

1

π/T−π/T

1/T

Figure 9.10: Relationship between the Fourier transform of a continuous-
time signal and the DTFT of its discrete-time samples when the continuous-
time signal has a broad enough bandwidth to introduce aliasing distortion.

258 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

From these figures, we get the guideline that we should sample continuous time
signals at rates at least twice as high as the largest frequency component. This
avoids aliasing distortion.

9.4 Summary

This chapter has reviewed hardware and software mechanisms used to get sensor
data into processors and commands from the processor to actuators. The emphasis
is on understanding the principles behind the mechanisms, with a particular focus
on the bridging between the sequential world of software and the parallel physical
world. This chapter also covers the analog/digital interface from a signal processing
perspective, emphasizing the artifacts that may be introduced by quantization, noise,
and sampling.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 259

http://LeeSeshia.org

EXERCISES

Exercises

1. Similar to Example 9.6, consider a C program for an Atmel AVR that uses a
UART to send 8 bytes to an RS-232 serial interface, as follows:

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];
4 }

Assume the processor runs at 50 MHz; also assume that initially the UART
is idle, so when the code begins executing, UCSR0A & 0x20 == 0x20 is
true; further, assume that the serial port is operating at 19,200 baud. How
many cycles are required to execute the above code? You may assume that the
for statement executes in three cycles (one to increment i, one to compare it
to 8, and one to perform the conditional branch; the while statement executes
in 2 cycles (one to compute !(UCSR0A & 0x20) and one to perform the
conditional branch; and the assigment to UDR0 executes in one cycle.

2. Figure 9.11 gives the sketch of a program for an Atmel AVR microcontroller
that performs some function repeatedly for three seconds. The function is
invoked by calling the procedure foo(). The program begins by setting up
a timer interrupt to occur once per second (the code to do this setup is not
shown). Each time the interrupt occurs, the specified interrupt service routine
is called. That routine decrements a counter until the counter reaches zero.
The main() procedure initializes the counter with value 3 and then invokes
foo() until the counter reaches zero.

(a) We wish to assume that the segments of code in the grey boxes, labeled
A, B, and C, are atomic. State conditions that make this assumption
valid.

(b) Construct a state machine model for this program, assuming as in part
(a) that A, B, and C, are atomic. The transitions in your state machine
should be labeled with “guard/action”, where the action can be any of
A, B, C, or nothing. The actions A, B, or C should correspond to the
sections of code in the grey boxes with the corresponding labels. You
may assume these actions are atomic.

260 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;

// Interrupt service routine.
SIGNAL(SIG_OUTPUT_COMPARE1A) {

 if(timer_count > 0) {
 timer_count--;
 }
}

// Main program.
int main(void) {
 // Set up interrupts to occur
 // once per second.
 ...

 // Start a 3 second timer.
 timer_count = 3;

 // Do something repeatedly
 // for 3 seconds.
 while(timer_count > 0) {
 foo();
 }
}

A

B

C

Figure 9.11: Sketch of a C program that performs some function by calling
procedure foo() repeatedly for 3 seconds, using a timer interrupt to determine
when to stop.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 261

http://LeeSeshia.org

EXERCISES

(c) Is your state machine deterministic? What does it tell you about how
many times foo() may be invoked? Do all the possible behaviors of your
model correspond to what the programmer likely intended?

Note that there are many possible answers. Simple models are preferred over
elaborate ones, and complete ones (where everything is defined) over incom-
plete ones. Feel free to give more than one model.

3. In a manner similar to example 9.8, create a C program for the ARM CortexTM-
M3 to use the SysTick timer to invoke a system-clock ISR with a jiffy interval
of 10 ms that records the time since system start in a 32 bit int. How long can
this program run before your clock overflows?

4. Consider a dashboard display that displays “normal” when brakes in the car
operate normally and “emergency” when there is a failure. The intended be-
havior is that once “emergency” has been displayed, “normal” will not again
be displayed. That is, “emergency” remains on the display until the system is
reset.

In the following code, assume that the variable display defines what is
displayed. Whatever its value, that is what appears on the dashboard.

1 volatile static uint8_t alerted;
2 volatile static char* display;
3 void ISRA() {
4 if (alerted == 0) {
5 display = "normal";
6 }
7 }
8 void ISRB() {
9 display = "emergency";

10 alerted = 1;
11 }
12 void main() {
13 alerted = 0;
14 ...set up interrupts...
15 ...enable interrupts...
16 ...
17 }

262 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

Assume that ISRA is an interrupt service routine that is invoked when the
brakes are applied by the driver. Assume that ISRB is invoked if a sensor
indicates that the brakes are being applied at the same time that the accelerator
pedal is depressed. Assume that neither ISR can interrupt itself, but that ISRB
has higher priority than ISRA, and hence ISRB can interrupt ISRA, but ISRA
cannot interrupt ISRB. Assume further (unrealistically) that each line of code
is atomic.

(a) Does this program always exhibit the intended behavior? Explain. In the
remaining parts of this problem, you will construct various models that
will either demonstrate that the behavior is correct or will illustrate how
it can be incorrect.

(b) Construct a determinate extended state machine modeling ISRA. As-
sume that:

• alerted is a variable of type {0,1} ⊂ uint8 t,

• there is a pure input A that when present indicates an interrupt re-
quest for ISRA, and

• display is an output of type char*.

(c) Give the size of the state space for your solution.

(d) Explain your assumptions about when the state machine in (a) reacts. Is
this time triggered, event triggered, or neither?

(e) Construct a determinate extended state machine modeling ISRB. This
one has a pure input B that when present indicates an interrupt request
for ISRB.

(f) Construct a flat (non-hierarchical) determinate extended state machine
describing the joint operation of the these two ISRs. Use your model to
argue the correctness of your answer to part (a).

(g) Give an equivalent hierarchical state machine. Use your model to argue
the correctness of your answer to part (a).

5. Suppose a processor handles interrupts as specified by the following FSM:

Lee & Seshia, Introduction to Embedded Systems, version 0.5 263

http://LeeSeshia.org

EXERCISES

Here, we assume a more complicated interrupt controller than that considered
in Example 9.12, where there are several possible interrupts and an arbiter
that decides which interrupt to service. The above state machine shows the
state of one interrupt. When the interrupt is asserted, the FSM transitions
to the Pending state, and remains there until the arbiter provides a handle
input. At that time, the FSM transitions to the Active state and produces
an acknowledge output. If another interrupt is asserted while in the Active
state, then it transitions to Active and Pending. When the ISR returns, the
input return causes a transition to either Inactive or Pending, depending on
the starting point. The deassert input allows external hardware to cancel an
interrupt request before it gets serviced.

Answer the following questions.

(a) If the state is Pending and the input is return, what is the reaction?

(b) If the state is Active and the input is assert ∧ deassert, what is the reac-
tion?

(c) Suppose the state is Inactive and the input sequence in three successive
reactions is:

i. assert ,
ii. deassert ∧ handle ,

264 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

9. INPUT AND OUTPUT

iii. return .
What are all the possible states after reacting to these inputs? Was the
interrupt handled or not?

(d) Suppose that an input sequence never includes deassert. Is it true that
every assert input causes an acknowledge output? In other words, is
every interrupt request serviced? If yes, give a proof. If no, give a coun-
terexample.

6. Suppose you are designing a processor that will support two interrupts whose
logic is given by the FSM in Exercise 5. Design an FSM giving the logic of an
arbiter that assigns one of these two higher priority than the other. The inputs
should be the following pure signals:

assert1,return1,assert2,return2

to indicate requests and return from interrupt for interrupts 1 and 2, respec-
tively. The outputs should be pure signals handle1 and handle2. Assuming
the assert inputs are generated by two state machines like that in Exercise 5,
can you be sure that this arbiter will handle every request that is made? Justify
your answer.

7. Consider the accelerometer problem described in Example 9.15. Suppose that
the change in orientation xd is a low frequency signal with Fourier transform
given by

Xd(ω) =
{

2 for |ω|< π
0 otherwise

This is an ideally bandlimited signal with no frequency content higher than π
radians/second, or 0.5 Hertz. Suppose further that the vibration xn has higher
frequency components, having Fourier transform given by

Xn(ω) =
{

1 for |ω|< 10π
0 otherwise

This is again an ideally bandlimited signal with frequency content up to 5
Hertz.

(a) Assume there is no frequency conditioning at all, or equivalently, the
conditioning filter has transfer function

∀ ω ∈ R, H(ω) = 1.

Find the SNR in decibels.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 265

http://LeeSeshia.org

EXERCISES

(b) Assume the conditioning filter is an ideal lowpass filter with transfer
function

H(ω) =
{

1 for |ω|< π
0 otherwise

Find the SNR in decibels. Is this better or worse than the result in part
(a)? By how much?

(c) Find a conditioning filter that makes the error signal identically zero (or
equivalently makes the SNR infinite). Clearly, this conditioning filter is
optimal for these signals. Explain why this isn’t necessarily the optimal
filter in general.

(d) Suppose that as in part (a), there is no signal conditioning. Sample the
signal x at 1 Hz and find the SNR of the resulting discrete-time signal.

(e) Describe a strategy that minimizes the amount of signal conditioning
that is done in continuous time in favor of doing signal conditioning in
discrete time. The motivation for doing this is analog circuitry can be
much more expensive than digital filters.

266 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 10

Multitasking

Contents
10.1 Imperative Programs . 270

Sidebar: Linked Lists in C . 273

10.2 Threads . 274
10.2.1 Creating Threads . 274

10.2.2 Implementing Threads 277

10.2.3 Mutual Exclusion . 278

Sidebar: Operating Systems 282

10.2.4 Deadlock . 283

10.2.5 Memory Consistency Models 284

10.2.6 The Problem with Threads 285

10.3 Processes and Message Passing 288
10.4 Summary . 292
Exercises . 294

In this chapter, we discuss mid-level mechanisms that are used in software to pro-
vide concurrent execution of sequential code. There are a number of reasons for
executing multiple sequential programs concurrently, but they all involve timing.
One reason is to improve responsiveness by avoiding situations where long-running
programs can block a program that responds to external stimulus, such as sensor data
or a user request. This is a timing issue because it reduces latency, the time between

267

Concurrent model of computation

 dataflow, time triggered, synchronous, etc.

Multitasking

 processes, threads, message passing

Processor

 interrupts, pipelining, multicore, etc.

Figure 10.1: Layers of abstraction for concurrency in programs.

the occurrence of a stimulus and the response. Another reason is to improve perfor-
mance by allowing a program to run simultaneously on multiple processors or cores.
This is also a timing issue, since it presumes that it is better to complete tasks earlier
than later. A third reason is to directly control the timing of external interactions. A
program may wish to perform some action, such as updating a display, at particular
times, regardless of what other tasks might be executing at that time.

We have already discussed concurrency in a variety of contexts. Figure 10.1 shows
the relationship between the subject of this chapter and those of other chapters.
Chapters 7 and 9 cover the lowest layer in Figure 10.1, which represents how hard-
ware provides concurrent mechanisms to the software designer. Chapters 5 and
6 cover the highest layer, which consists of abstract models of concurrency, in-
cluding synchronous composition, dataflow, and time-triggered models. This chap-
ter bridges these two layers. It describes mechanisms that are implemented using
the low-level mechanisms and can provide infrastructure for realizing the high-
level mechanisms. Collectively, these mid-level techniques are called multitasking,
meaning the simultaneous execution of multiple tasks.

Embedded system designers frequently use these mid-level mechanisms directly to
build applications, but it is becoming increasingly common for designers to use in-
stead the high-level mechanisms. The designer constructs a model using a software
tool that supports a model of computation (or several models of computation). The

268 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

1 #include <stdlib.h>
2 #include <stdio.h>
3 int x; // Value that gets updated.
4 typedef void notifyProcedure(int); // Type of notify procedure.
5 struct element {
6 notifyProcedure* listener; // Pointer to notify procedure.
7 struct element* next; // Pointer to the next item.
8 };
9 typedef struct element element_t; // Type of list elements.

10 element_t* head = 0; // Pointer to start of list.
11 element_t* tail = 0; // Pointer to end of list.
12

13 // Procedure to add a listener.
14 void addListener(notifyProcedure* listener) {
15 if (head == 0) {
16 head = malloc(sizeof(element_t));
17 head->listener = listener;
18 head->next = 0;
19 tail = head;
20 } else {
21 tail->next = malloc(sizeof(element_t));
22 tail = tail->next;
23 tail->listener = listener;
24 tail->next = 0;
25 }
26 }
27 // Procedure to update x.
28 void update(int newx) {
29 x = newx;
30 // Notify listeners.
31 element_t* element = head;
32 while (element != 0) {
33 (*(element->listener))(newx);
34 element = element->next;
35 }
36 }
37 // Example of notify procedure.
38 void print(int arg) {
39 printf("%d ", arg);
40 }

Figure 10.2: A C program used in a series of examples in this chapter.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 269

http://LeeSeshia.org

10.1. IMPERATIVE PROGRAMS

model is then automatically or semi-automatically translated into a program that
uses the mid-level or low-level mechanisms. This translation process is variously
called code generation or autocoding.

The mechanisms described in this chapter are typically provided by an operating
system, a microkernel, or a library of procedures. They can be rather tricky to imple-
ment correctly, and hence the implementation should be done by experts (for some
of the pitfalls, see Boehm (2005)). Embedded systems application programmers,
however, often find themselves having to implement such mechanisms on bare iron
(a processor without an operating system). Doing so correctly requires deep under-
standing of concurrency issues.

This chapter begins with a brief description of models that we use for sequential
programs, which will enable models of concurrent compositions of such sequential
programs. It then progresses to discuss threads, processes, and message passing,
which are three styles of composition of sequential programs.

10.1 Imperative Programs

A programming language that expresses a computation as a sequence of operations
is called an imperative language. C is an imperative language.

Example 10.1: In this chapter, we will illustrate several key points using
the example C program shown in Figure 10.2. This program implements a
commonly used design pattern called the observer pattern (Gamma et al.,
1994). In this pattern, an update procedure changes the value of a vari-
able x. Observers (which are other programs or other parts of the same
program) wish to be notified whenever x is changed by having a callback
procedure called. For example, the value of x might be displayed by an
observer on a screen. Whenever the value changes, the observer needs to
be notified so that it can update the display on the screen. The following
main procedure uses the procedures defined in Figure 10.2:

1 int main(void) {
2 addListener(&print);
3 addListener(&print);
4 update(1);

270 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

5 addListener(&print);
6 update(2);
7 }

This test program registers the print procedure as a callback twice, then
performs an update (setting x = 1), then registers the print procedure
again, and finally performs another update (setting x = 2). The print
procedure simply prints the current value, so the output when executing
this test program is 1 1 2 2 2.

A C program specifies a sequence of steps, where each step changes the state of the
memory in the machine. In C, the state of the memory in the machine is represented
by the values of variables.

Example 10.2: In the program in Figure 10.2, the state of the memory of
the machine includes the value of variable x (which is a global variable)
and a list of elements pointed to by the variable head (another global
variable). The list itself is represented as a linked list, where each element
in the list contains a function pointer referring to a procedure to be called
when x changes.

During execution of the C program, the state of the memory of the machine
will need to include also the state of the stack, which includes any local
variables.

We can model the execution of certain simple C program using extended state ma-
chines, assuming the program has a fixed and bounded number of variables. The
variables of the C program will be the variables of the state machine. The states of
the state machine will represent positions in the program, and the transitions will
represent execution of the program.

Example 10.3: Figure 10.3 shows a model of the update procedure in
Figure 10.2. The machine transitions from the initial Idle state when the

Lee & Seshia, Introduction to Embedded Systems, version 0.5 271

http://LeeSeshia.org

10.1. IMPERATIVE PROGRAMS

Figure 10.3: Model of the update procedure in Figure 10.2.

update procedure is called. The call is signaled by the input arg being
present; its value will be the int argument to the update procedure.
When this transition is taken, newx (on the stack) will be assigned the
value of the argument. In addition, x (a global variable) will be updated.

After this first transition, the machine is in state 31, corresponding to the
program counter position just prior to the execution of line 31 in Figure
10.2. It then unconditionally transitions to state 32 and sets the value of
element. From state 32, there are two possibilities; if element = 0, then
the machine transitions back to Idle and produces the pure output return.
Otherwise, it transitions to 33.

On the transition from 33 to 34, the action is a procedure call to the lis-
tener with the argument being the stack variable newx. The transition from
34 back to 32 occurs upon receiving the pure input returnFromListener,
which indicates that the listener procedure returns.

272 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

Linked Lists in C

A linked list is a data structure for storing a list of elements that varies in length
during execution of a program. Each element in the list contains a payload (the
value of the element) and a pointer to the next element in the list (or a null pointer
if the element is the last one). For the program in Figure 10.2, the linked list data
structure is defined by:

1 typedef void notifyProcedure(int);
2 struct element {
3 notifyProcedure* listener;
4 struct element* next;
5 };
6 typedef struct element element_t;
7 element_t* head = 0;
8 element_t* tail = 0;

The first line declares that notifyProcedure is a type whose value is a C proce-
dure that takes an int and returns nothing. Lines 2–5 declare a struct, a composite
data type in C. It has two pieces, listener (with type notifyProcedure*,
which is a function pointer, a pointer to a C procedure) and next (a pointer to an
instance of the same struct). Line 6 declares that element t is a type referring to
an instance of the structure element.

Line 7 declares head, a pointer to a list element. It is initialized to 0, a value that
indicates an empty list. The addListener procedure in Figure 10.2 creates the
first list element using the following code:

1 head = malloc(sizeof(element_t));
2 head->listener = listener;
3 head->next = 0;
4 tail = head;

Line 1 allocates memory from the heap using malloc to store a list element and
sets head to point to that element. Line 2 sets the payload of the element, and line
3 indicates that this is the last element in the list. Line 4 sets tail, a pointer to the
last list element. When the list is not empty, the addListener procedure will use
the tail pointer rather than head to append an element to the list.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 273

http://LeeSeshia.org

10.2. THREADS

The model in Figure 10.3 is not the only model we could have constructed of the
update procedure. In constructing such a model, we need to decide on the level of
detail and on which actions can be safely treated as atomic operations. Figure 10.3
uses lines of code as a level of detail, but there is no assurance that a line of C code
executes atomically (it usually does not).

In addition, accurate models of C programs are often not finite state systems. Con-
sidering only the code in Figure 10.2, a finite-state model is not appropriate because
the code supports adding an arbitrary number of listeners to the list. If we combine
Figure 10.2 with the main procedure in Example 10.1, then the system is finite state
because only three listeners are put on the list. An accurate finite-state model, there-
fore, would need to include the complete program, making modular reasoning about
the code very difficult.

The problems get much worse when we add concurrency to the mix. We will show
in this chapter that accurate reasoning about C programs with mid-level concurrency
mechanisms such as threads is astonishingly difficult and error prone. It is for this
reason that designers are tending towards the upper layer in Figure 10.1.

10.2 Threads

Threads are imperative programs that run concurrently and share a memory space.
They can access each others’ variables. Many practitioners in the field use the term
“threads” more narrowly to refer to particular ways of constructing programs that
share memory, but here we will use the term broadly to refer to any mechanism
where imperative programs run concurrently and share memory. In this broad sense,
threads exist in the form of interrupts on almost all microprocessors, even without
any operating system at all (bare iron).

10.2.1 Creating Threads

Most operating systems provide a higher-level mechanism than interrupts to realize
imperative programs that share memory. The mechanism is provided in the form
of a collection of procedures that a programmer can use. Such procedures typically
conform to a standardized API (application program interface), which makes it
possible to write programs that are portable (they will run on multiple processors
and/or multiple operating systems). Pthreads (or POSIX threads) is such an API;

274 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

1 #include <pthread.h>
2 #include <stdio.h>
3 void* printN(void* arg) {
4 int i;
5 for (i = 0; i < 10; i++) {
6 printf("My ID: %d\n", *(int*)arg);
7 }
8 return NULL;
9 }

10 int main(void) {
11 pthread_t threadID1, threadID2;
12 void* exitStatus;
13 int x1 = 1, x2 = 2;
14 pthread_create(&threadID1, NULL, printN, &x1);
15 pthread_create(&threadID2, NULL, printN, &x2);
16 printf("Started threads.\n");
17 pthread_join(threadID1, &exitStatus);
18 pthread_join(threadID2, &exitStatus);
19 return 0;
20 }

Figure 10.4: Simple multithreaded C program using PThreads.

it is integrated into many modern operating systems. Pthreads defines a set of C
programming language types, functions and constants. It was standardized by the
IEEE in 1988 to unify variants of Unix. In Pthreads, a thread is defined by a C
procedure and created by invoking the pthread create procedure.1

Example 10.4: A simple multithreaded C program using PThreads is
shown in Figure 10.4. The printN procedure (lines 3–9) — the proce-
dure that the thread begins executing — is called the start routine; in this
case, it prints the argument passed to it 10 times and then exits. The main
procedure creates two threads, each of which will execute the start routine.
The first one, created on line 14, will print the value 1. The second one,

1For brevity, in the examples in this text we do not check for failures, as any well-written program
using Pthreads should. For example, pthread create will return 0 if it succeeds, and a non-zero
error code if it fails, due for example to insufficient system resources to create another thread. Any
program that uses pthread create should check for this failure and handle it in some way. Refer
to the Pthreads documentation for details.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 275

http://LeeSeshia.org

10.2. THREADS

created on line 15, will print the value 2. When you run this program, the
values 1 and 2 will be printed in some interleaved order that depends on the
thread scheduler. Typically, repeated runs will yield different interleaved
orders of 1’s and 2’s.

The pthread create procedure creates a thread and returns immedi-
ately. The start routine may or may not have actually started running when
it returns. Lines 17 and 18 use pthread join to ensure that the main
program does not terminate before the threads have finished. Without these
two lines, running the program may not yield any output at all from the
threads.

The start routine may or may not return. In embedded applications, it is quite com-
mon to define start routines that never return. For example, the start routine might
execute forever and update a display periodically. If the start routine does not return,
then any other thread that calls its pthread join will be blocked indefinitely.

As shown in Figure 10.4, the start routine can be provided with an argument and
can return a value. The fourth argument to pthread create is the address of the
argument to be passed to the start routine. It is important to understand the memory
model of C, explained in Section 8.3.5, or some very subtle errors could occur, as
illustrated in the next example.

Example 10.5: Suppose we attempt to create a thread inside a procedure
like this:

1 pthread_t createThread(int x) {
2 pthread_t ID;
3 pthread_create(&ID, NULL, printN, &x);
4 return threadID;
5 }

This code would be incorrect because the argument to the start routine
is given by a pointer to a variable on the stack. By the time the thread
accesses the specified memory address, the createThread procedure
will likely have returned and the memory address will be overwritten by
whatever goes on the stack next.

276 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

10.2.2 Implementing Threads

The core of an implementation of threads is a scheduler that decides which thread
to execute next when a processor is available to execute a thread. The decision may
be based on fairness, where the principle is to give every active thread an equal
opportunity to run, on timing constraints, or on some measure of importance or
priority. Scheduling algorithms are discussed in detail in Chapter 11. In this section,
we simply describe how a thread scheduler will work without worrying much about
how it makes a decision on which thread to execute.

The first key question is how and when the scheduler is invoked. A simple technique
called cooperative multitasking is to invoke the scheduler whenever an operating
system service is invoked by the currently executing thread. An operating system
service is invoked by making a call to a library procedure. Each thread has its own
stack, and when the procedure call is made, the return address will be pushed onto
the stack. If the scheduler determines that the currently executing thread should con-
tinue to execute, then the requested service is completed and the procedure returns
as normal. If instead the scheduler determines that the thread should be suspended
and another thread should be selected for execution, then instead of returning, the
scheduler makes a record of the stack pointer of the currently executing thread, and
then modifies the stack pointer to point to the stack of the selected thread. It then re-
turns as normal by popping the return address off the stack and resuming execution,
but now in a new thread.

The main disadvantage of cooperative multitasking is that a program may execute
for a long time without making any operating system service calls, in which case
other threads will be starved. To correct for this, most operating systems include an
interrupt service routine that runs at fixed time intervals. This routine will maintain
a system clock, which provides application programmers with a way to obtain the
current time of day and enables periodic invocation of the scheduler via a timer
interrupt. For an operating system with a system clock, a jiffy is the time interval at
which the system-clock ISR is invoked.

Example 10.6: The jiffy values in Linux versions have typically varied
between 1 ms and 10 ms.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 277

http://LeeSeshia.org

10.2. THREADS

The value of a jiffy is determined by balancing performance concerns with required
timing precision. A smaller jiffy means that scheduling functions are performed
more often, which can degrade overall performance. A larger jiffy means that the
precision of the system clock is coarser and that task switching occurs less often,
which can cause real-time constraints to be violated. Sometimes, the jiffy interval is
dictated by the application.

Example 10.7: Game consoles will typically use a jiffy value synchro-
nized to the frame rate of the targeted television system because the major
time-critical task for such systems is to generate graphics at this frame
rate. For example, NTSC (National Television System Committee) is the
analog television system historically used in most of the Americas, Japan,
South Korea, Taiwan, and a few other places. It has a frame rate of 59.94
Hz, so a suitable jiffy would be 1/59.94 or about 16.68 ms. With the PAL
television standard (phase alternating line), used in most of Europe and
much of the rest of the world, the frame rate is 50 Hz, yielding a jiffy of
20 ms.

Analog television is steadily being replaced by digital formats such as
ATSC. ATSC supports a number of frame rates ranging from just below 24
Hz to 60 Hz and a number of resolutions. Assuming a standard-compliant
TV, a game console designer can choose the frame rate and resolution con-
sistent with cost and quality objectives.

In addition to periodic interrupts and operating service calls, the scheduler might be
invoked when a thread blocks for some reason. We discuss some of the mechanisms
for such blocking next.

10.2.3 Mutual Exclusion

A thread may be suspended between any two atomic operations to execute another
thread and/or interrupt service routine. This fact can make it extremely difficult to
reason about interactions among threads.

278 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

Example 10.8: Recall the following procedure from Figure 10.2:

14 void addListener(notifyProcedure* listener) {
15 if (head == 0) {
16 head = malloc(sizeof(element_t));
17 head->listener = listener;
18 head->next = 0;
19 tail = head;
20 } else {
21 tail->next = malloc(sizeof(element_t));
22 tail = tail->next;
23 tail->listener = listener;
24 tail->next = 0;
25 }
26 }

Suppose that addListener is called from more than one thread. Then
what could go wrong? First, two threads may be simultaneously modifying
the linked list data structure, which can easily result in a corrupted data
structure. Suppose for example that a thread is suspended just prior to
executing line 23. Suppose that while the thread is suspended, another
thread calls addListener. When the first thread resumes executing at
line 23, the value of tail has changed. It is no longer the value that
was set in line 22! Careful analysis reveals that this could result in a list
where the second to last element of the list points to a random address for
the listener (whatever was in the memory allocated by malloc), and the
second listener that was added to the list is no longer on the list. When
update is called, it will try to execute a procedure at the random address,
which could result in a segmentation fault, or worse, execution of random
memory contents as if they were instructions!

The problem illustrated in the previous example is known as a race condition. Two
concurrent pieces of code race to access the same resource, and the exact order in
which their accesses occurs affects the results of the program. Not all race condi-
tions are as bad as the previous example, where some outcomes of the race cause
catastrophic failure of the program. One way to prevent such disasters is using a
mutual exclusion lock (or mutex), as illustrated in the next example.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 279

http://LeeSeshia.org

10.2. THREADS

Example 10.9: In Pthreads, mutexes are implemented by creating an
instance of a structure called a pthread mutex lock. For example,
we could modify the addListener procedure as follows:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void addListener(notifyProcedure* listener) {
pthread_mutex_lock(&lock);
if (head == 0) {
...

} else {
...

}
pthread_mutex_unlock(&lock);

}

The first line creates and initializes a global variable called lock. The
first line within the addListener procedure acquires the lock. The
principle is that only one thread can hold the lock at a time. The
pthread mutex lock procedure will block until the calling thread can
acquire the lock.

In the above code, when addListener is called by a thread and begins
executing, pthread mutex lock does not return until no other thread
holds the lock. Once it returns, this calling thread holds the lock. The
pthread mutex unlock call at the end releases the lock. It is a seri-
ous error in multithreaded programming to fail to release a lock.

A mutual exclusion lock prevents any two threads from simultaneously accessing or
modifying a shared resource. The code between the lock and unlock is a critical
section. At any one time, only one thread can be executing code in such a critical
section. A programmer may need to ensure that all accesses to a shared resource are
similarly protected by locks.

Example 10.10: The update procedure in Figure 10.2 does not modify
the list of listeners, but it does read the list. Suppose that thread A calls
addListener and gets suspended just after line 21, which does this:

280 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

21 tail->next = malloc(sizeof(element_t));

Suppose that while A is suspended, another thread B calls update, which
includes the following code:

31 element_t* element = head;
32 while (element != 0) {
33 (*(element->listener))(newx);
34 element = element->next;
35 }

What will happen on line 33 when element == tail->next? At
that point, thread B will treat whatever random contents were in the mem-
ory returned by malloc on line 21 as a function pointer and attempt to
execute a procedure pointed to by that pointer. Again, this will result in a
segmentation fault or worse.

The mutex added in Example 10.9 is not sufficient to prevent this disaster.
The mutex does not prevent thread A from being suspended. Thus, we
need to modify update as follows

void update(int newx) {
x = newx;
// Notify listeners.
pthread_mutex_lock(&lock);
element_t* element = head;
while (element != 0) {
(*(element->listener))(newx);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

This will prevent the update procedure from reading the list data struc-
ture while it is being modified by any other thread.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 281

http://LeeSeshia.org

10.2. THREADS

Operating Systems

The computers in embedded systems often do not interact directly with humans in
the same way that desktop or handheld computers do. As a consequence, the collec-
tion of services that they need from an operating system (OS) may be very different.
The dominant general-purpose OSs for desktops today, Microsoft Windows, Mac
OS X, and Linux, provide services that may or may not be required in an embed-
ded processor. For example, many embedded applications do not require a graphical
user interface (GUI), a file system, font management, or even a network stack.

Several operating systems have been developed specifically for embedded appli-
cations, including Windows CE (WinCE) (from Microsoft), VxWorks (from Wind
River Systems, acquired by Intel in 2009), QNX (from QNX Software Systems, ac-
quired in 2010 by Research in Motion (RIM)), Embedded Linux (an open source
community effort), and FreeRTOS (another open source community effort). These
OSs share many features with general-purpose OSs, but typically have specialized
the kernel to become a real-time operating system (RTOS). An RTOS provides
bounded latency on interrupt servicing as well as a scheduler for processes that takes
into account real-time constraints.

Mobile operating systems are a third class of OS designed specifically for hand-
held devices such as cell phones and PDAs. Examples are Symbian OS (an open-
source effort maintained by the Symbian Foundation), Android (from Google),
BlackBerry OS (from RIM), iPhone OS (from Apple), Palm OS (from Palm, Inc., ac-
quired by Hewlett-Packard in 2010), and Windows Mobile (from Microsoft). These
OSs have specialized support for wireless connectivity and media formats.

The core of any operating system is the kernel, which controls the order in which
processes are executed, how memory is used, and how information is communicated
to peripheral devices and networks (via device drivers). A microkernel is very
small operating system that provides only these services (or even a subset of these
services). OSs may provide many other services, however. These could include user
interface infrastructure (integral to Mac OS X and Windows), memory allocation and
deallocation, memory protection (to isolate applications from the kernel and from
each other), a file system, and services for programs to interact such as semaphores,
mutexes, and message passing libraries.

282 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

10.2.4 Deadlock

As mutex locks proliferate in programs, the risk of deadlock increases. A deadlock
occurs when some threads become permanently blocked trying to acquire locks.2

This can occur, for example, if thread A holds lock1 and then blocks trying to
acquire lock2, which is held by thread B, and then thread B blocks trying to acquire
lock1. Such deadly embraces have no clean escape once they have occurred. The
two threads will not be able to resume, and the program needs to be aborted and
restarted.

Example 10.11: Suppose that both addListener and update in Fig-
ure 10.2 are protected by a mutex, as done in the two previous examples.
The update procedure includes the line

33 (*(element->listener))(newx);

which calls a procedure pointed to by the list element. It would not be
unreasonable for that procedure to itself need to acquire a mutex lock.
Suppose for example that the listener procedure needs to update a display.
A display is typically a shared resource, and therefore will likely have to be
protected with its own mutex lock. Suppose that thread A calls update,
which reaches line 33 and then blocks because the listener procedure tries
to acquire a different lock held by thread B. Suppose then that thread B
calls addListener. Deadlock!

Deadlock can be difficult to avoid. In a classic paper, Coffman et al. (1971) give
necessary conditions for deadlock to occur, any of which can be removed to avoid
deadlock. One simple technique is to use only one lock throughout an entire mul-
tithreaded program. This technique does not lead to very modular programming,
however. Moreover, it can make it difficult to meet real-time constraints because
some shared resources (e.g. displays) may need to be held long enough to cause
deadlines to be missed in other threads.

2Some authors distinguish livelock from deadlock, where in a livelocked program, some threads
remain unblocked, and in a deadlocked system, all threads are blocked. Here, we don’t make the
distinction. If any thread is permanently blocked trying to acquire a lock, we call it deadlock.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 283

http://LeeSeshia.org

10.2. THREADS

In a very simple microkernel, we can sometimes use the enabling and disabling of
interrupts as a single global mutex. Assume that we have a single processor (not a
multicore), and that interrupts are the only mechanism by which a thread may be
suspended (i.e., they do not get suspended when calling kernel services or blocking
on I/O). With these assumptions, disabling interrupts prevents a thread from being
suspended. In most OSs, however, threads can be suspended for many reasons, so
this technique won’t work.

A third technique is to ensure that when there are multiple mutex locks, every thread
acquires the locks in the same order. This can be difficult to guarantee, however,
for several reasons (see Exercise 2). First, most programs are written by multiple
people, and the locks acquired within a procedure are not part of the signature of the
procedure. So this technique relies on very careful and consistent documentation
and cooperation across a development team. And any time a lock is added, then all
parts of the program that acquire locks may have to be modified.

Second, it can make correct coding extremely difficult. If a programmer wishes
to call a procedure that acquires lock1, which by convention in the program is
always the first lock acquired, then it must first release any locks it holds. As soon
as it releases those locks, it may be suspended, and the resource that it held those
locks to protect may be modified. Once it has acquired lock1, it must then reaquire
those locks, but it will then need to assume it no longer knows anything about the
state of the resources, and it may have to redo considerable work.

There are many more ways to prevent deadlock. For example, a particularly elegant
technique synthesizes constraints on a scheduler to prevent deadlock (Wang et al.,
2009). Nevertheless, most available techniques either impose severe constraints on
the programmer or require considerable sophistication to apply, which suggests that
the problem may be with the concurrent programming model of threads.

10.2.5 Memory Consistency Models

As if race conditions and deadlock were not problematic enough, threads also suffer
from potentially subtle problems with the memory model of the programs. Any par-
ticular implementation of threads offers some sort of memory consistency model,
which defines how variables that are read and written by different threads appear to
those threads. Intuitively, reading a variable should yield the last value written to
the variable, but what does “last” mean? Consider a scenario, for example, where

284 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

all variables are initialized with value zero, and thread A executes the following two
statements:

1 x = 1;
2 w = y;

while thread B executes the following two statements:

1 y = 1;
2 z = x;

Intuitively, after both threads have executed these statements, we would expect that
at least one of the two variables w and z to have value 1. Such a guarantee is referred
to as sequential consistency (Lamport, 1979). Sequential consistency means that
the result of any execution is the same as if the operations of all threads are executed
in some sequential order, and the operations of each individual thread appear in this
sequence in the order specified by the thread.

However, sequential consistency is not guaranteed by most (or possibly all) imple-
mentations of Pthreads. In fact, providing such a guarantee is rather difficult on
modern processors using modern compilers. A compiler, for example, is free to
re-order the instructions in each of these threads because there is no dependency be-
tween them (that is visible to the compiler). Even if the compiler does not reorder
them, the hardware might. A good defensive tactic is to very carefully guard such
accesses to shared variables using mutual exclusion locks (and to hope that those
mutual exclusion locks themselves are implemented correctly).

An authoritative overview of memory consistency issues is provided by Adve and
Gharachorloo (1996), who focus on multiprocessors. Boehm (2005) provides an
analysis of the memory consistency problems with threads on a single processor.

10.2.6 The Problem with Threads

Multithreaded programs can be very difficult to understand. Moreover, it can be
difficult to build confidence in the programs because problems in the code may not
show up in testing. A program may have the possibility of deadlock, for example,
but nonetheless run correctly for years without the deadlock ever appearing. Pro-
grammers have to be very cautious, but reasoning about the programs is sufficiently
difficult that programming errors are likely to persist.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 285

http://LeeSeshia.org

10.2. THREADS

In the example of Figure 10.2, we can avoid the potential deadlock of Example 10.11
using a simple trick, but the trick leads to a more insidious error (an error that may
not occur in testing, and may not be noticed when it occurs, unlike a deadlock, which
is almost always noticed when it occurs).

Example 10.12: Suppose we modify the update procedure as follows:

void update(int newx) {
x = newx;
// Copy the list
pthread_mutex_lock(&lock);
element_t* headc = NULL;
element_t* tailc = NULL;
element_t* element = head;
while (element != 0) {

if (headc == NULL) {
headc = malloc(sizeof(element_t));
headc->listener = head->listener;
headc->next = 0;
tailc = headc;

} else {
tailc->next = malloc(sizeof(element_t));
tailc = tailc->next;
tailc->listener = element->listener;
tailc->next = 0;

}
element = element->next;

}
pthread_mutex_unlock(&lock);

// Notify listeners using the copy
element = headc;
while (element != 0) {

(*(element->listener))(newx);
element = element->next;

}
}

This implementation does not hold lock when it calls the listener proce-
dure. Instead, it holds the lock while it constructs a copy of the list of the
listeners, and then it releases the lock. After releasing the lock, it uses the
copy of the list of listeners to notify the listeners.

286 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

This code, however, has a potentially serious problem that may not be de-
tected in testing. Specifically, suppose that thread A calls update with
argument newx = 0, indicating “all systems normal.” Suppose that A is
suspended just after releasing the lock, but before performing the notifi-
cations. Suppose that while it is suspended, thread B calls update with
argument newx = 1, meaning “emergency! the engine is on fire!” Sup-
pose that this call to update completes before thread A gets a chance to
resume. When thread A resumes, it will notify all the listeners, but it will
notify them of the wrong value! If one of the listeners is updating a pilot
display for an aircraft, the display will indicate that all systems are normal,
when in fact the engine is on fire.

Many programmers are familiar with threads and appreciate the ease with which
they exploit parallel underlying hardware. It is possible, but not easy, to construct
reliable and correct multithreaded programs. See for example Lea (1997) for an ex-
cellent “how to” guide to using threads in Java. In 2005, Java acquired an extensive
library of concurrent data structures and mechanisms based on threads (Lea, 2005).
Libraries like OpenMP (Chapman et al., 2007) also provide support for commonly
used multithreaded patterns such as parallel loop constructs. However, embedded
systems programmers rarely use Java or large sophisticated packages like OpenMP.
And even if they did, the same deadlock risks and insidious errors will occur.

Threads have a number of difficulties that make it questionable to expose them
to programmers as a way to build concurrent programs (Ousterhout, 1996; Sutter
and Larus, 2005; Lee, 2006; Hayes, 2007). In fact, before the 1990s, threads were
not used at all by application programmers. It was the emergence of libraries like
Pthreads and languages like Java and C# that exposed these mechanisms to applica-
tion programmers.

Nontrivial multithreaded programs are astonishingly difficult to understand, and can
yield insidious errors, race conditions, and deadlock. Problems can lurk in mul-
tithreaded programs through years of even intensive use of the programs. These
concerns are particularly important for embedded systems that affect the safety and
livelihood of humans. Since virtually every embedded system involves concurrent
software, engineers that design embedded systems must confront the pitfalls.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 287

http://LeeSeshia.org

10.3. PROCESSES AND MESSAGE PASSING

10.3 Processes and Message Passing

Processes are imperative programs with their own memory spaces. These programs
cannot refer to each others’ variables, and consequently they do not exhibit the same
difficulties as threads. Communication between the programs must occur via mech-
anisms provided by the operating system, microkernel, or a library.

Implementing processes correctly generally requires hardware support in the form
of a memory management unit or MMU. The MMU protects the memory of one
process from accidental reads or writes by another process. It typically also pro-
vides address translation, providing for each process the illusion of a fixed memory
address space that is the same for all processes. When a process accesses a memory
location in that address space, the MMU shifts the address to refer to a location in
the portion of physical memory allocated to that process.

To achieve concurrency, processes need to be able to communicate. Operating sys-
tems typically provide a variety of mechanisms, often including even the ability to
create shared memory spaces, which of course opens the programmer to all the po-
tentially difficulties of multithreaded programming.

One such mechanism that has fewer difficulties is a file system. A file system is
simply a way to create a body of data that is persistent in the sense that it outlives
the process that creates it. One process can create data and write it to a file, and
another process can read data from the same file. It is up to the implementation of
the file system to ensure that the process reading the data does not read it before it
is written. This can be done, for example, by allowing no more than one process to
operate on a file at a time.

A more flexible mechanism for communicating between processes is message pass-
ing. Here, one process creates a chunk of data, deposits it in a carefully controlled
section of memory that is shared, and then notifies other processes that the message
is ready. Those other processes can block waiting for the data to become ready.
Message passing requires some memory to be shared, but it is implemented in li-
braries that are presumably written by experts. An application programmer invokes
a library procedure to send a message or to receive a message.

Example 10.13: A simple example of a message passing program is
shown in Figure 10.5. This program uses a producer/consumer pattern,

288 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

1 void* producer(void* arg) {
2 int i;
3 for (i = 0; i < 10; i++) {
4 send(i);
5 }
6 }
7 void* consumer(void* arg) {
8 while(1) {
9 printf("received %d\n", get());

10 }
11 }
12 int main(void) {
13 pthread_t threadID1, threadID2;
14 void* exitStatus;
15 pthread_create(&threadID1, NULL, producer, NULL);
16 pthread_create(&threadID2, NULL, consumer, NULL);
17 pthread_join(threadID1, &exitStatus);
18 pthread_join(threadID2, &exitStatus);
19 return 0;
20 }

Figure 10.5: Example of a simple message-passing application.

where one thread produces a sequence of messages (a stream), and an-
other thread consumes the messages. This pattern can be used to imple-
ment the observer pattern without deadlock risk and without the insidious
error discussed in the previous section. The update procedure would al-
ways execute in a different thread from the observers, and would produce
messages that are consumed by the observers.

In Figure 10.5, the code executed by the producing thread is given by
the producer procedure, and the code for the consuming thread by the
consumer procedure. The producer invokes a procedure called send
(to be defined) on line 4 to send an integer valued message. The consumer
uses get (also to be defined) on line 9 to receive the message. The con-
sumer is assured that get does not return until it has actually received
the message. Notice that in this case, consumer never returns, so this
program will not terminate on its own.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 289

http://LeeSeshia.org

10.3. PROCESSES AND MESSAGE PASSING

An implementation of send and get using Pthreads is shown in Figure
10.6. This implementation uses a linked list similar to that in Figure 10.2,
but where the payload is an int. Here, the linked list is implementing
an unbounded first-in, first-out (FIFO) queue, where new elements are
inserted at the tail and old elements are removed from the head.

Consider first the implementation of send. It uses a mutex to ensure that
send and get are not simultaneously modifying the linked list, as before.
But in addition, it uses a condition variable to communicate to the con-
sumer process what the size of the queue is. The condition variable called
sent is declared and initialized on line 7. On line 23, the producer thread
calls pthread cond signal, which will “wake up” another thread that
is blocked on the condition variable, if there is such a thread.

To see what it means to “wake up” another thread, look at the get pro-
cedure. On line 32, if it has discovered that the current size of the queue
is zero, then it calls pthread cond wait, which will block the thread
until some other thread calls pthread cond signal. (There are other
conditions that will cause pthread cond wait to return, so the code
has to wait repeatedly until it finds that the queue size is non-zero.)

It is essential that pthread cond signal and pthread cond wait
be called while holding the mutex lock. Why? Suppose that lines 24
and 25 were reversed, and pthread cond signal were called after
releasing the mutex lock. Then in this case, it would be possible for
pthread cond signal to be called while the consumer thread is sus-
pended (but not yet blocked) between lines 31 and 32. In this case, when
the consumer thread resumes, it will execute line 32 and block, waiting
for a signal. But the signal has already been sent! And it may not be sent
again, so the consumer thread could be permanently blocked.

Notice further on line 32 that pthread cond wait takes &mutex as
an argument. In fact, while the thread is blocked on the wait, it releases
the mutex lock temporarily. If it were not to do this, then the producer
thread would be unable to enter its critical section, and therefore would
be unable to send a message. The program would deadlock. Before
pthread cond wait returns, it will re-acquire the mutex lock. Pro-
grammers have to be very careful when calling pthread cond wait,
because the mutex lock is temporarily released, so the value of any shared

290 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

variable after pthread cond wait returns may not be the same as it
was before the call (see Exercise 3).

The condition variables used in the previous example are a generalized form of
semaphores. Semaphores are named after mechanical signals traditionally used
on railroad tracks to signal that a section of track has a train on it. Using such
semaphores, it is possible to use a single section of track for trains to travel in both
directions (the semaphore implements mutual exclusion, preventing two trains from
simultaneously being on the same section of track).

In the 1960s, Edsger W. Dijkstra, a professor in the Department of Mathematics at
the Eindhoven University of Technology, Netherlands, borrowed this idea to show
how programs could safely share resources. A counting semaphore (which Dijkstra
called a PV semaphore) is a variable whose value is a non-negative integer. A value
of zero is treated as distinctly different from a value greater than zero. In fact, the
size variable in Example 10.13 functions as such a semaphore. It is incremented by
sending a message, and a value of zero blocks the consumer until the value is non-
zero. Condition variables generalize this idea by supporting arbitrary conditions,
rather than just zero or non-zero, as the gating criterion for blocking. Moreover, at
least in Pthreads, condition variables also coordinate with mutexes to make patterns
like that in Example 10.13 easier to write. Dijkstra received the 1972 Turing Award
for his work on concurrent programming.

Using message passing in applications can be easier than directly using threads and
shared variables. But even message passing is not without peril. The implementation
of the producer/consumer pattern in Example 10.13, in fact, has a fairly serious
flaw. Specifically, it imposes no constraints on the size of the message queue. Any
time a producer thread calls send, memory will be allocated to store the message,
and that memory will not be deallocated until the message is consumed. If the
producer thread produces messages faster than the consumer consumes them, then
the program will eventually exhaust available memory. This can be fixed by limiting
the size of the buffer (see Exercise 4), but what size is appropriate? Choosing buffers
that are too small can cause a program to deadlock, and choosing them too large is
wasteful of resources. This problem is not trivial to solve (Lee, 2009b).

There are other pitfalls as well. Programmers may inadvertently construct message-
passing programs that deadlock, where a set of threads are all waiting for messages

Lee & Seshia, Introduction to Embedded Systems, version 0.5 291

http://LeeSeshia.org

10.4. SUMMARY

from one another. In addition, programmers can inadvertently construct message-
passing programs that are nondeterminate, in the sense that the results of the com-
putation depend on the (arbitrary) order in which the thread scheduler happens to
schedule the threads.

The simplest solution is for application programmers to use higher-levels of abstrac-
tion for concurrency, the top layer in Figure 10.1, as described in Chapter 6. Of
course, you can only use that strategy if you have available a reliable implementa-
tion of a higher-level concurrent model of computation.

10.4 Summary

This chapter has focused on mid-level abstractions for concurrent programs, above
the level of interrupts and parallel hardware, but below the level of concurrent mod-
els of computation. Specifically, it has explained threads, which are sequential pro-
grams that execute concurrently and share variables. We have explained mutual
exclusion and the use of semaphores. We have shown that threads are fraught with
peril, and that writing correct multithreaded programs is extremely difficult. Mes-
sage passing schemes avoid some of the difficulties, but not all, at the expense of
being somewhat more constraining. In the long run, designers will be better off
using higher-levels of abstraction, as discussed in Chapter 6.

292 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

1 #include <pthread.h>
2 struct element {int payload; struct element* next;};
3 typedef struct element element_t;
4 element_t* head = 0;
5 element_t* tail = 0;
6 int size = 0;
7 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
8 pthread_cond_t sent = PTHREAD_COND_INITIALIZER;
9

10 void send(int message) {
11 pthread_mutex_lock(&mutex);
12 if (head == 0) {
13 head = malloc(sizeof(element_t));
14 head->payload = message;
15 head->next = 0;
16 tail = head;
17 } else {
18 tail->next = malloc(sizeof(element_t));
19 tail = tail->next;
20 tail->payload = message;
21 tail->next = 0;
22 }
23 size++;
24 pthread_cond_signal(&sent);
25 pthread_mutex_unlock(&mutex);
26 }
27 int get() {
28 element_t* element;
29 int result;
30 pthread_mutex_lock(&mutex);
31 while (size == 0) {
32 pthread_cond_wait(&sent, &mutex);
33 }
34 result = head->payload;
35 element = head;
36 head = head->next;
37 free(element);
38 size--;
39 pthread_mutex_unlock(&mutex);
40 return result;
41 }

Figure 10.6: Simple message-passing procedures to send and get mes-
sages.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 293

http://LeeSeshia.org

EXERCISES

Exercises

1. Give an extended state-machine model of the addListener procedure in
Figure 10.2 similar to that in Figure 10.3,

2. Suppose that two int global variables a and b are shared among several
threads. Suppose that lock a and lock b are two mutex locks that guard
access to a and b. Suppose you cannot assume that reads and writes of int
global variables are atomic. Consider the following code:

1 int a, b;
2 pthread_mutex_t lock_a
3 = PTHREAD_MUTEX_INITIALIZER;
4 pthread_mutex_t lock_b
5 = PTHREAD_MUTEX_INITIALIZER;
6

7 void proc1(int arg) {
8 pthread_mutex_lock(&lock_a);
9 if (a == arg) {

10 proc2(arg);
11 }
12 pthread_mutex_unlock(&lock_a);
13 }
14

15 void proc2(int arg) {
16 pthread_mutex_lock(&lock_b);
17 b = arg;
18 pthread_mutex_unlock(&lock_b);
19 }

Suppose that to ensure that deadlocks do not occur, the development team has
agreed that lock b should always be acquired before lock a by an code that
acquires both locks. Moreover, for performance reasons, the team insists that
no lock be acquired unnecessarily. Consequently, it would not be acceptable
to modify proc1 as follows:

1 void proc1(int arg) {
2 pthread_mutex_lock(&lock_b);
3 pthread_mutex_lock(&lock_a);
4 if (a == arg) {
5 proc2(arg);
6 }
7 pthread_mutex_unlock(&lock_a);
8 pthread_mutex_unlock(&lock_b);

294 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

10. MULTITASKING

9 }

Give a design for proc1 that minimizes unnecessary acquisitions of lock b.
Does your solution eliminate unnecessary acquisitions of lock b? Is there
any solution that does this?

3. The implementation of get in Figure 10.6 permits there to be more than one
thread calling get.

However, if we change the code on lines 31-33 to: pthread cond wait

1 if (size == 0) {
2 pthread_cond_wait(&sent, &mutex);
3 }

then this code would only work if two conditions are satisfied:

• pthread cond wait returns only if there is a matching call to
pthread cond signal, and

• there is only one consumer thread.

Explain why the second condition is required.

4. The producer/consumer pattern implementation in Example 10.13 has the
drawback that the size of the queue used to buffer messages is unbounded. A
program could fail by exhausting malloc all available memory (which will
cause malloc to fail). Construct a variant of the send and get procedures
of Figure fig:MessagePassing that limit the buffer size to 5 messages.

5. An alternative form of message passing called rendezvous is similar to the
producer/consumer pattern of Example 10.13, but it synchronizes the pro-
ducer and consumer more tightly. In particular, in Example 10.13, the send
procedure returns immediately, regardless of whether there is any consumer
thread ready to receive the message. In a rendezvous-style communication,
the send procedure will not return until a consumer thread has reached a
corresponding call to get. Consequently, no buffering of the messages is
needed. Construct implementations of send and get that implement such a
rendezvous.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 295

http://LeeSeshia.org

EXERCISES

296 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 11

Scheduling

Contents
11.1 Basics of Scheduling . 298

11.1.1 Scheduling Decisions 298

11.1.2 Task Models . 300

11.1.3 Comparing Schedulers 303

11.1.4 Implementation of a Scheduler 303

Sidebar: Further Reading . 304

11.2 Rate Monotonic Scheduling 306

11.3 Earliest Deadline First . 310

11.3.1 EDF with Precedences 312

11.4 Scheduling and Mutual Exclusion 314

11.4.1 Priority Inversion . 315

11.4.2 Priority Inheritance Protocol 317

11.4.3 Priority Ceiling Protocol 318

11.5 Multiprocessor Scheduling 320

11.5.1 Scheduling Anomalies 321

11.6 Summary . 324

Exercises . 325

297

11.1. BASICS OF SCHEDULING

Chapter 10 has explained multitasking, where multiple imperative tasks execute con-
currently, either interleaved on a single processor or in parallel on multiple proces-
sors. When there are fewer processors than tasks (the usual case), or when tasks
must be performed at a particular time, a scheduler must intervene. A scheduler
makes the decision about what to do next at certain points in time, such as the time
when a processor becomes available.

Real-time systems are collections of tasks where in addition to any ordering con-
straints imposed by precedences between the tasks, there are also timing constraints.
Typically, tasks have deadlines, which are values of physical time by which the task
must be completed. More generally, real-time programs can have all manner of
timing constraints, not just deadlines. For example, a task may be required to be
executed no earlier than a particular time; or it may be required to be executed no
more than a given amount of time after another task is executed; or it may be required
to execute periodically with no more than a specified amount of jitter. Tasks may
be dependent on one another, and may cooperatively form an application. Or they
may be unrelated except that they share processor resources. All of these situations
require a scheduling strategy.

11.1 Basics of Scheduling

In this section, we discuss the range of possibilities for scheduling, the properties of
tasks that a scheduler uses to guide the process, and the implementation of sched-
ulers in an operating system or microkernel.

11.1.1 Scheduling Decisions

A scheduler decides what task to execute next when faced with a choice in the exe-
cution of a concurrent program or set of programs. In general, a scheduler may have
more than one processor available to it (for example in a multicore system, which
combines multiple processors on single chip). A multiprocessor scheduler needs
to decide not only which task to execute next, but also on which processor to execute
it. The choice of processor is called processor assignment.

298 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

A scheduling decision is a decision to execute a task, and it has the following three
parts:

• assignment: which processor should execute which task;
• ordering: in what order each processor should execute its tasks; and
• timing: the time at which each task executes.

Each of these three decisions may be made at design time, before the program be-
gins executing, or at run time, during the execution of the program.

Depending on when the decisions are made, we can distinguish a few different types
of schedulers (Lee and Ha, 1989). A fully static scheduler makes all three decisions
at design time. The result of scheduling is a precise specification for each processor
of what to do when. A fully static scheduler typically does not need semaphores
or locks. It can use timing instead to enforce mutual exclusion and precedence
constraints. However, fully static schedulers are difficult to realize with most modern
microprocessors because the time it takes to execute a task is difficult to predict
precisely, and because tasks will typically have data-dependent execution times (see
Chapter 15).

A static order scheduler performs the assignment and ordering at design time, but
leaves the decision of when in physical time to execute a task to run time. That
decision may be affected, for example, by whether a mutual exclusion lock can
be acquired, or whether precedence constraints have been satisfied. In static order
scheduling, each processor is given its marching orders before the program begins
executing, and it simply executes those orders as quickly as it can. It does not, for
example, change the order of tasks based on the state of a semaphore or a lock. A
task itself, however, may block on a semaphore or lock, in which case it blocks the
entire sequence of tasks on that processor. A static order scheduler is often called an
off-line scheduler.

A static assignment scheduler performs assignment at design time and everything
else at run time. Each processor is given a set of tasks to execute and a run-time
scheduler decides during execution what task to execute next.

A fully dynamic scheduler performs all decisions at run time. When a processor
becomes available (e.g. it finishes executing a task, or a task blocks acquiring a
mutex), the scheduler makes a decision at that point about what task to execute next

Lee & Seshia, Introduction to Embedded Systems, version 0.5 299

http://LeeSeshia.org

11.1. BASICS OF SCHEDULING

on that processor. Both static assignment and fully dynamic schedulers are often
called on-line schedulers.

There are, of course, other possibilities. For example, the assignment may be done
once for a task, at run time just prior to its first execution, but then for subsequent
runs of the same task, the same assignment is used. Some combinations don’t make
much sense. For example, it doesn’t make sense to determine the time of execution
of a task at design time and the order at run time.

A preemptive scheduler may make a scheduling decision during the execution of a
task, assigning a new task to the same processor. That is, a task may be in the middle
of executing when the scheduler decides to stop that execution and begin execution
of another task. The interruption of the first task is called preemption. A scheduler
that always lets tasks run to completion before assigning another task to execute on
the same processor is called a non-preemptive scheduler.

In preemptive scheduling, a task may be preempted if it attempts to acquire a mutual
exclusion lock and the lock is not available. When this occurs, the task is said to
be blocked on the lock. When another task releases the lock, the blocked task may
resume. Moreover, a task may be preempted when it releases a lock. This can occur
for example if there is a higher priority task that is blocked on the lock. We will
assume in this chapter well-structured programs, where any task that acquires a lock
eventually releases it.

11.1.2 Task Models

For a scheduler to make its decisions, it needs some information about the structure
of the program. A typical assumption is that the scheduler is given a finite set T
of tasks. Each task may be assumed to be finite (it terminates in finite time), or
not. A typical operating system scheduler does not assume that tasks terminate, but
real-time schedulers often do. A scheduler may make many more assumptions about
tasks, a few of which we discuss in this section. The set of assumptions is called the
task model of the scheduler.

Some schedulers assume that all tasks to be executed are known before schedul-
ing begins, and some support arrival of tasks, meaning tasks become known to
the scheduler as other tasks are being executed. Some schedulers support scenarios
where each task τ ∈ T executes repeatedly, possibly forever, and possibly periodi-

300 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

o
i

ei

ri si fi di

i

Figure 11.1: Summary of times associated with a task execution.

cally. It could also be sporadic, which means that its timing is irregular, but that
there is a lower bound on the time between task executions. In situations where a
task τ ∈ T executes repeatedly, we need to make a distinction between the task τ
and the task executions τ1,τ2, · · · . If each task executes exactly once, then no such
distinction is necessary.

Task executions may have precedence constraints, a requirement that one execution
precede another. If execution i must precede j, we can write i < j. Here, i and j may
be distinct executions of the same task, or executions of different tasks.

A task execution i may have some preconditions to start or resume. These are con-
ditions that must be satisfied before the task can execute. When the preconditions are
satisfied, the task execution is said to be enabled. Precedences, for example, specify
preconditions to start a task execution. Availability of a lock may be a precondition
for resumption of a task.

The following definitions are summarized in Figure 11.1.

For a task execution i, we define the release time ri (also called the arrival time) to
be the earliest time at which a task is enabled. We define the start time si to be the
time at which the execution actually starts. Obviously, we require that

si ≥ ri .

Lee & Seshia, Introduction to Embedded Systems, version 0.5 301

http://LeeSeshia.org

11.1. BASICS OF SCHEDULING

We define the finish time fi to be the time at which the task completes execution.
Clearly,

fi ≥ si .

The response time oi is given by

oi = fi− ri .

The response time, therefore, is the time that elapses between when the task is first
enabled and when it completes execution.

The execution time ei of τi is defined to be the total time that the task is actually
executing. It does not include any time that the task may be blocked or preempted.
Many scheduling strategies assume (often unrealistically) that the execution time
of a task is known and fixed. If the execution time is variable, it is common to
assume (often unrealistically) that the worst-case execution time (WCET) is known.
Determining execution times of software can be quite challenging, as discussed in
Chapter 15.

The deadline di is the time by which a task is required to complete. Sometimes,
a deadline is a real physical constraint imposed by the application, where missing
the deadline is considered an error. Such a deadline is called a hard deadline.
Scheduling with hard deadlines is called hard real-time scheduling.

Often, a deadline reflects a design decision that need not be enforced strictly. It
is better to meet the deadline, but missing the deadline is not an error. Generally
it is better to not miss the deadline by much. This case is called soft real-time
scheduling.

A scheduler may use priority rather than (or in addition to) a deadline. A priority-
based scheduler assumes each task is assigned a number called a priority, and it will
always choose to execute the task with the highest priority (which is often repre-
sented by the lowest priority number). A fixed priority is a priority that remains
constant for all executions of a task. A dynamic priority is allowed to change for
each execution of a task that executes repeatedly.

A preemptive priority-based scheduler is a scheduler that supports arrivals of
tasks and at all times is executing the enabled task with the highest priority. A
non-preemptive priority-based scheduler is a scheduler that uses priorities to de-
termine which task to execute next after the current task execution completes, but
never interrupts a task during execution to schedule another task.

302 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

11.1.3 Comparing Schedulers

The choice of scheduling strategy is governed by considerations that depend on the
goals of the application. A rather simple goal is that all task executions meet their
deadlines, fi ≤ di. A schedule that accomplishes this is called a feasible schedule.
A scheduler that yields a feasible schedule for any task set (that conforms to its task
model) for which there is a feasible schedule is said to be optimal with respect to
feasibility.

A criterion that might be used to compare scheduling algorithms is the achievable
processor utilization. The utilization is the percentage of time that the processor
spends executing tasks (vs. being idle). This metric is most useful for tasks that exe-
cute periodically. A scheduling algorithm that delivers a feasible schedule whenever
processor utilization is less than or equal to 100% is obviously optimal with respect
to feasibility. It only fails to deliver a feasible schedule in circumstances where all
scheduling algorithms will fail to deliver a feasible schedule.

Another criterion that might be used to compare schedulers is the maximum late-
ness, defined for a set of task executions T as

Lmax = max
i∈T

(fi−di) .

For a feasible schedule, this number is zero or negative. But maximum lateness can
also be used to compare infeasible schedules. For soft real-time problems, it may be
tolerable for this number to be positive, as long as it does not get too large.

A third criterion that might be used for a finite set T of task executions is the total
completion time or makespan, defined by

M = max
i∈T

fi−min
i∈T

ri .

If the goal of scheduling is to minimize the makespan, this is really more of a per-
formance goal rather than a real-time goal.

11.1.4 Implementation of a Scheduler

A scheduler may be part of a compiler or code generator (for scheduling decisions
made at design time), part of an operating system or microkernel (for scheduling

Lee & Seshia, Introduction to Embedded Systems, version 0.5 303

http://LeeSeshia.org

11.1. BASICS OF SCHEDULING

Further Reading

Scheduling is a big topic and an old topic, with many basic results dating back to
the 1950s. This chapter covers only the most basic techniques and omits several
important topics. For real-time scheduling textbooks, we particularly recommend
Buttazzo (2005a), Stankovic and Ramamritham (1988), and Liu (2000), the latter
of which has particularly good coverage of sporadic servers. An excellent overview
article is Sha et al. (2004). A hands-on practical guide can be found in Klein et al.
(1993). For an excellent overview of the evolution of fixed priority scheduling tech-
niques through 2003, see Audsley et al. (2005). For soft real-time scheduling, we
recommend studying time utility functions, introduced by Douglas Jensen in 1977
as a way to overcome the limited expressiveness in classic deadline constraints in
real-time systems (see for example Jensen et al. (1985); Ravindran et al. (2007)).

There are many more scheduling strategies than those described here. For ex-
ample, deadline monotonic (DM) scheduling modifies rate monotonic to allow
periodic tasks to have deadlines less than their periods (Leung and Whitehead,
1982). The Spring algorithm is a set of heuristics that support arrivals, prece-
dence relations, resource constraints, non-preemptive properties, and importance
levels (Stankovic and Ramamritham, 1987, 1988).

An important topic that we do not cover is feasibility analysis, which provides
techniques for analyzing programs to determine whether feasible schedules exist.
Much of the foundation for work in this area can be found in Harter (1987); Joseph
and Pandya (1986).

Multiprocessor scheduling is also an old and large topic, with many of the core
results originating in the field of operations research. Two classic texts on the subject
are Conway et al. (1967) and Coffman (1976). Sriram and Bhattacharyya (2009)
focus on embedded multiprocessors, and include particularly innovative techniques
for reducing synchronization overhead in multiprocessor schedules.

It is also worth noting that a number of projects have introduced programming lan-
guage constructs that express real-time behaviors of software. Most notable among
these is Ada, a language developed under contract from the US Department of De-
fense (DoD) from 1977 to 1983. The goal was to replace the hundreds of pro-
gramming languages then used in DoD projects with a single, unified language. An
excellent discussion of language constructs for real time can be found in Lee and
Gehlot (1985); Wolfe et al. (1993).

304 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

decisions made at run time), or both (if some scheduling decisions are made at design
time and some at run time).

A run-time scheduler will typically implement tasks as threads. Sometimes, the
scheduler assumes these threads complete in finite time, and sometimes it makes no
such assumption. In either case, the scheduler is a procedure that gets invoked at
certain times. For very simple, non-preemptive schedulers, the scheduling proce-
dure may be invoked each time a task completes. For preemptive schedulers, the
scheduling procedure is invoked when any of several things occur:

• An timer interrupt occurs, for example at a jiffy interval.
• An I/O interrupt occurs.
• An operating system service is invoked.
• A task attempts to acquire a mutex.
• A task tests a semaphore.

For interrupts, the scheduling procedure is called by the interrupt service routine. In
the other cases, the scheduling procedure is called by the operating system procedure
that provides the service. In both cases, the stack contains the information required
to resume execution. However, the scheduler may choose not to simply resume
execution (returning from interrupt or returning from the service procedure). It may
choose instead to preempt whatever task is currently running and begin or resume
another task.

To accomplish this preemption, the scheduler needs to make a record of the pre-
empted task (and, perhaps, why it is preempted), so that it can later resume this task.
It can then adjust the stack pointer to refer to the state of the task to be started or
resumed. At that point, when the return is executed, instead of resuming execution
with the task that was preempted, execution will resume for another task.

Implementing such a scheduler can be quite challenging. It requires very careful
control of concurrency. For example, interrupts may need to be disabled for signif-
icant parts of the process to avoid ending up with a corrupted stack. This is why
scheduling is one of the most central functions of an operating system kernel or mi-
crokernel. The quality of the implementation strongly affects system reliability and
stability.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 305

http://LeeSeshia.org

11.2. RATE MONOTONIC SCHEDULING

e2
p2

e1

p1

τ1,1 τ1,2

τ2,2τ2,1

τ1,7τ1,6τ1,5τ1,4τ1,3τ1

τ2

Figure 11.2: Two periodic tasks T = {τ1,τ2} with execution times e1 and e2
and periods p1 and p2.

11.2 Rate Monotonic Scheduling

Consider a scenario with T = {τ1,τ2, · · · ,τn} of n tasks, where the tasks must exe-
cute periodically. Specifically, we assume that each task τi must execute to comple-
tion exactly once in each time interval pi. We refer to pi as the period of the task.
Thus, the deadline for the j-th execution of τi is ri,1 + jpi, where ri,1 is the release
time of the first execution.

Liu and Leyland (1973) showed that a simple preemptive scheduling strategy called
rate monotonic (RM) scheduling is optimal with respect to feasibility among fixed
priority uniprocessor schedulers for the above task model. This scheduling strategy
gives higher priority to a task with a smaller period.

The simplest form of the problem has just two tasks, T = {τ1,τ2} with execution
times e1 and e2 and periods p1 and p2, as depicted in Figure 11.2. In the figure, the
execution time e2 of task τ2 is longer than the period p1 of task τ1. Thus, if these
two tasks are to execute on the same processor, then it is clear that a non-preemptive
scheduler will not yield a feasible schedule. If task τ2 must execute to completion
without interruption, then task τ1 will miss some deadlines.

A preemptive schedule that follows the rate monotonic principle is shown in Figure
11.3. In that figure, task τ1 is given higher priority, because its period is smaller.
So it executes at the beginning of each period interval, regardless of whether τ2 is
executing. If τ2 is executing, then τ1 preempts it. The figure assumes that the time

306 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

e2

p2

p1

preempted +
execu+on +me 

τ1

τ2

Figure 11.3: Two periodic tasks T = {τ1,τ2} with a preemptive schedule that
gives higher priority to τ1.

it takes to perform the preemption, called the context switch time, is negligible.1

This schedule is feasible.

For the two task case, it is easy to show that among all preemptive fixed priority
schedulers, RM is optimal with respect to feasibility, under the assumed task model
with negligible context switch time. This is easy to show because there are only two
fixed priority schedules for this simple case, the RM schedule, which gives higher
priority to task τ1, and the non-RM schedule, which gives higher priority to task τ2.
To show optimality, we simply need to show that if the non-RM schedule is feasible,
then so is the RM schedule.

Before we can do this, we need to consider the possible alignments of task execu-
tions that can affect feasibility. As shown in Figure 11.4, the response time of the
lower priority task is worst when its starting phase matches that of higher priority
tasks. That is, the worst-case scenario occurs when all tasks start their cycles at the
same time. Hence, we only need to consider this scenario.

Under this worst-case scenario, where release times align, the non-RM schedule is
clearly feasible if and only if

e1 + e2 ≤ p1 . (11.1)

1The assumption that context switch time is negligible is problematic in practice. On processors
with caches, a context switch often causes substantial cache-related delays. In addition, the operating
system overhead for context switching can be substantial.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 307

http://LeeSeshia.org

11.2. RATE MONOTONIC SCHEDULING

This scenario is illustrated in Figure 11.5. Since task τ1 is preempted by τ2, for τ1 to
not miss its deadline, we require that e2 ≤ p1− e1, so that τ2 leaves enough time for
τ1 to execute before its deadline.

To show that RM is optimal with respect to feasibility, all we need to do is show
that if the non-RM schedule is feasible, then the RM schedule is also feasible. Ex-
amining Figure 11.6, it is clear that if (11.1) is satisfied, then the RM schedule is
feasible. Since these are the only two fixed priority schedules, the RM schedule is
optimal with respect to feasibility. The same proof technique can be generalized
to an arbitrary number of tasks, yielding the following theorem (Liu and Leyland,
1973):

τ1

τ2

τ1

τ2

τ1

τ2

τ1

τ2

o
2

Figure 11.4: Response time o2 of task τ2 is worst when its cycle starts at the
same time that the cycle of τ1 starts.

308 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

e2

p2

e1

p1

τ1

τ2

Figure 11.5: The non-RM schedule gives higher priority to τ2. It is feasible if
and only if e1 + e2 ≤ p1 for this scenario.

Theorem 11.1. Given a preemptive, fixed priority scheduler and a finite set of
repeating tasks T = {τ1,τ2, · · · ,τn} with associated periods p1, p2, · · · , pn and no
precedence constraints, if any priority assignment yields a feasible schedule, then
the rate monotonic priority assignment yields a feasible schedule.

RM schedules are easily implemented with a timer interrupt with a time interval
equal to the greatest common divisor of the periods of the tasks. They can also be
implemented with multiple timer interrupts.

e2

p2

e1

p1

τ1

τ2

Figure 11.6: The RM schedule gives higher priority to τ1. For the RM sched-
ule to be feasible, it is sufficient, but not necessary, for e1 + e2 ≤ p1.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 309

http://LeeSeshia.org

11.3. EARLIEST DEADLINE FIRST

It turns out that RM schedulers cannot always achieve 100% utilization. In particu-
lar, RM schedulers are constrained to have fixed priority. This constraint results in
situations where a task set that yields a feasible schedule has less than 100% utiliza-
tion and yet cannot tolerate any increase in execution times or decrease in periods.
An example is studied in Exercise 3. In the next section, we relax the fixed-priority
constraint and show that dynamic priority schedulers can do better, at the cost of a
somewhat more complicated implementation.

11.3 Earliest Deadline First

Given a finite set of non-repeating tasks with deadlines and no precedence con-
straints, a simple scheduling algorithm is earliest due date (EDD), also known as
Jackson’s algorithm (Jackson, 1955). The EDD strategy simply executes the tasks
in the same order as their deadlines, with the one with the earliest deadline going
first. If two tasks have the same deadline, then their relative order does not matter.

Theorem 11.2. Given a finite set of non-repeating tasks T = {τ1,τ2, · · · ,τn} with
associated deadlines d1,d2, · · · ,dn and no precedence constraints, an EDD schedule
is optimal in the sense that it minimizes the maximum lateness, compared to all other
possible orderings of the tasks.

Proof. This theorem is easy to prove with a simple interchange argument.
Consider an arbitrary schedule that is not EDD. In such a schedule, because it is
not EDD, there must be two tasks τi and τ j where τi immediately precedes τ j, but
d j < di. This is depicted here:

0 fi

task i

fj dj di

task j

Since the tasks are independent (there are no precedence constraints), reversing the
order of these two tasks yields another valid schedule, depicted here:

310 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

0 f ’i

task i

f ’j dj di

task j

We can show that the new schedule has a maximum lateness no greater than that
of the original schedule. If we repeat the above interchange until there are no more
tasks eligible for such an interchange, then we have constructed the EDD schedule.
Since this schedule has a maximum lateness no greater than that of the original
schedule, the EDD schedule has the minimum maximum lateness of all schedules.

To show that the second schedule has a maximum lateness no greater than that of
the first schedule, first note that if the maximum lateness is determined by some
task other than τi or τ j, then the two schedules have the same maximum lateness,
and we are done. Otherwise, it must be that the maximum lateness of the first
schedule is

Lmax = max(fi−di, f j−d j) = f j−d j,

where the latter equality is obvious from the picture and follows from the facts that
fi ≤ f j and d j < di.

The maximum lateness of the second schedule is given by

L′max = max(f ′i −di, f ′j−d j) .

Consider two cases:

Case 1: L′max = f ′i −di. In this case, since f ′i = f j, we have

L′max = f j−di ≤ f j−d j ,

where the latter inequality follows because d j < di. Hence, L′max ≤ Lmax.

Case 2: L′max = f ′j−d j. In this case, since f ′j ≤ f j, we have

L′max ≤ f j−d j ,

and again L′max ≤ Lmax.

In both cases, the second schedule has a maximum lateness no greater than that of
the first schedule. QED.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 311

http://LeeSeshia.org

11.3. EARLIEST DEADLINE FIRST

EDD is also optimal with respect to feasibility, because it minimizes the maximum
lateness. However, EDD does not support arrival of tasks, and hence also does not
support periodic or repeated execution of tasks. Fortunately, EDD is easily extended
to support these, yielding what is known as earliest deadline first (EDF) or Horn’s
algorithm (Horn, 1974).

Theorem 11.3. Given a set of n independent tasks T = {τ1,τ2, · · · ,τn} with associ-
ated deadlines d1,d2, · · · ,dn and arbitrary arrival times, any algorithm that at any
instant executes the task with the earliest absolute deadline among all arrived tasks
is optimal with respect to minimizing the maximum lateness.

The proof of this uses a similar interchange argument. Moreover, the result is easily
extended to support an unbounded number of arrivals. We leave it as an exercise.

Note that EDF is a dynamic priority scheduling algorithm. If a task is repeatedly
executed, it may be assigned a different priority on each execution. This can make
it more complex to implement. Typically, the deadline used is the end of the period
of the task, though it is certainly possible to use other deadlines for tasks.

Although EDF is more expensive to implement than RM, in practice its performance
is generally superior (Buttazzo, 2005b). First, RM is optimal with respect to feasi-
bility only among fixed priority schedulers, whereas EDF is optimal w.r.t. feasibility
among dynamic priority schedulers. In addition, EDF also minimizes the maximum
lateness. Also, in practice, EDF results in fewer preemptions (see Exercise 2), which
means less overhead for context switching. This often compensates for the greater
complexity in the implementation. In addition, unlike RM, any EDF schedule with
less than 100% utilization can tolerate increases in execution times and/or reductions
in periods and still be feasible.

11.3.1 EDF with Precedences

Theorem 11.2 shows that EDF is optimal (it minimizes maximum lateness) for a
task set without precedences. What if there are precedences? Given a finite set of
tasks, precedences between them can be represented by a precedence graph.

Example 11.1: Consider six tasks T = {1, · · · ,6}, each with execution
time ei = 1, with precedences as shown in Figure 11.7. The diagram means

312 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

0

1

d1= 2

d2= 5

d3= 4
d6= 6

d5= 5

d4= 3

642

3 2 4 5 6EDF

1 2 4 3 5 6LDF

1 2 4 3 5 6EDF*

Figure 11.7: An example of a precedence graph for six tasks and the sched-
ule under three scheduling policies. Execution times for all tasks are one
time unit.

that task 1 must execute before either 2 or 3 can execute, that 2 must exe-
cute before either 4 or 5, and that 3 must execute before 6. The deadline
for each task is shown in the figure. The schedule labeled EDF is the EDF
schedule. This schedule is not feasible. Task 4 misses its deadline. How-
ever, there is a feasible schedule. The schedule labeled LDF meets all
deadlines.

The previous example shows that EDF is not optimal if there are precedences. In
1973, Lawler (1973) gave a simple algorithm that is optimal with precedences, in the
sense that it minimizes the maximum lateness. The strategy is very simple. Given
a fixed, finite set of tasks with deadlines, Lawler’s strategy constructs the schedule
backwards, choosing first the last task to execute. The last task to execute is the
one on which no other task depends that has the latest deadline. The algorithm
proceeds to construct the schedule backwards, each time choosing from among the
tasks whose dependents have already been scheduled the one with the latest deadline.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 313

http://LeeSeshia.org

11.4. SCHEDULING AND MUTUAL EXCLUSION

For the previous example, the resulting schedule, labeled LDF in Figure 11.7, is
feasible. Lawler’s algorithm is called latest deadline first (LDF).

LDF is optimal in the sense that it minimizes the maximum lateness, and hence
it is also optimal with respect to feasibility. However, it does not support arrival
of tasks. Fortunately, there is a simple modification of EDF, proposed by Chetto
et al. (1990). EDF* (EDF with precedences), supports arrivals and minimizes the
maximal lateness. In this modification, we adjust the deadlines of all the tasks.
Suppose the set of all tasks is T . For a task execution i ∈ T , let D(i) ⊂ T be the
set of task executions that immediately depend on i in the precedence graph. For all
executions i ∈ T , we define a modified deadline

d′i = min(di, min
j∈D(i)

(d′j− e j)) .

EDF* is then just like EDF except that it uses these modified deadlines.

Example 11.2: In Figure 11.7, we see that the EDF* schedule is the same
as the LDF schedule. The modified deadlines are as follows:

d′1 = 1, d′2 = 2, d′3 = 4, d′4 = 3, d′5 = 5, d′6 = 6 .

The key is that the deadline of task 2 has changed from 5 to 2, reflecting the
fact that its successors have early deadlines. This causes EDF* to schedule
task 2 before task 3, which results in a feasible schedule.

EDF* can be thought of as a technique for rationalizing deadlines. Instead of ac-
cepting arbitrary deadlines as given, this algorithm ensures that the deadlines take
into account deadlines of successor tasks. In the example, it makes little sense for
task 2 to have a later deadline, 5, than its successors. So EDF* corrects this anomaly
before applying EDF.

11.4 Scheduling and Mutual Exclusion

Although the algorithms given so far are conceptually simple, the effects they have in
practice are far from simple and often surprise system designers. This is particularly

314 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

true when tasks share resources and use mutual exclusion to guard access to those
resources.

11.4.1 Priority Inversion

In principle, a priority-based preemptive scheduler is executing at all times the
high-priority enabled task. However, when using mutual exclusion, it is possible for
a task to become blocked during execution. If the scheduling algorithm does not
account for this possibility, serious problems can occur.

Example 11.3: The Mars Pathfinder, shown in Figure 11.8, landed on
Mars on July 4th, 1997. A few days into the mission, the Pathfinder be-
gan sporadically missing deadlines, causing total system resets, each with

Figure 11.8: The Mars Pathfinder and a view of the surface of Mars from its
camera (image from the Wikipedia Commons).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 315

http://commons.wikimedia.org/wiki/Main_Page
http://LeeSeshia.org

11.4. SCHEDULING AND MUTUAL EXCLUSION

loss of data. Engineers on the ground diagnosed the problem as priority
inversion, where a low priority meteorological task was holding a lock
and blocking a high-priority task, while medium priority tasks executed.
(Source: What Really Happened on Mars? Mike Jones, RISKS-19.49 on
the comp.programming.threads newsgroup, Dec. 07, 1997, and What Re-
ally Happened on Mars? Glenn Reeves, Mars Pathfinder Flight Software
Cognizant Engineer, email message, Dec. 15, 1997.)

Priority inversion is a scheduling anomaly where a high-priority task is blocked
while unrelated lower-priority tasks are executing. The phenomenon is illustrated in
Figure 11.9. In the figure, task 3, a low priority task, acquires a lock at time 1. At
time 2, it is preempted by task 1, a high-priority task, which then at time 3 blocks
trying to acquire the same lock. Before task 3 reaches the point where it releases
the lock, however, it gets preempted by an unrelated task 2, which has medium
priority. Task 2 can run for an unbounded amount of time, and effectively prevents
the higher-priority task 1 from executing. This is almost certainly not desirable.

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

p
re

em
p

t

re
le

as
e

d
o

n
e

task 1 blocked

Figure 11.9: Illustration of priority inversion. Task 1 has highest priority, task
3 lowest. Task 3 acquires a lock on a shared object, entering a critical sec-
tion. It gets preempted by task 1, which then tries to acquire the lock and
blocks. Task 2 preempts task 3 at time 4, keeping the higher priority task 1
blocked for an unbounded amount of time. In effect, the priorities of tasks 1
and 2 get inverted, since task 2 can keep task 1 waiting arbitrarily long.

316 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html
http://LeeSeshia.org

11. SCHEDULING

11.4.2 Priority Inheritance Protocol

In 1990, Sha et al. (1990) gave a solution to the priority inversion problem called
priority inheritance. In their solution, when a task blocks attempting to acquire a
lock, then the task that holds the lock inherits the priority of the blocked task. Thus,
the task that holds the lock cannot be preempted by a task with lower priority than
the one attempting to acquire the lock.

Example 11.4: Figure 11.10 illustrates priority inheritance. In the figure,
when task 1 blocks trying to acquire the lock held by task 3, task 3 resumes
executing, but now with the higher priority of task 1. Thus, when task 2
becomes enabled at time 4, it does not preempt task 3. Instead, task 3 runs
until it releases the lock at time 5. At that time, task 3 reverts to its original
(low) priority, and task 1 resumes executing. Only when task 1 completes
is task 2 able to execute.

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

re
le

as
e

d
o

n
e

task 1 blocked

at priority of 1

d
o

n
e

task 2 preempted

Figure 11.10: Illustration of the priority inheritance protocol. Task 1 has
highest priority, task 3 lowest. Task 3 acquires a lock on a shared object,
entering a critical section. It gets preempted by task 1, which then tries to
acquire the lock and blocks. Task 3 inherits the priority of task 1, preventing
preemption by task 2.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 317

http://LeeSeshia.org

11.4. SCHEDULING AND MUTUAL EXCLUSION

0 2 4 6

task 1

task 2

ac
q

u
ir

e
lo

ck
 a

p
re

em
p

t

block on a

acquire lock b

a

b

block on ba

Figure 11.11: Illustration of deadlock. The lower priority task starts first and
acquires lock a, then gets preempted by the higher priority task, which ac-
quires lock b and then blocks trying to acquire lock a. The lower priority task
then blocks trying to acquire lock b, and no further progress is possible.

11.4.3 Priority Ceiling Protocol

Priorities can interact with mutual exclusion locks in even more interesting ways. In
particular, in 1990, Sha et al. (1990) showed that priorities can be used to prevent
certain kinds of deadlocks.

Example 11.5: Figure 11.11 illustrates a scenario in which two tasks
deadlock. In the figure, task 1 has higher priority. At time 1, task 2 acquires
lock a. At time 2, task 1 preempts task 2, and at time 3, acquires lock b.
While holding lock b, it attempts to acquire lock a. Since a is held by task
2, it blocks. At time 4, task 2 resumes executing. At time 5, it attempts to
acquire lock b, which is held by task 1. Deadlock!

The deadlock in the previous example can be prevented by a clever technique called
the priority ceiling protocol (Sha et al., 1990). In this protocol, every lock or
semaphore is assigned a priority ceiling equal to the priority of the highest-priority
task that can lock it. A task τ can acquire a lock a only if the task’s priority is strictly
higher than the priority ceilings of all locks currently held by other tasks. Intuitively,

318 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

0 2 4 6

task 1

task 2

lo
ck

 a

p
re

em
p

t

prevented from locking b
by priority ceiling protocol

a

b

a b

unlock b, then a

a

Figure 11.12: Illustration of the priority ceiling protocol. In this version, locks
a and b have priority ceilings equal to the priority of task 1. At time 3, task 1
attempts to lock b, but it cannot because task 2 currently holds lock a, which
has priority ceiling equal to the priority of task 1.

if we prevent task τ from acquiring lock a, then we ensure that task τ will not hold
lock a while later trying to acquire other locks held by other tasks. This prevents
certain deadlocks from occurring.

Example 11.6: The priority ceiling protocol prevents the deadlock of Ex-
ample 11.5, as shown in Figure 11.12. In the figure, when task 1 attempts
to acquire lock b at time 3, it is prevented from doing so. At that time, lock
a is currently held by another task (task 2). The priority ceiling assigned
to lock a is equal to the priority of task 1, since task 1 is the highest prior-
ity task that can acquire lock a. Since the priority of task 1 is not strictly
higher than this priority ceiling, task 1 is not permitted to acquire lock b.
Instead, task 1 becomes blocked, allowing task 2 to run to completion. At
time 4, task 2 acquires lock b unimpeded, and at time 5, it releases both
locks. Once it has released both locks, task 1, which has higher priority, is
no longer blocked, so it resumes executing, preempting task 2.

Of course, implementing the priority ceiling protocol requires being able to deter-
mine in advance which tasks acquire which locks. A simple conservative strategy is
to examine the source code for each task and inventory the locks that are acquired in

Lee & Seshia, Introduction to Embedded Systems, version 0.5 319

http://LeeSeshia.org

11.5. MULTIPROCESSOR SCHEDULING

the code. This is conservative because a particular program may or may not execute
any particular line of code, so just because a lock is mentioned in the code does not
necessarily mean that the task will attempt to acquire the lock.

11.5 Multiprocessor Scheduling

Scheduling tasks on a single processor is hard enough. Scheduling them on multiple
processors is even harder. Consider the problem of scheduling a fixed finite set of
tasks with precedences on a finite number of processors with the goal of minimizing
the makespan. This problem is known to be NP hard. Nonetheless, effective and
efficient scheduling strategies exist. One of the simplest is known as the Hu level
scheduling algorithm. It assigns a priority to each task τ based on the level, which is
the greatest sum of execution times of tasks on a path in the precedence graph from
τ to another task with no dependents. Tasks with larger levels have higher priority
than tasks with smaller levels.

Example 11.7: For the precedence graph in Figure 11.7, task 1 has level
3, tasks 2 and 3 have level 2, and tasks 4, 5, and 6 have level 1. Hence, a
Hu level scheduler will give task 1 highest priority, tasks 2 and 3 medium
priority, and tasks 4, 5, and 6 lowest priority.

Hu level scheduling is one of a family of critical path methods because it empha-
sizes the path through the precedence graph with the greatest total execution time.
Although it is not optimal, it is known to closely approximate the optimal solution
for most graphs (Kohler, 1975; Adam et al., 1974).

Once priorities are assigned to tasks, a list scheduler sorts the tasks by priorities
and assigns them to processors in the order of the sorted list as processors become
available.

Example 11.8: A two processor schedule constructed with the Hu level
scheduling algorithm for the precedence graph shown in Figure 11.7 is
given in Figure 11.13. The makespan is 4.

320 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

11.5.1 Scheduling Anomalies

Among the biggest pitfalls in embedded systems design are scheduling anomalies,
where unexpected or counterintuitive behaviors emerge due to small changes in the
operating conditions of a system. We have already illustrated two such anomalies,
priority inversion and deadlock. There are many others. The possible extent of
the problems that can arise are well illustrated by the so-called Richard’s anoma-
lies (Graham, 1969). These show that multiprocessor schedules are non-montonic,
meaning that improvements in performance at a local level can result in degradations
in performance at a global level, and brittle, meaning that small changes can have
big consequences.

Richard’s anomalies are summarized in the following theorem.

Theorem 11.4. If a task set with fixed priorities, execution times, and precedence
constraints is scheduled on a fixed number of processors in accordance with the
priorities, then increasing the number of processors, reducing execution times, or
weakening precedence constraints can increase the schedule length.

Proof. The theorem can be proved with the example in Figure 11.14. The example
has nine tasks with execution times as shown in the figure. We assume the tasks
are assigned priorities so that the lower numbered tasks have higher priority than
the higher numbered tasks. Note that this does not correspond to a critical path
priority assignment, but it suffices to prove the theorem. The figure shows a three-
processor schedule in accordance with the priorities. Notice that the makespan is
12.

0

1

42

3 5 6Processor A:

2 4Processor B:

Figure 11.13: A two-processor parallel schedule for the tasks with prece-
dence graph shown in Figure 11.7.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 321

http://LeeSeshia.org

11.5. MULTIPROCESSOR SCHEDULING

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5 7

86

time

e1 = 3

e2 = 2

e3 = 2

e4 = 2

e9 = 9

e8 = 4

e7 = 4

e6 = 4

e5 = 4

Figure 11.14: A precedence graph with nine tasks, where the lower num-
bered tasks have higher priority than the higher numbered tasks.

First, consider what happens if the execution times are all reduced by one time unit.
A schedule conforming to the priorities and precedences is shown below:

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4 9

5

7

8

6

time

Notice that the makespan has increased to 13, even though the total amount of
computation has decreased significantly. Since computation times are rarely known
exactly, this form of brittleness is particularly troubling.

Consider next what happens if we add a fourth processor and keep everything else
the same as in the original problem. A resulting schedule is shown below:

322 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

95

7

8

6

time

proc4

Again, the makespan has increased (to 15 this time) even though we have added
33% more processing power than originally available.

Consider finally what happens if we weaken the precedence constraints by remov-
ing the precedences between task 4 and tasks 7 and 8. A resulting schedule is
shown below:

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5

7

8

6

time

The makespan has now increased to 16, even though weakening precedence
constraints increases scheduling flexibility. A simple priority-based scheduling
scheme such as this does not take advantage of the weakened constraints.

This theorem is particularly troubling when we realize that execution times for soft-
ware are rarely known exactly (see Chapter 15). Scheduling policies will be based
on approximations, and behavior at run time may be quite unexpected.

Another form of anomaly arises when there are mutual exclusion locks. An illus-
tration is given in Figure 11.15 In this example, five tasks are assigned to two pro-
cessors using a static assignment scheduler. Tasks 2 and 4 contend for a mutex. If
the execution time of task 1 is reduced, then the order of execution of tasks 2 and 4
reverses, which results in an increased execution time. This kind of anomaly is quite
common in practice.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 323

http://LeeSeshia.org

11.6. SUMMARY

0 4 8 12

proc1

proc2

2 6 10

3

1

4 5

time

2

proc1

proc2 3

1

4 5

2

0 4 8 122 6 10
time

Figure 11.15: Anomaly due to mutual exclusion locks, where a reduction in
the execution time of task 1 results in an increased makespan.

11.6 Summary

Embedded software is particularly sensitive to timing effects because it inevitably
interacts with external physical systems. A designer, therefore, needs to pay con-
siderable attention to the scheduling of tasks. This chapter has given an overview
of some of the most basic techniques for scheduling real-time tasks and parallel
scheduling. It has explained some of the pitfalls. A designer that is aware of the
pitfalls is better equipped to guard against them.

324 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

11. SCHEDULING

Exercises

1. This problem studies fixed priority scheduling. Consider two tasks to be exe-
cuted periodically on a single processor, where task 1 has period p1 = 4 and
task 2 has period p2 = 6.

(a) Let the execution time of task 1 be e1 = 1. Find the maximum value for
the execution time e2 of task 2 such that the RM schedule is feasible.

(b) Again let the execution time of task 1 be e1 = 1. Let non-RMS be a
fixed-priority schedule that is not RMS. Find the maximum value for the
execution time e2 of task 2 such that non-RMS is feasible.

(c) For both your solutions to (a) and (b) above, find the processor utiliza-
tion. Which is better?

(d) For RM scheduling, are there any values for e1 and e2 that yield 100%
utilization? If so, give an example.

2. This problem studies dynamic-priority scheduling. Consider two tasks to be
executed periodically on a single processor, where task 1 has period p1 = 4
and task 2 has period p2 = 6. Let the deadlines for each invocation of the tasks
be the end of their period. That is, the first invocation of task 1 has deadline
4, the second invocation of task 1 has deadline 8, etc.

(a) Let the execution time of task 1 be e1 = 1. Find the maximum value for
the execution time e2 of task 2 such that EDF is feasible.

(b) For the value of e2 that you found in part (a), compare the EDF schedule
against the RM schedule from Exercise 1 (a). Which schedule has less
preemption? Which schedule has better utilization?

3. Consider two tasks with periods p1 = 2 and p2 = 3 and execution times e1 =
e2 = 1. Assume that the deadline for each execution is the end of the period.

(a) Give the RM schedule for this task set and find the processor utilization.

(b) Show that any increase in e1 or e2 or any decrease in p1 or p2 makes the
RM schedule infeasible.

(c) Increase the execution time of task 2 to be e2 = 1.5, and give an EDF
schedule. Is it feasible? What is the processor utilization?

Lee & Seshia, Introduction to Embedded Systems, version 0.5 325

http://LeeSeshia.org

EXERCISES

e1= 3

e2= 2

e3= 2

e8= 5

e7 = 10

e4 = 5

e5 = 5

e6 = 5

Figure 11.16: Precedence Graph for Exercise 4.

4. This problem studies scheduling anomalies. Consider the task precedence
graph depicted in Figure 11.16 with eight tasks. In the figure, ei denotes the
execution time of task i. Assume task i has higher priority than task j if
i < j. There is no pre-emption. The tasks must be scheduled respecting all
precedence constraints and priorities. We assume that all tasks arrive at time
t = 0.

(a) Consider scheduling these tasks on two processors. Draw the schedule
for these tasks and report the makespan.

(b) Now consider scheduling these tasks on three processors. Draw the
schedule for these tasks and report the makespan. Is the makespan big-
ger or smaller than that in part (a) above?

(c) Now consider the case when the execution time of each task is reduced
by 1 time unit. Consider scheduling these tasks on two processors. Draw
the schedule for these tasks and report the makespan. Is the makespan
bigger or smaller than that in part (a) above?

326 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Part III

Analysis and Verification

327

Chapter 12

Invariants and Temporal Logic

Contents
12.1 Invariants . 331
12.2 Linear Temporal Logic . 333

12.2.1 Propositional Logic Formulas 334

12.2.2 LTL Formulas . 335

Sidebar: Safety and Liveness Properties 338

Sidebar: Probing Further: Alternative Temporal Logics 339

12.2.3 Using LTL Formulas 341

12.3 Summary . 342
Exercises . 343

Every embedded system must be designed to meet certain requirements. Such sys-
tem requirements are also called properties or specifications. The need for specifi-
cations is aptly captured by the following quotation (paraphrased from Young et al.
(1985)):

“A design without specifications cannot be right or wrong, it can only
be surprising!”

In present engineering practice, it is common to have system requirements stated in
a natural language such as English. As an example, consider the SpaceWire commu-

329

nication protocol that is gaining adoption with several national space agencies (Eu-
ropean Cooperation for Space Standardization, 2002). Here are two properties re-
produced from Section 8.5.2.2 of the specification document, stating conditions on
the behavior of the system upon reset:

1. “The ErrorReset state shall be entered after a system reset, after link oper-
ation has been terminated for any reason or if there is an error during link
initialization.”

2. “Whenever the reset signal is asserted the state machine shall move imme-
diately to the ErrorReset state and remain there until the reset signal is de-
asserted.”

It is important to precisely state requirements to avoid ambiguities inherent in natural
languages. For example, consider the first property of the SpaceWire protocol stated
above. Observe that there is no mention of when the ErrorReset state is to be entered.
The systems that implement the SpaceWire protocol are synchronous, meaning that
transitions of the state machine occur on ticks of a system clock. Given this, must
the ErrorReset state be entered on the very next tick after one of the three conditions
becomes true or on some subsequent tick of the clock? As it turns out, the document
intends the system to make the transition to ErrorReset on the very next tick, but this
is not made precise by the English language description.

This chapter will introduce techniques to specify system properties mathematically
and precisely. A mathematical specification of system properties is also known as a
formal specification. The specific formalism we will use is called temporal logic.
As the name suggests, temporal logic is a precise mathematical notation with associ-
ated rules for representing and reasoning about timing-related properties of systems.
While temporal logic has been used by philosophers and logicians since the times
of Aristotle, it is only in the last thirty years that it has found application as a math-
ematical notation for specifying system requirements.

One of the most common kinds of system property is an invariant. It is also one of
the simplest forms of a temporal logic property. We will first introduce the notion
of an invariant and then generalize it to more expressive specifications in temporal
logic.

330 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

12.1 Invariants

An invariant is a property that holds for a system if it remains true at all times
during operation of the system. Put another way, an invariant holds for a system if
it is true in the initial state of the system, and it remains true as the system evolves,
after every reaction, in every state.

In practice, many properties are invariants. Both properties of the SpaceWire pro-
tocol stated above are invariants, although this might not be immediately obvious.
Both SpaceWire properties specify conditions that must remain true always. Be-
low is an example of an invariant property of a model that we have encountered in
Chapter 3.

Example 12.1: Consider the model of a traffic light controller given in
Figure 3.10 and its environment as modeled in Figure 3.11. Consider the
system formed by the asynchronous composition of these two state ma-
chines. An obvious property that the composed system must satisfy is that
there is no pedestrian crossing when the traffic light is green (when cars are
allowed to move). This property must always remain true of this system,
and hence is a system invariant.

It is also desirable to specify invariant properties of software and hardware imple-
mentations of embedded systems. Some of these properties specify correct program-
ming practice on language constructs. For example, the C language property

“The program never dereferences a null pointer”

is an invariant specifying good programming practice. Typically dereferencing a null
pointer in a C program results in a segmentation fault, possibly leading to a system
crash. Similarly, several desirable properties of concurrent programs are invariants,
as illustrated in the following example.

Example 12.2: Consider the following property regarding an absence of
deadlock:

Lee & Seshia, Introduction to Embedded Systems, version 0.5 331

http://LeeSeshia.org

12.1. INVARIANTS

If a thread A blocks while trying to acquire a mutex lock, then
the thread B that holds that lock must not be blocked attempting
to acquire a lock held by A.

This property is required to be an invariant on any multithreaded program
constructed from threads A and B. The property may or may not hold for
a particular program. If it does not hold, there is risk of deadlock.

Many system invariants also impose requirements on program data, as illustrated in
the example below.

Example 12.3: Consider the following example of a software task from
the open source Paparazzi unmanned aerial vehicle (UAV) project (Nemer
et al., 2006):

1 void altitude_control_task(void) {
2 if (pprz_mode == PPRZ_MODE_AUTO2
3 || pprz_mode == PPRZ_MODE_HOME) {
4 if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {
5 float err = estimator_z - desired_altitude;
6 desired_climb
7 = pre_climb + altitude_pgain * err;
8 if (desired_climb < -CLIMB_MAX) {
9 desired_climb = -CLIMB_MAX;

10 }
11 if (desired_climb > CLIMB_MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 }
15 }
16 }

For this example, it is required that the value of the desired climb
variable at the end of altitude control task remains within the
range [-CLIMB MAX, CLIMB MAX]. This is an example of a special

332 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

kind of invariant, a postcondition, that must be maintained every time
altitude control task returns. Determining whether this is the
case requires analyzing the control flow of the program.

12.2 Linear Temporal Logic

We now give a formal description of temporal logic and illustrate with examples of
how it can be used to specify system behavior. In particular, we study a particular
kind of temporal logic known as linear temporal logic, or LTL. There are other
forms of temporal logic, some of which are briefly surveyed in sidebars.

Using LTL, one can express a property over a single, but arbitrary execution of a
system. For instance, one can express the following kinds of properties in LTL:

• Occurrence of an event and its properties. For example, one can express the
property that an event A must occur at least once in every trace of the system,
or that it must occur infinitely many times.

• Causal dependency between events. An example of this is the property that if
an event A occurs in a trace, then event B must also occur.

• Ordering of events. An example of this kind of property is one specifying that
every occurrence of event A is preceded by a matching occurrence of B.

We now formalize the above intuition about the kinds of properties expressible in
linear temporal logic. In order to perform this formalization, it is helpful to fix
a particular formal model of computation. We will use the theory of finite-state
machines, introduced in Chapter 3.

Recall from Section 3.6 that an execution trace of a finite-state machine is a sequence
of the form

q0, q1, q2, q3, . . . ,

where q j = (x j,s j,y j), s j is the state, x j is the input valuation, and y j is the output
valuation at reaction j.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 333

http://LeeSeshia.org

12.2. LINEAR TEMPORAL LOGIC

12.2.1 Propositional Logic Formulas

First, we need to be able to talk about conditions at each reaction, such as whether
an input or output is present, what the value of an input or output is, or what the
state is. Let an atomic proposition be such a statement about the inputs, outputs, or
states. It is a predicate (an expression that evaluates to true or false). Examples of
atomic propositions that are relevant for the state machines in Figure 12.1 are:

true Always true.
false Always false.

x True if input x is present.
x = present True if input x is present.
y = absent True if y is absent.

b True if the FSM is in state b

In each case, the expression is true or false at a reaction qi. The proposition b is
true at a reaction qi if qi = (x,b,y) for any valuations x and y, which means that the
machine is in state b at the start of the reaction. I.e., it refers to the current state, not
the next state.

A propositional logic formula or (more simply) proposition is a predicate that
combines atomic propositions using logical connectives: conjunction (logical AND,
denoted ∧), disjunction (logical OR, denoted ∨), negation (logical NOT, denoted ¬),
and implies (logical implication, denoted =⇒). Propositions for the state machines

Figure 12.1: Two finite-state machines used to illustrate LTL formulas.

334 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

in Figure 12.1 include any of the above atomic proposition and expressions using
the logical connectives together with atomic propositions. Here are some examples:

x∧ y True if x and y are both present.
x∨ y True if either x or y is present.

x = present∧ y = absent True if x is present and y is absent.
¬y True if y is absent.

a =⇒ y True if whenever the FSM is in state a,
the output y will be made present by the reaction

Note that if p1 and p2 are propositions, the proposition p1 =⇒ p2 is true if and only
if ¬p2 =⇒ ¬p1. In other words, if we wish to establish that p1 =⇒ p2 is true, it is
equally valid to establish that ¬p2 =⇒ ¬p1 is true. In logic, the latter expression is
called the contrapositive of the former.

Note further that p1 =⇒ p2 is true if p1 is false. This is easy to see by considering
the contrapositive. The proposition ¬p2 =⇒ ¬p1 is true regardless of p2 if ¬p1 is
true. Thus, another proposition that is equivalent to p1 =⇒ p2 is

¬p1∨ (p1∧ p2) .

12.2.2 LTL Formulas

An LTL formula, unlike the above propositions, applies to an entire trace

q0, q1, q2, . . . ,

rather than to just one reaction qi. The simplest LTL formulas look just like the
propositions above, but they apply to an entire trace rather than just a single element
of the trace. If p is a proposition, then by definition, we say that LTL formula φ = p
holds for the trace q0,q1,q2, . . . if and only if p is true for q0. It may seem odd to say
that the formula holds for the entire trace even though the proposition only holds for
the first element of the trace, but we will see that LTL provides ways to reason about
the entire trace.

By convention, we will denote LTL formulas by φ, φ1, φ2, etc. and propositions by
p, p1, p2, etc.

Given a state machine M and an LTL formula φ, we say that φ holds for M if φ holds
for all possible traces of M. This typically requires considering all possible inputs.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 335

http://LeeSeshia.org

12.2. LINEAR TEMPORAL LOGIC

Example 12.4: The LTL formula a holds for Figure 12.1(b), because all
traces begin in state a. It does not hold for Figure 12.1(a).

The LTL formula x =⇒ y holds for both machines. In both cases, in the
first reaction, if x is present, then y will be present.

To demonstrate that an LTL formula is false for an FSM, it is sufficient to give one
trace for which it is false. Such a trace is called a counterexample. To show that an
LTL formula is true for an FSM, you must demonstrate that it is true for all traces,
which is often much harder (although not so much harder when the LTL formula is
a simple propositional logic formula, because in that case we only have to consider
the first element of the trace).

Example 12.5: The LTL formula y is false for both FSMs in Figure 12.1.
In both cases, a counterexample is a trace where x is absent in the first
reaction.

In addition to propositions, LTL formulas can also have one or more special tem-
poral operators. These make LTL much more interesting, because they enable rea-
soning about entire traces instead of just making assertions about the first element
of a trace. There are four main temporal operators, which we describe next.

G Operator

The property Gφ (which is read as “globally φ”) holds for a trace if φ holds for every
suffix of that trace. (A suffix is a tail of a trace beginning with some reaction and
including all subsequent reactions.)

In mathematical notation, Gφ holds for the trace if and only if, for all j≥ 0, formula
φ holds in the suffix q j,q j+1,q j+2,

336 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

Example 12.6: In Figure 12.1(b), G(x =⇒ y) is true for all traces of the
machine, and hence holds for the machine. G(x∧ y) does not hold for the
machine, because it is false for any trace where x is absent in any reaction.
Such a trace provides a counterexample.

If φ is a propositional logic formula, then Gφ simply means that φ holds in every re-
action. We will see, however, that when we combine the G operator with other tem-
poral logic operators, we can make much more interesting statements about traces
and about state machines.

F Operator

The property Fφ (which is read as “eventually φ” or “finally φ”) holds for a trace if
φ holds for some suffix of the trace.

Formally, Fφ holds for the trace if and only if, for some j ≥ 0, formula φ holds in
the suffix q j,q j+1,q j+2,

Example 12.7: In Figure 12.1(a), Fb is trivially true because the machine
starts in state b, hence, for all traces, the proposition b holds for the trace
itself (the very first suffix).

More interestingly, G(x =⇒ Fb) holds for Figure 12.1(a). This is because
if x is present in any reaction, then the machine will eventually be in state
b. This is true even in suffixes that start in state a.

Notice that parentheses can be important in interpreting an LTL formula.
For example, (Gx) =⇒ (Fb) is trivially true because Fb is true for all
traces (since the initial state is b).

Notice that F¬φ holds if and only if ¬Gφ. That is, stating that φ is eventually false
is the same as stating that φ is not always true.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 337

http://LeeSeshia.org

12.2. LINEAR TEMPORAL LOGIC

Safety and Liveness Properties

System properties may be safety or liveness properties. Informally, a safety property
is one specifying that “nothing bad happens” during execution. Similarly, a liveness
property specifies that “something good will happen” during execution.

More formally, a property p is a safety property if one can show, by exhibiting
a finite-length execution, that the system does not satisfy p. We say p is a liveness
property of a system if, for every finite-length prefix of a system execution that does
not satisfy p, it is possible to extend the execution so as to satisfy p. See Lamport
(1977) and Alpern and Schneider (1987) for a theoretical treatment of safety and
liveness.

The properties we have seen in Section 12.1 are all examples of safety properties.
Liveness properties, on the other hand, specify performance or progress require-
ments on a system. For a state machine, a property of the form Fφ is a liveness
property. No finite execution can establish that this is false.

The following is a slightly more elaborate example of a liveness property:

“Whenever an interrupt is asserted, the corresponding interrupt service
routine (ISR) is eventually executed.”

In temporal logic, if p1 is the property than an interrupt is asserted, and p2 is the
property that the interrupt service routine is executed, then this property can be writ-
ten

G(p1 =⇒ Fp2) .

Note that both safety and liveness properties can constitute system invariants. For
example, the above liveness property on interrupts is also an invariant; p1 =⇒ Fp2
must hold in every state.

Liveness properties can be either bounded or unbounded. A bounded liveness
property specifies a time bound on when something desirable must happen (which
makes it a safety property). In the above example, if the ISR must be executed within
100 clock cycles of the interrupt being asserted, the property is a bounded liveness
property; otherwise, if there is no such time bound on the occurrence of the ISR,
it is an unbounded liveness property. LTL can express a limited form of bounded
liveness properties using the X operator, but it does not provide any mechanism for
quantifying time directly.

338 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

X Operator

The property Xφ (which is read as “next state φ”) holds for a trace q0,q1,q2, . . . if
and only if φ holds for the trace q1,q2,q3,

Example 12.8: In Figure 12.1(a), x =⇒ Xa holds for the state machine,
because if x is present in the first reaction, then the next state will be a.

Probing Further: Alternative Temporal Logics

Amir Pnueli (1977) was the first to formalize temporal logic as a way of specify-
ing program properties. For this he won the 1996 ACM Turing Award, the highest
honor in Computer Science. Since his seminal paper, temporal logic has become
widespread as a way of specifying properties for a range of systems, including hard-
ware, software, and cyber-physical systems.

In this chapter, we have focused on LTL, but there are several alternatives. LTL
formulas apply to individual traces of an FSM, and in this chapter, by convention,
we assert than an LTL formula holds for an FSM if it holds for all possible traces
of the FSM. A more general logic called computation tree logic (CTL∗) explicitly
provides quantifiers over possible traces of an FSM (Emerson and Clarke (1980);
Ben-Ari et al. (1981)). For example, we can write a CTL∗ expression that holds for
an FSM if there exists any trace that satisfies some property, rather than insisting that
the property must hold for all traces. CTL∗ is called a branching-time logic because
whenever a reaction of the FSM has a nondeterministic choice, it will simultaneously
consider all options. LTL, by contrast, considers only one trace at a time, and hence it
is called a linear-time logic. Our convention of asserting that an LTL formula holds
for an FSM if it holds for all traces cannot be expressed directly in LTL, because
LTL does not include quantifiers like “for all traces.” We have to step outside the
logic to apply this convention. With CTL∗, this convention is expressible directly in
the logic.

Other temporal logic variants include real-time temporal logics (e.g., timed
computation tree logic or TCTL), for reasoning about real-time systems (Alur
et al., 1991); and probabilistic temporal logics, for reasoning about probabilis-
tic models such as Markov chains or Markov decision processes (see, for exam-
ple, Hansson and Jonsson (1994)).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 339

http://LeeSeshia.org

12.2. LINEAR TEMPORAL LOGIC

G(x =⇒ Xa) does not hold for the state machine because it does not hold
for any suffix that begins in state a.

In Figure 12.1(b), G(b =⇒ Xa) holds for the state machine.

U Operator

The property φ1Uφ2 (which is read as “φ1 until φ2”) holds for a trace if φ2 holds for
some suffix of that trace, and φ1 holds until φ2 becomes true.

Formally, φ1Uφ2 holds for the trace if and only if there exists j ≥ 0 such that φ2
holds in the suffix q j,q j+1,q j+2, . . . and φ1 holds in suffixes qi,qi+1,qi+2, . . ., for all
i s.t. 0≤ i < j. φ1 may or may not hold for q j,q j+1,q j+2,

Example 12.9: In Figure 12.1(b), aUx is true for any trace for which Fx
holds. Since this does not include all traces, aUx does not hold for the state
machine.

Some authors define a weaker form of the U operator that does not require φ2 to
hold. Using our definition, this can be written

(Gφ1)∨ (φ1Uφ2) .

This holds if either φ1 always holds (for any suffix) or, if φ2 holds for some suffix,
then φ1 holds for all previous suffixes. This can equivalently be written

(F¬φ1) =⇒ (φ1Uφ2) .

Example 12.10: In Figure 12.1(b), (G¬x)∨ (aUx) holds for the state
machine.

340 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

12.2.3 Using LTL Formulas

Consider the following English descriptions of properties and their corresponding
LTL formalizations:

Example 12.11: “Whenever the robot is facing an obstacle, eventually it
moves at least 5 cm away from the obstacle.”

Let p denote the condition that the robot is facing an obstacle, and q denote
the condition where the robot is at least 5 cm away from the obstacle. Then,
this property can be formalized in LTL as

G(p =⇒ Fq) .

Example 12.12: Consider the SpaceWire property:
“Whenever the reset signal is asserted the state machine shall move im-
mediately to the ErrorReset state and remain there until the reset signal is
de-asserted.”

Let p be true when the reset signal is asserted, and q be true when the state
of the FSM is ErrorReset. Then, the above English property is formalized
in LTL as:

G(p =⇒ X(qU¬p)) .

In the above formalization, we have interpreted “immediately” to mean
that the state changes to ErrorReset in the very next time step. Moreover,
the above LTL formula will fail to hold for any execution where the reset
signal is asserted and not eventually de-asserted. It was probably the intent
of the standard that the reset signal should be eventually de-asserted, but
the English language statement does not make this clear.

Example 12.13: Consider the traffic light controller in Figure 3.10. A
property of this controller is that the outputs always cycle through sigG,

Lee & Seshia, Introduction to Embedded Systems, version 0.5 341

http://LeeSeshia.org

12.3. SUMMARY

sigY and sigR. We can express this in LTL as follows:

G { (sigG =⇒ X((¬sigR∧¬sigG)UsigY))
∧ (sigY =⇒ X((¬sigG∧¬sigY)UsigR))
∧ (sigR =⇒ X((¬sigY ∧¬sigR)UsigG))
} .

The following LTL formulas express commonly useful properties.

(a) Infinitely many occurrences: This property is of the form GFp, meaning that
it is always the case that p is true eventually. Put another way, this means that
p is true infinitely often.

(b) Steady-state property: This property is of the form FGp, read as “from some
point in the future, p holds at all times.” This represents a steady-state prop-
erty, indicating that after some point in time, the system reaches a steady state
in which p is always true.

(c) Request-response property: The formula G(p =⇒ Fq) can be interpreted to
mean that a request p will eventually produce a response q.

12.3 Summary

Dependability and correctness are central concerns in embedded systems design.
Formal specifications, in turn, are central to achieving these goals. In this chap-
ter, we have studied temporal logic, one of the main approaches for writing formal
specifications. This chapter has provided techniques for precisely stating properties
that must hold over time for a system. It has specifically focused on linear temporal
logic, which is able to express many safety and liveness properties of systems.

342 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

Exercises

1. Consider the following state machine:

(Recall that the dashed line represents a default transition.) For each of the
following LTL formulas, determine whether it is true or false, and if it is false,
give a counterexample:

(a) x =⇒ Fb

(b) G(x =⇒ F(y = 1))

(c) (Gx) =⇒ F(y = 1)

(d) (Gx) =⇒ GF(y = 1)

(e) G((b∧¬x) =⇒ FGc)

(f) G((b∧¬x) =⇒ Gc)

(g) (GF¬x) =⇒ FGc

2. This problem is concerned with specifying in linear temporal logic tasks to
be performed by a robot. Suppose the robot must visit a set of n locations
l1, l2, . . . , ln. Let pi be an atomic formula that is true if and only if the robot
visits location li.

Give LTL formulas specifying the following tasks:

(a) The robot must eventually visit at least one of the n locations.

(b) The robot must eventually visit all n locations, but in any order.

(c) The robot must eventually visit all n locations, in the order l1, l2, . . . , ln.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 343

http://LeeSeshia.org

EXERCISES

Figure 12.2: Hierarchical state machine modeling a program and its interrupt
service routine.

3. Consider a system M modeled by the hierarchical state machine of Figure 12.2,
which models an interrupt-driven program. M has two modes: Inactive, in
which the main program executes, and Active, in which the interrupt service
routine (ISR) executes. The main program and ISR read and update a common
variable timerCount.

Answer the following questions:

(a) Specify the following property φ in linear temporal logic, choosing suit-
able atomic propositions:

φ: The main program eventually reaches program location C.

(b) Does M satisfy the above LTL property? Justify your answer by con-
structing the product FSM. If M does not satisfy the property, under
what conditions would it do so? Assume that the environment of M can
assert the interrupt at any time.

344 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

12. INVARIANTS AND TEMPORAL LOGIC

4. Express the postcondition of Example 12.3 as an LTL formula. State your
assumptions clearly.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 345

http://LeeSeshia.org

EXERCISES

346 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 13

Equivalence and Refinement

Contents
13.1 Models as Specifications . 348

13.2 Type Equivalence and Refinement 349

Sidebar: Abstraction and Refinement 350

13.3 Language Equivalence and Containment 353

Sidebar: Finite Sequences and Accepting States 355

Sidebar: Regular Languages and Regular Expressions 356

13.4 Simulation . 358

Sidebar: Probing Further: Omega Regular Languages 358

13.4.1 Simulation Relations 360

13.4.2 Formal Model . 362

13.4.3 Transitivity . 363

13.4.4 Non-Uniqueness of Simulation Relations 364

13.4.5 Simulation vs. Language Containment 365

13.5 Bisimulation . 366

13.6 Summary . 369

Exercises . 370

347

13.1. MODELS AS SPECIFICATIONS

This chapter discusses some fundamental ways to compare state machines and other
modal models, such as trace equivalence, trace containment, simulation, and bisim-
ulation. These mechanisms can be used to check conformance of a state machine
against a specification.

13.1 Models as Specifications

The previous chapter provided techniques for unambiguously stating properties that
a system must have to be functioning properly and safely. These properties were ex-
pressed using linear temporal logic, which can concisely describe requirements that
the trace of a finite-state machine must satisfy. An alternative way to give require-
ments is to provide a model, called a specification, that exhibits expected behavior
of the system. Typically, the specification is quite abstract, and it may exhibit more
behaviors than a useful implementation of the system would. But the key to being a
useful specification is that it explicitly excludes undesired or dangerous behaviors.

Example 13.1: A simple specification for a traffic light might state: “The
lights should always be lighted in the order green, yellow, red. It should
never, for example, go directly from green to red, or from yellow to green.”
This requirement can be given as a temporal logic formula (as is done in
Example 12.13) or as an abstract model (as is done in Figure 3.12).

The topic of this chapter is on the use of abstract models as specifications, and on
how such models relate to an implementation of a system and to temporal logic
formulas.

Example 13.2: We will show how to demonstrate that the traffic light
model shown in Figure 3.10 is a valid implementation of the specification
in Figure 3.12. Moreover, all traces of the model in Figure 3.10 satisfy the
temporal logic formula in Example 12.13, but not all traces of the spec-

348 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

ification in Figure 3.12 do. Hence, these two specifications are not the
same.

This chapter is about comparing models, and about being able to say with confi-
dence that one model can be used in place of another. This enables an engineering
design process where we start with abstract descriptions of desired and undesired
behaviors, and successively refine our models until we have something that is de-
tailed enough to provide a complete implementation. It also tells when it is safe to
change an implementation, replacing it with another that might, for example, reduce
the implementation cost.

13.2 Type Equivalence and Refinement

We begin with a simple relationship between two models that compares only the
data types of their communication with their environment. Specifically, the goal is
to ensure that a model B can be used in any environment where a model A can be
used without causing any conflicts about data types. Specifically, we will require
that B can accept any inputs that A can accept from the environment, and that any
environment that can accept any output A can produce can also accept any output
than B can produce.

To make the problem concrete, assume an actor model for A and B, as shown in
Figure 13.1. In that figure, A has three ports, two of which are input ports represented
by the set PA = {x,w}, and one of which is an output port represented by the set
QA = {y}. These ports represent communication between A and its environment.
The inputs have type Vx and Vw, which means that at a reaction of the actor, the
values of the inputs will be members of the sets Vx or Vw.

If we want to replace A by B in some environment, the ports and their types impose
four constraints:

1. The first constraint is that B does not require some input signal that the envi-
ronment does not provide. If the input ports of B are given by the set PB, then
this is guaranteed by

PB ⊆ PA. (13.1)

Lee & Seshia, Introduction to Embedded Systems, version 0.5 349

http://LeeSeshia.org

13.2. TYPE EQUIVALENCE AND REFINEMENT

The ports of B are a subset of the ports of A. It is harmless for A to have more
input ports than B, because if B replaces A in some environment, it can simply
ignore any input signals that it does not need.

2. The second constraint is that B produces all the output signals that the envi-
ronment may require. This is ensured by the constraint

QA ⊆ QB, (13.2)

Abstraction and Refinement

This chapter focuses on relationships between models known as abstraction and
refinement. These terms are symmetric in that the statement “model A is an ab-
straction of model B” means the same thing as “model B is a refinement of model
A.” As a general rule, the refinement model B has more detail than the abstraction
A, and the abstraction is simpler, smaller, or easier to understand.

An abstraction is sound (with respect to some formal system of properties) if
properties that are true of the abstraction are also true of the refinement. The formal
system of properties could be, for example, a type system, linear temporal logic,
or the languages of state machines. If the formal system is LTL, then if every LTL
formula that holds for A also holds for B, then A is a sound abstraction of B. This is
useful when it is easier to prove that a formula holds for A than to prove that it holds
for B, for example because the state space of B may be much larger than the state
space of A.

An abstraction is complete (with respect to some formal system of properties)
if properties that are true of the refinement are also true of the abstraction. For
example, if the formal system of properties is LTL, then A is a complete abstraction
of B if every LTL formula that holds for B also holds for A. Useful abstractions are
usually sound but not complete, because it is hard to make a complete abstraction
that is significantly simpler or smaller.

Consider for example a program B in an imperative language such as C that has
multiple threads. We might construct an abstraction A that ignores the values of vari-
ables and replaces all branches and control structures with nondeterministic choices.
The abstraction clearly has less information than the program, but it may be suffi-
cient for proving some properties about the program, for example a mutual exclusion
property.

350 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

where QA is the set of output ports of A, and QB is the set of output ports of
B. It is harmless for B to have additional output ports because an environment
capable of working with A does not expect such outputs and hence can ignore
them.

The remaining two constraints deal with the types of the ports. Let the type of an
input port p ∈ PA be given by Vp. This means that an acceptable input value v on p
satisfies v ∈Vp. Let V ′p denote the type of an input port p ∈ PB.

3. The third constraint is that if the environment provides a value v ∈ Vp on an
input port p that is acceptable to A, then if p is also an input port of B, then
the value is also acceptable B; i.e. v ∈ V ′p. This constraint can be written
compactly as follows,

∀ p ∈ PB, Vp ⊆V ′p. (13.3)

B

A

x: Vx

w: Vw

y: Vy

x: V'x

z: V'z

y: V'y

PA = { x, w }

PB = { x }

QA = { y }

QB = { y, z }

(1) PB ⊆ PA

(2) QA ⊆ QB

(3) ∀ p ∈ PB, Vp ⊆V ′p

(4) ∀ q ∈ QA, V ′q ⊆Vq

Figure 13.1: Summary of type refinement. If the four constraints on the right
are satisfied, then B is a type refinement of A.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 351

http://LeeSeshia.org

13.2. TYPE EQUIVALENCE AND REFINEMENT

Let the type of an output port q∈QA be Vq, and the type of the corresponding output
port q ∈ QB be V ′q.

4. The fourth constraint is that if B produces a a value v ∈V ′q on an output port q,
then if q is also an output port of A, then the value must be acceptable to any
environment in which A can operate. In other words,

∀ q ∈ QA, V ′q ⊆Vq. (13.4)

The four constraints of equations (13.1) through (13.4) are summarized in Figure
13.1. When these four constraints are satisfied, we say that B is a type refinement
of A. If B is a type refinement of A, then replacing A by B in any environment will
not cause type system problems. It could, of course, cause other problems, since the
behavior of B may not be acceptable to the environment, but that problem will be
dealt with in subsequent sections.

If B is a type refinement of A, and A is a type refinement of B, then we say that A and
B are type equivalent. They have the same input and output ports, and the types of
the ports are the same.

Example 13.3: Let A represent the nondeterministic traffic light model
in Figure 3.12 and B represent the more detailed deterministic model in
Figure 3.10. The ports and their types are identical for both machines, so
they are type equivalent. Hence, replacing A with B or vice versa in any
environment will not cause type system problems.

Notice that since Figure 3.12 ignores the pedestrian input, it might seem
reasonable to omit that port. Let A′ represent a variant of Figure 3.12
without the pedestrian input. It is not be safe to replace A′ with B in all
environments, because B requires an input pedestrian signal, but A′ can be
used in an environment that provides no such input.

352 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

13.3 Language Equivalence and Containment

To replace a machine A with a machine B, looking at the data types of the inputs
and outputs alone is usually not enough. If A is a specification and B is an imple-
mentation, then normally A imposes more constraints than just data types. If B is an
optimization of A (e.g., a lower cost implementation or a refinement that adds func-
tionality or leverages new technology), then B normally needs to conform in some
way with the functionality of A.

In this section, we consider a stronger form of equivalence and refinement. Specifi-
cally, equivalence will mean that given a particular sequence of input valuations, the
two machines produce the same output valuations.

Example 13.4: The garage counter of Figure 3.4, discussed in Example
3.4, is type equivalent to the extended state machine version in Figure 3.8.
The actor model is shown below:

Counter

up : pure

down : pure

count : {0, …, M }

However, these two machines are equivalent in a much stronger sense than
simply type equivalence. These two machines behave in exactly the same
way, as viewed from the outside. Given the same input sequence, the two
machines will produce the same output sequence.

Consider a port p of a state machine with type Vp. This port will have a sequence of
values from the set Vp∪{absent}, one value at each reaction. We can represent this
sequence as a function of the form

sp : N→Vp∪{absent}.

This is the signal received on that port (if it is an input) or produced on that port (if
it is an output). Recall that a behavior of a state machine is an assignment of such
a signal to each port of such a machine. Recall further that the language L(M) of a

Lee & Seshia, Introduction to Embedded Systems, version 0.5 353

http://LeeSeshia.org

13.3. LANGUAGE EQUIVALENCE AND CONTAINMENT

state machine M is the set of all behaviors for that state machine. Two machines are
said to be language equivalent if they have the same language.

Example 13.5: A behavior of the garage counter is a sequence of present
and absent valuations for the two inputs, up and down, paired with the cor-
responding output sequence at the output port, count. A specific example
is given in Example 3.16. This is a behavior of both Figures 3.4 and 3.8.
All behaviors of Figure 3.4 are also behaviors of 3.8 and vice versa. These
two machines are language equivalent.

In the case of a nondeterministic machine M, two distinct behaviors may share the
same input signals. That is, given an input signal, there is more than one possible
output sequence. The language L(M) includes all possible behaviors. Just like deter-
ministic machines, two nondeterministic machines are language equivalent if they
have the same language.

Suppose that for two state machines A and B, L(A)⊂ L(B). That is, B has behaviors
that A does not have. This is called language containment. A is said to be a lan-
guage refinement of B. Just as with type refinement, language refinement makes
an assertion about the suitability of A as a replacement for B. If every behavior of B
is acceptable to an environment, then every behavior of A will also be acceptable to
that environment. A can substitute for B.

Example 13.6: Machines M1 and M2 in Figure 13.2 are language equiv-
alent. Both machines produce output 1,1,0,1,1,0, · · · , possibly inter-
spersed with absent if the input is absent in some reactions.

Machine M3, however, has more behaviors. It can produce any output se-
quence that M1 and M2 can produce, but it can also produce other possible
output sequences given the same inputs. Thus, M1 and M2 are both lan-
guage refinements of M3.

354 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

Finite Sequences and Accepting States

A complete execution of the finite state machines considered in this text is infinite.
Suppose that we are interested in only the finite executions. To do this, we introduce
the notion of an accepting state, indicated with a double outline as in state b in the
example below:

Let La(M) denote the subset of the language L(M) that results from executions that
terminate in an accepting state. Equivalently, La(M) includes only those behaviors
in L(M) with an infinite tail of stuttering reactions that remain in an accepting state.
All such executions are effectively finite, since after a finite number of reactions, the
inputs and outputs will henceforth be absent, or in LTL, FG¬p for every port p.

We call La(M) the language accepted by an FSM M. A behavior in La(M)
specifies for each port p a finite string, or a finite sequence of values from the type
Vp. For the above example, the input strings (1), (1,0,1), (1,0,1,0,1), etc., are all
in La(M). So are versions of these with an arbitrary finite number of absent values
between any two present values. When there is no ambiguity, we can write these
strings 1, 101, 10101, etc.

In the above example, in all behaviors in La(M), the output is present a finite
number of times, in the same reactions when the input is present.

The state machines in this text are receptive, meaning that at each reaction, each
input port p can have any value in its type Vp or be absent. Hence, the language L(M)
of the machine above includes all possible sequences of input valuations. La(M) ex-
cludes any of these that do not leave the machine in an accepting state. For example,
any input sequence with two 1’s in a row and the infinite sequence (1,0,1,0, · · ·) are
in L(M) but not in La(M).

Note that it is sometimes useful to consider language containment when referring
to the language accepted by the state machine, rather than the language that gives
all behaviors of the state machine.

Accepting states are also called final states, since for any behavior in La(M), it is
the last state of the machine. Accepting states are further explored in Exercise 2.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 355

http://LeeSeshia.org

13.3. LANGUAGE EQUIVALENCE AND CONTAINMENT

Regular Languages and Regular Expressions

A language is a set of sequences of values from some set called its alphabet. A
language accepted by an FSM is called a regular language. A classic example of a
language that is not regular has sequences of the form 0n1n, which means a sequence
of n zeros followed a sequence of n ones, for any n∈N. It is easy to see that no finite
state machine can accept this language because the machine would have to count the
zeros in order to ensure that the number of ones matches. And the number of zeros
is not bounded. On the other hand, the input sequences accepted by the FSM in the
box on page 355, which have the form 10101 · · ·01, are regular.

A regular expression is a notation for describing regular languages. A central
feature of regular expressions is the Kleene star (or Kleene closure), named after
the American mathematician Stephen Kleene (who pronounced his name KLAY-
nee). The notation V∗, where V is a set, means the set of all finite sequences of
elements from V . For example, if V = {0,1}, then V∗ is a set that includes the
empty sequence (often written λ), and every finite sequence of zeros and ones.

The Kleene star may be applied to sets of sequences. For example, if A = {00,11},
then A∗ is the set of all finite sequences where zeros and ones always appear in pairs.
In the notation of regular expressions, this is written (00|11)*, where the vertical
bar means “or.” What is inside the parentheses defines the set A.

Regular expressions are constructed as sequences of symbols from an alphabet
and sets of sequences. Suppose our alphabet is A = {a,b, · · · ,z}, the set of lower-
case characters. Then grey is a regular expression denoting a single sequence
of four characters. The expression grey|gray denotes a set of two sequences.
Parentheses can be used to group sequences or sets of sequences. For example,
(grey)|(gray) and gr(e|a)y mean the same thing.

Regular expressions also provide convenience notations to make them more com-
pact and readable. For example, the + operator means “one or more,” in contrast
to the Kleene star, which means “zero or more.” For example, a+ specifies the se-
quences a, aa, aaa, etc.; it is the same as a(a*). The ? operator species “zero
or one.” For example, colou?r specifies a set with two sequences, color and
colour; it is the same as colo(λ|u)r, where λ denotes the empty sequence.

Regular expressions are commonly used in software systems for pattern matching.
A typical implementation provides many more convenience notations than the ones
illustrated here.

356 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

Language containment assures that an abstraction is sound with respect to LTL for-
mulas about input and output sequences. That is, if A is a language refinement of B,
then any LTL formula about inputs and outputs that holds for B also holds for A.

Example 13.7: Consider again the machines in Figure 13.2. M3 might
be a specification. For example, if we require that any two output values
0 have at least one intervening 1, then M3 is a suitable specification of
this requirement. This requirement can be written as an LTL formula as
follows:

G((y = 0)X((y 6= 0)U(y = 1))).

If we prove that this property holds for M3, then we have implicitly proved
that it also holds for M1 and M2.

Figure 13.2: Three state machines where (a) and (b) have the same lan-
guage, and that language is contained by that of (c).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 357

http://LeeSeshia.org

13.4. SIMULATION

We will see in the next section that language containment is not sound with respect to
LTL formulas that refer to states of the state machines. In fact, language containment
does not require the state machines to have the same states, so an LTL formula that
refers to the states of one machine may not even apply to the other machine. A sound
abstraction that references states will require simulation.

Language containment is sometimes called trace containment, but it is important
to recognize that the term “trace” here refers only to the observable trace, not to the
execution trace. As we will see next, things get much more subtle when considering
execution traces.

13.4 Simulation

Two nondeterministic FSMs may be language equivalent but still have observable
differences in behavior in some environments. Language equivalence merely states
that given the same sequences of input valuations, the two machines are capable of
producing the same sequences of output valuations. However, as they execute, they

Probing Further: Omega Regular Languages

The regular languages discussed in the boxes on pages 355 and 356 contain only
finite sequences. But embedded systems most commonly have infinite executions.
To extend the idea of regular languages to infinite runs, we can use a Büchi au-
tomaton, named after Julius Richard Büchi, a Swiss logician and mathematician. A
Büchi automaton is a possibly nondeterministic FSM that has one or more accepting
states. The language accepted by the FSM is defined to be the set of behaviors that
visit one or more of the accepting states infinitely often; in other words, these be-
haviors satisfy the LTL formula GF(s1∨·· ·∨ sn), where s1, · · · ,sn are the accepting
states. Such a language is called an omega-regular language or ω-regular lan-
guage, a generalization of regular languages. The reason for using ω in the name is
is because ω is used to construct infinite sequences, as explained in the box on page
418.

As we will see in Chapter 14, many model checking questions can be expressed by
giving a Büchi automaton and then checking to see whether the ω-regular language
it defines contains any sequences.

358 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

make choices allowed by the nondeterminism. Without being able to see into the
future, these choices could result in one of the machines getting into a state where it
can no longer match the outputs of the other.

When faced with a nondeterministic choice, each machine is free to use any policy
to make that choice. Assume that the machine cannot see into the future; that is, it
cannot anticipate future inputs, and it cannot anticipate future choices that any other
machine will make. For two machines to be equivalent, we will require that each
machine be able to make choices that allow it to match the reaction of the other
machine (producing the same outputs), and further allow it to continue to do such
matching in the future. It turns out that language equivalence is not strong enough
to ensure that this is possible.

Example 13.8: Consider the two state machines in Figure 13.3. Suppose
that M2 is acceptable in some environment (every behavior it can exhibit
in that environment is consistent with some specification or design intent).
Is it safe for M1 to replace M2? The two machines are language equiva-
lent. In all behaviors, the output is one of two finite strings, 01 or 00, for
both machines. So it would seem that M1 can replace M2. But this is not
necessarily the case.

Suppose we compose each of the two machines with its own copy of the
environment that finds M2 acceptable. In the first reaction where x is
present, M1 has no choice but to take the transition to state b and produce
the output y = 0. However, M2 must choose between f and h. Whichever
choice it makes, M2 matches the output y = 0 of M1 but enters a state where
it is no longer able to always match the outputs of M1. If M1 can observe
the state of M2 when making its choice, then in the second reaction where
x is present, it can choose a transition that M2 can never match. Such a
policy for M1 ensures that the behavior of M1, given the same inputs, is
never the same as the behavior of M2. Hence, it is not safe to replace M2
with M1.

On the other hand, if M1 is acceptable in some environment, is it safe for
M2 to replace M1? What it means for M1 to be acceptable in the envi-
ronment is that whatever decisions it makes are acceptable. Thus, in the
second reaction where x is present, both outputs y = 1 and y = 0 are ac-
ceptable. In this second reaction, M2 has no choice but to produce one or

Lee & Seshia, Introduction to Embedded Systems, version 0.5 359

http://LeeSeshia.org

13.4. SIMULATION

the other these outputs, and it will inevitably transition to a state where it
continues to match the outputs of M1 (henceforth forever absent). Hence
it is safe for M2 to replace M1.

In the above example, we can think of the machines as maliciously trying to make
M1 look different from M2. Since they are free to use any policy to make choices,
they are free to use policies that are contrary to our goal to replace M2 with M1. Note
that the machines do not need to know the future; it is sufficient to simply have good
visibility of the present. The question that we address in this section is: under what
circumstances can we assure that there is no policy for making nondeterministic
choices that can make machine M1 observably different from M2? The answer is
a stronger form of equivalence called bisimulation and a refinement relation called
simulation. We begin with the simulation relation.

13.4.1 Simulation Relations

First, notice that the situation given in Example 13.8 is not symmetric. It is safe for
M2 to replace M1, but not the other way around. Hence, M2 is a refinement of M1, in
a sense that we will now establish. M1, on the other hand, is not a refinement of M2.

Figure 13.3: Two state machines that are language equivalent but where M2
does not simulate M1 (M1 does simulate M2).

360 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

The particular kind of refinement we now consider is a simulation refinement. The
following statements are all equivalent:

• M2 is a simulation refinement of M1.

• M1 simulates M2.

• M1 is a simulation abstraction of M2.

Simulation is defined by a matching game. To determine whether M1 simulates
M2, we play a game where M2 gets to move first in each round. The game starts
with both machines in their initial states. M2 moves first by reacting to an input
valuation. If this involves a nondeterministic choice, then it is allowed to make any
choice. Whatever it choses, an output valuation results and M2’s turn is over.

It is now M1’s turn to move. It must react to the same input valuation that M2
reacted to. If this involves a nondeterministic choice, then it must make a choice
that matches the output valuation of M2. If there are multiple such choices, it must
select one without knowledge of the future inputs or future moves of M2. Its strategy
should be to choose one that enables it to continue to match M2, regardless of what
future inputs arrive or future decisions M2 makes.

Machine M1 “wins” this matching game (M1 simulates M2) if it can always match
the output symbol of machine M2 for all possible input sequences. If in any reaction
M2 can produce an output symbol that M1 cannot match, then M1 does not simulate
M2.

Example 13.9: In Figure 13.3, M1 simulates M2 but not vice versa. To
see this, first play the game with M2 moving first in each round. M1 will
always be able to match M2. Then play the game with M1 moving first in
each round. M2 will not always be able to match M1. This is true even
though the two machines are language equivalent.

Interestingly, if M1 simulates M2, it is possible to compactly record all possible
games over all possible inputs. Let S1 be the states of M1 and S2 be the states of M2.
Then a simulation relation S⊆ S2×S1 is a set of pairs of states occupied by the two

Lee & Seshia, Introduction to Embedded Systems, version 0.5 361

http://LeeSeshia.org

13.4. SIMULATION

machines in each round of the game for all possible inputs. This set summarizes all
possible plays of the game.

Example 13.10: In Figure 13.3,

S1 = {a,b,c,d}

and
S2 = {e, f,g,h, i}.

The simulation relation showing that M1 simulates M2 is

S = {(e,a),(f,b),(h,b),(g,c),(i,d)}

First notice that the pair (e,a) of initial states is in the relation, so the
relation includes the state of the two machines in the first round. In the
second round, M2 may be in either f or h, and M1 will be in b. These two
possibilities are also accounted for. In the third round and beyond, M2 will
be in either g or i, and M1 will be in c or d.

There is no simulation relation showing that M2 simulates M1, because it
does not.

A simulation relation is complete if it includes all possible plays of the game. It
must therefore account for all reachable states of M2, the machine that moves first,
because M2’s moves are unconstrained. Since M1’s moves are constrained by the
need to match M2, it is not necessary to account for all of its reachable states.

13.4.2 Formal Model

Using the formal model of nondeterministic FSMs given in Section 3.5.1, we can
formally define a simulation relation. Let

M1 = (States1, Inputs,Outputs,possibleUpdates1, initialState1),

and
M2 = (States2, Inputs,Outputs,possibleUpdates2, initialState2).

362 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

Assume the two machines are type equivalent. If either machine is deterministic,
then its possibleUpdates function always returns a set with only one element in it.
If M1 simulates M2, the simulation relation is given as a subset of States2×States1.
Note the ordering here; the machine that moves first in the game, M2, the one being
simulated, is first in States2×States1.

To consider the reverse scenario, if M2 simulates M1, then the relation is given as a
subset of States1×States2. In this version of the game M1 must move first.

We can state the “winning” strategy mathematically. We say that M1 simulates M2
if there is a subset S⊆ States2×States1 such that

1. (initialState2, initialState1) ∈ S, and

2. If (s2,s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′2,y2) ∈ possibleUpdates2(s2,x),
there is a (s′1,y1) ∈ possibleUpdates1(s1,x) such that:

(a) (s′2,s
′
1) ∈ S, and

(b) y2 = y1.

This set S, if it exists, is called the simulation relation. It establishes a correspon-
dence between states in the two machines. If it does not exist, then M1 does not
simulate M2.

13.4.3 Transitivity

Simulation is transitive, meaning that if M1 simulates M2 and M2 simulates M3,
then M1 simulates M3. In particular, if we are given simulation relations S2,1 ⊆
States2×States1 (M1 simulates M2) and S3,2 ⊆ States3×States2 (M2 simulates M3),
then

S3,1 = {(s3,s1) ∈ States3×States1 | there exists s2 ∈ States2 where
(s3,s2) ∈ S3,2 and (s2,s1) ∈ S2,1}

Example 13.11: For the machines in Figure 13.2, it is easy to show that
(c) simulates (b) and that (b) simulates (a). Specifically, the simulation

Lee & Seshia, Introduction to Embedded Systems, version 0.5 363

http://LeeSeshia.org

13.4. SIMULATION

relations are

Sa,b = {(a,ad),(b,be),(c,cf),(d,ad),(e,be),(f,cf)}.

and
Sb,c = {(ad,ad),(be,bcef),(cf,bcef)}.

By transitivity, we can conclude that (c) simulates (a), and that the simula-
tion relation is

Sa,c = {(a,ad),(b,bcef),(c,bcef),(d,ad),(e,bcef),(f,bcef)},

which further supports the suggestive choices of state names.

13.4.4 Non-Uniqueness of Simulation Relations

When a machine M1 simulates another machine M2, there may be more than one
simulation relation.

Example 13.12: In Figure 13.4, it is easy to check that M1 simulates M2.
Note that M1 is nondeterministic, and in two of its states it has two distinct
ways of matching the moves of M2. It can arbitrarily choose from among
these possibilities to match the moves. If from state b it always chooses to
return to state a, then the simulation relation is

S2,1 = {(ac,a),(bd,b)}.

Otherwise, if from state c it always chooses to return to state b, then the
simulation relation is

S2,1 = {(ac,a),(bd,b),(ac,c)}.

Otherwise, the simulation relation is

S2,1 = {(ac,a),(bd,b),(ac,c),(ad,d)}.

All three are valid simulation relations, so the simulation relation is not
unique.

364 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

Figure 13.4: Two state machines that simulate each other, where there is
more than one simulation relation.

13.4.5 Simulation vs. Language Containment

As with all abstraction-refinement relations, simulation is typically used to relate
a simpler specification M1 to a more complicated realization M2. When M1 simu-
lates M2, then the language of M1 contains the language of M2, but the guarantee
is stronger than language containment. This fact is summarized in the following
theorem.

Theorem 13.1. Let M1 simulate M2. Then

L(M2)⊆ L(M1).

Proof. This theorem is easy to prove. Consider a behavior (x,y) ∈ L(M2). We
need to show that (x,y) ∈ L(M1).

Let the simulation relation be S. Find all possible execution traces for M2

((x0,s0,y0),(x1,s1,y1),(x2,s2,y2), · · ·),

that result in behavior (x,y). (If M2 is deterministic, then there will be only one
execution trace.) The simulation relation assures us that we can find an execution
trace for M1

((x0,s′0,y0),(x1,s′1,y1),(x2,s′2,y2), · · ·),

where (si,s′i) ∈ S, such that given input valuation xi, M1 produces yi. Thus, (x,y) ∈
L(M1).

Lee & Seshia, Introduction to Embedded Systems, version 0.5 365

http://LeeSeshia.org

13.5. BISIMULATION

One use of this theorem is to show that M1 does not simulate M2 by showing that
M2 has behaviors that M1 does not have.

Example 13.13: For the examples in Figure 13.2, M2 does not simulate
M3. To see this, just note that the language of M2 is a strict subset of the
language of M3,

L(M2)⊂ L(M3),

meaning that M3 has behaviors that M2 does not have.

It is important to understand what the theorem says, and what it does not say. It
does not say, for example, that if L(M2)⊆ L(M1) then M1 simulates M2. In fact, this
statement is not true, as we have already shown with the examples in Figure 13.3.
These two machines have the same language. The two machines are observably
different despite the fact that their input/output behaviors are the same.

Of course, if M1 and M2 are determinate and M1 simulates M2, then their languages
are identical and M2 simulates M1. Thus, the simulation relation differs from lan-
guage containment only for nondeterministic FSMs.

13.5 Bisimulation

It is possible to have two machines M1 and M2 where M1 simulates M2 and M2 sim-
ulates M1, and yet the machines are observably different. Note that by the theorem
in the previous section, the languages of these two machines must be identical.

Example 13.14: Consider the two machines in Figure 13.5. These two
machines simulate each other, with simulation relations as follows:

S2,1 = {(e,a),(f,b),(h,b),(j,b),(g,c),(i,d),(k,c),(m,d)}

(M1 simulates M2), and

S1,2 = {(a,e),(b, j),(c,k),(d,m)}

366 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

Figure 13.5: An example of two machines where M1 simulates M2, and M2
simulates M1, but they are not bisimilar.

(M2 simulates M1). However, there is a situation in which the two ma-
chines will be observably different. In particular, suppose that the policies
for making the nondeterministic choices for the two machines work as fol-
lows. In each reaction, they flip a coin to see which machine gets to move
first. Given an input valuation, that machine makes a choice of move.
The machine that moves second must be able to match all of its possible
choices. In this case, the machines can end up in a state where one machine
can no longer match all the possible moves of the other.

Specifically, suppose that in the first move M2 gets to move first. It has
three possible moves, and M1 will have to match all three. Suppose it
chooses to move to f or h. In the next round, if M1 gets to move first, then
M2 can no longer match all of its possible moves.

Notice that this argument does not undermine the observation that these
machines simulate each other. If in each round, M2 always moves first,
then M1 will always be able to match its every move. Similarly, if in each

Lee & Seshia, Introduction to Embedded Systems, version 0.5 367

http://LeeSeshia.org

13.5. BISIMULATION

round M1 moves first, then M2 can always match its every move (by always
choosing to move to j in the first round). The observable difference arises
from the ability to alternate which machines moves first.

To ensure that two machines are observably identical in all environments, we need
a stronger equivalence relation called bisimulation. We say that M1 is bisimilar to
M2 (or M1 bisimulates M2) if we can play the matching game modified so that in
each round either machine can move first.

As in Section 13.4.2, we can use the formal model of nondeterministic FSMs to
define a bisimulation relation. Let

M1 = (States1, Inputs,Outputs,possibleUpdates1, initialState1), and

M2 = (States2, Inputs,Outputs,possibleUpdates2, initialState2).

Assume the two machines are type equivalent. If either machine is deterministic,
then its possibleUpdates function always returns a set with only one element in
it. If M1 bisimulates M2, the simulation relation is given as a subset of States2×
States1. The ordering here is not important because if M1 bisimulates M2, then M2
bisimulates M1.

We say that M1 bisimulates M2 if there is a subset S⊆ States2×States1 such that

1. (initialState2, initialState1) ∈ S, and

2. If (s2,s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′2,y2) ∈ possibleUpdates2(s2,x),
there is a (s′1,y1) ∈ possibleUpdates1(s1,x) such that:

(a) (s′2,s
′
1) ∈ S, and

(b) y2 = y1, and

3. If (s2,s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′1,y1) ∈ possibleUpdates1(s1,x),
there is a (s′2,y2) ∈ possibleUpdates2(s2,x) such that:

(a) (s′2,s
′
1) ∈ S, and

(b) y2 = y1.

368 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

This set S, if it exists, is called the bisimulation relation. It establishes a corre-
spondence between states in the two machines. If it does not exist, then M1 does not
bisimulate M2.

13.6 Summary

In this chapter, we have considered three increasingly strong abstraction-refinement
relations for FSMs. These relations enable designers to determine when one design
can safely replace another, or when one design correctly implements a specification.
The first relation is type refinement, which considers only the existence of input and
output ports and their data types. The second relation is language refinement, which
considers the sequences of valuations of inputs and outputs. The third relation is sim-
ulation, which considers the state trajectories of the machines. In all three cases, we
have provided both a refinement relation and an equivalence relation. The strongest
equivalence relation is bisimulation, which ensures that two nondeterministic FSMs
are indistinguishable from each each other.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 369

http://LeeSeshia.org

EXERCISES

Exercises

1. In Figure 13.6 are four pairs of actors. For each pair, determine whether

• A and B are type equivalent,
• A is a type refinement of B,
• B is a type refinement of A, or
• none of the above.

x:{0,1}

A Bw:{0,1}
y: pure y: pure

(a)

x:{0,1}

A Bw:{0,1}
y: pure

(b)

x:{0,1}

A Bw:{0,1}
y: pure

(c)

x:{0,1}

A Bw:{0,1}
y: {0, 1}

(d)

Figure 13.6: Four pairs of actors whose type refinement relationships are
explored in Exercise 1.

370 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

2. In the box on page 355, a state machine M is given that accepts finite inputs x
of the form (1), (1,0,1), (1,0,1,0,1), etc.

(a) Write a regular expression that describes these inputs. You may ignore
stuttering reactions.

(b) Describe the output sequences in La(M) in words, and give a regular
expression for those output sequences. You may again ignore stuttering
reactions.

(c) Create a state machine that accepts output sequences of the form (1),
(1,0,1), (1,0,1,0,1), etc. (see box on page 355). Assume the input x
is pure and that whenever the input is present, a present output is pro-
duced. Give a deterministic solution if there is one, or explain why there
is no determinate solution. What input sequences does your machine
accept.

3. The state machine in Figure 13.7 has the property that it outputs at least one
1 between any two 0’s. Construct a two-state nondeterministic state machine
that simulates this one and preserves that property. Give the simulation rela-
tion. Are the machines bisimilar?

4. Consider the FSM in Figure 13.8, which recognizes an input code. The state
machine in Figure 13.9 also recognizes the same code, but has more states
than the one in Figure 13.8. Show that it is equivalent by giving a bisimulation
relation with the machine in Figure 13.8.

Figure 13.7: Machine that outputs at least one 1 between any two 0’s.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 371

http://LeeSeshia.org

EXERCISES

5. Consider the state machine in Figure 13.10. Find a bisimilar state machine
with only two states, and give the bisimulation relation.

6. You are told that state machine A has one input x, and one output y, both with
type {1,2}, and that it has states {a,b,c,d}. You are told nothing further. Do
you have enough information to construct a state machine B that simulates A?
If so, give such a state machine, and the simulation relation.

7. Consider a state machine with a pure input x, and output y of type {0,1}.
Assume the states are

States = {a,b,c,d,e, f},

and the initial state is a. The update function is given by the following table
(ignoring stuttering):

Figure 13.8: A machine that implements a code recognizer. It outputs
recognize at the end of every input subsequence 1100; otherwise it outputs
absent .

372 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

13. EQUIVALENCE AND REFINEMENT

(currentState, input) (nextState,output)
(a,x) (b,1)
(b,x) (c,0)
(c,x) (d,0)
(d,x) (e,1)
(e,x) (f ,0)
(f ,x) (a,0)

Figure 13.9: A machine that implements a recognizer for the same code as
in Figure 13.8, but has more states.

Figure 13.10: A machine that has more states than it needs.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 373

http://LeeSeshia.org

EXERCISES

(a) Draw the state transition diagram for this machine.

(b) Ignoring stuttering, give all possible behaviors for this machine.

(c) Find a state machine with three states that is bisimilar to this one. Draw
that state machine, and give the bisimulation relation.

374 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 14

Reachability Analysis and Model
Checking

This chapter will discuss basic algorithms for reachability analysis and model check-
ing.

14.1 Open and Closed Systems

14.2 Reachability Analysis

14.3 Abstraction in Model Checking

14.4 Model Checking Liveness Properties

375

14.4. MODEL CHECKING LIVENESS PROPERTIES

376 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Chapter 15

Quantitative Analysis

Contents
15.1 Problems of Interest . 379

15.1.1 Extreme-Case Analysis 379

15.1.2 Threshold Analysis . 380

15.1.3 Average-Case Analysis 380

15.2 Programs as Graphs . 381
15.2.1 Basic Blocks . 382

15.2.2 Control-Flow Graphs 382

15.2.3 Function Calls . 384

15.3 Factors Determining Execution Time 385
15.3.1 Loop Bounds . 385

15.3.2 Exponential Path Space 388

15.3.3 Path Feasibility . 390

15.3.4 Memory Hierarchy . 391

15.4 Basics of Execution Time Analysis 392
15.4.1 Optimization Formulation 392

15.4.2 Logical Flow Constraints 396

15.4.3 Bounds for Basic Blocks 400

15.5 Other Quantitative Analysis Problems 402
15.5.1 Memory Bound Analysis 402

377

Sidebar: Probing Further: Tools for Execution-Time Analysis . 403

15.5.2 Power and Energy Analysis 404

15.6 Summary . 404

Exercises . 406

Will my brake-by-wire system actuate the brakes within one millisecond? Answer-
ing this question requires, in part, an execution-time analysis of the software that
runs on the electronic control unit (ECU) for the brake-by-wire system. Execution
time of the software is an example of a quantitative property of an embedded sys-
tem. The constraint that the system actuate the brakes within one millisecond is a
quantitative constraint. The analysis of quantitative properties for conformance
with quantitative constraints is central to the correctness of embedded systems, and
is the topic of the present chapter.

A quantitative property of an embedded system is any property that can be mea-
sured. This includes physical parameters, such as position or velocity of a vehicle
controlled by the embedded system, weight of the system, operating temperature,
power consumption, or reaction time. Our focus in this chapter is on properties of
software-controlled systems, with particular attention to execution time. We present
program analysis techniques that can ensure that execution time constraints will be
met. We also discuss how similar techniques can be used to analyze other quanti-
tative properties of software, particularly resource usage such as power, energy, and
memory.

The analysis of quantitative properties requires adequate models of both the software
components of the system and of the environment in which the software executes.
The environment includes the processor, operating system, input-output devices,
physical components with which the software interacts, and (if applicable) the com-
munication network. The environment is sometimes also referred to as the platform
on which the software executes. Providing a comprehensive treatment of execution
time analysis would require much more than one chapter. The goal of this chapter
is more modest. We illustrate some key features of programs and their environment
that must be considered in quantitative analysis, and we describe qualitatively some
of the analysis techniques that are used. For concreteness, we will focus on a single
quantity, execution time, and only briefly discuss other resource-related quantitative
properties.

378 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

15.1 Problems of Interest

The typical quantitative analysis problem involves a software task defined by a pro-
gram P, the environment E in which the program executes, and the quantity of in-
terest q. We assume that q can be given by a function of fP as follows,

q = fP(x,w)

where x denotes the inputs to the program P (such as data read from memory or from
sensors, or data received over a network), and w denotes the environment parame-
ters (such as network delays or the contents of the cache when the program begins
executing). Defining the function fP completely is often neither feasible nor neces-
sary; instead, practical quantitative analysis will yield extreme values for q (highest
or lowest values), average values for q, or proofs that q satisfies certain threshold
constraints. We elaborate on these next.

15.1.1 Extreme-Case Analysis

In extreme-case analysis, we may want to estimate the largest value of q for all
values of x and w,

max
x,w

fP(x,w). (15.1)

Alternatively, it can be useful to estimate the smallest value of q:

min
x,w

fP(x,w). (15.2)

If q represents execution time of a program or a program fragment, then the largest
value is called the worst-case execution time (WCET), and the smallest value is
called the best-case execution time (BCET). It may be difficult to determine these
numbers exactly, but for many applications, an upper bound on the WCET or a lower
bound on the BCET is all that is needed. In each case, when the computed bound
equals the actual WCET or BCET, it is said to be a tight bound; otherwise, if there
is a considerable gap between the actual value and the computed bound, it is said to
be a loose bound. Computing loose bounds may be much easier than finding tight
bounds.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 379

http://LeeSeshia.org

15.1. PROBLEMS OF INTEREST

15.1.2 Threshold Analysis

A threshold property asks whether the quantity q is always bounded above or below
by a threshold T , for any choice of x and w. Formally, the property can be expressed
as

∀x,w, fP(x,w)≤ T (15.3)

or
∀x,w, fP(x,w)≥ T (15.4)

Threshold analysis may provide assurances that a quantitative constraint is met, such
as the requirement that a brake-by-wire system actuate the brakes within one mil-
lisecond.

Threshold analysis may be easier to perform than extreme-case analysis. Unlike
extreme-case analysis, threshold analysis does not require us to determine the max-
imum or minimum value exactly, or even to find a tight bound on these values.
Instead, the analysis is provided some guidance in the form of the target value T .
Of course, it might be possible to use extreme-case analysis to check a threshold
property. Specifically, Constraint 15.3 holds if the WCET does not exceed T , and
Constraint 15.4 holds if the BCET is not less than T .

15.1.3 Average-Case Analysis

Often one is interested more in typical resource usage rather than in worst-case sce-
narios. This is formalized as average-case analysis. Here, the values of input x and
environment parameter w are assumed to be drawn randomly from a space of pos-
sible values X and W according to probability distributions Dx and Dw respectively.
Formally, we seek to estimate the value

EDx,Dw fP(x,w) (15.5)

where EDx,Dw denotes the expected value of fP(x,w) over the distributions Dx and
Dw.

One difficulty in average-case analysis is to define realistic distributions Dx and
Dw that capture the true distribution of inputs and environment parameters that a
program will execute with.

In the rest of this chapter, we will focus on a single representative problem, namely,
WCET estimation.

380 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

15.2 Programs as Graphs

A fundamental abstraction used often in program analysis is to represent a program
as a graph indicating the flow of control from one code segment to another. We
will illustrate this abstraction and other concepts in this chapter using the following
running example:

Example 15.1: Consider the function modexp that performs modular
exponentiation, a key step in many cryptographic algorithms. In modular
exponentiation, given a base b, an exponent e, and a modulus m, one must
compute be mod m. In the program below, base, exponent and mod
represent b, e and m respectively. EXP BITS denotes the number of bits
in the exponent. The algorithm used is a standard shift-square-accumulate
algorithm, where the base is repeatedly squared, once for each bit position
of the exponent, and the base is accumulated into the result only if the
corresponding bit is set.

1 #define EXP_BITS 32
2

3 typedef unsigned int UI;
4

5 UI modexp(UI base, UI exponent, UI mod) {
6 int i;
7 UI result = 1;
8

9 i = EXP_BITS;
10 while(i > 0) {
11 if ((exponent & 1) == 1) {
12 result = (result * base) % mod;
13 }
14 exponent >>= 1;
15 base = (base * base) % mod;
16 i--;
17 }
18 return result;
19 }

Lee & Seshia, Introduction to Embedded Systems, version 0.5 381

http://LeeSeshia.org

15.2. PROGRAMS AS GRAPHS

15.2.1 Basic Blocks

A basic block is a sequence of consecutive program statements in which the flow
of control enters only at the beginning of this sequence and leaves only at the end,
without halt or the possibility of branching except at the end.

Example 15.2: The following three statements from the modexp func-
tion in Example 15.1 form a basic block:

14 exponent >>= 1;
15 base = (base * base) % mod;
16 i--;

Another example of a basic block includes the initializations at the top of
the function, comprising Lines 7 and 9:

7 result = 1;
8

9 i = EXP_BITS;

15.2.2 Control-Flow Graphs

A control-flow graph (CFG) of a program P is a directed graph G = (V,E), where
the set of vertices V comprises basic blocks of P, and the set of edges E indicates the
flow of control between basic blocks. Figure 15.1 depicts the CFG for the modexp
program of Example 15.1. Each node of the CFG is labeled with its corresponding
basic block. In most cases, this is simply the code as it appears in Example 15.1. The
only exception is for conditional statements, such as the conditions in while loops
and if-statements; in these cases, we follow the convention of labeling the node with
the condition followed by a question mark to indicate the conditional branch.

Although our illustrative example of a control-flow graph is at the level of C source
code, it is possible to use the CFG representation at other levels of program repre-
sentation as well, including a high-level model as well as low-level assembly code.
The level of representation employed depends on the level of detail required by the
context. To make them easier to follow, our control-flow graphs will be at level of
source code.

382 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

result = 1;
i = EXP_BITS:

(i > 0)?

((exponent & 1) == 1)?

result = (result * base) % mod;

exponent >>= 1;
base = (base * base) % mod;
i--:

return result;

1

0

1

0

1

2

3

4

5

6

Figure 15.1: Control-flow graph for the modexp function of Example 15.1. All
incoming edges at a node indicate transfer of control to the start of the basic
block for that node, and all outgoing edges from a node indicate an exit from
the end of the basic block for that node. For clarity, we label the outgoing
edges from a branch statement with 0 or 1 indicating the flow of control in
case the branch evaluates to false or true, respectively. An ID number for
each basic block is noted above the node for that block; IDs range from 1 to
6 for this example.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 383

http://LeeSeshia.org

15.2. PROGRAMS AS GRAPHS

15.2.3 Function Calls

Programs are typically decomposed into several functions in order to systematically
organize the code and promote re-use and readability. The control-flow graph (CFG)
representation can be extended to reason about code with function calls by intro-
ducing special call and return edges. These edges connect the CFG of the caller
function – the one making the function call – to that of the callee function – the one
being called. A call edge indicates a transfer of control from the caller to the callee.
A return edge indicates a transfer of control from the callee back to the caller.

Example 15.3: A slight variant shown below of the modular exponenta-
tion program of Example 15.1 uses function calls and can be represented
by the CFG with call and return edges in Figure 15.2.

1 #define EXP_BITS 32
2 typedef unsigned int UI;
3 UI exponent, base, mod;
4

5 UI update(UI r) {
6 UI res = r;
7 if ((exponent & 1) == 1) {
8 res = (res * base) % mod;
9 }

10 exponent >>= 1;
11 base = (base * base) % mod;
12 return res;
13 }
14

15 UI modexp_call(UI base, UI exponent, UI mod) {
16 UI result = 1; int i;
17 i = EXP_BITS;
18 while(i > 0) {
19 result = update(result);
20 i--;
21 }
22 return result;
23 }

In this modified example, the variables base, exponent, and mod are
global variables. The update to base and exponent in the body of the
while loop, along with the computation of result is now performed in
a separate function named update.

384 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

Non-recursive function calls can also be handled by inlining, which is the process
of copying the code for the callee into that of the caller. If inlining is performed
transitively for all functions called by the code that must be analyzed, the analysis
can be performed on the CFG of the code resulting from inlining, without using call
and return edges.

15.3 Factors Determining Execution Time

There are several issues one must consider in order to estimate the worst-case execu-
tion time of a program. This section outlines some of the main issues and illustrates
them with examples. In describing these issues, we take a programmer’s viewpoint,
starting with the program structure and then considering how the environment can
impact the program’s execution time.

15.3.1 Loop Bounds

The first point one must consider when bounding the execution time of a program
is whether the program terminates. Non-termination of a sequential program can
arise from non-terminating loops or from an unbounded sequence of function calls.
Therefore, while writing real-time embedded software, the programmer must ensure
that all loops are guaranteed to terminate. In order to guarantee this, one must de-
termine for each loop a bound on the number of times that loop will execute in the
worst case. Similarly, all function calls must have bounded recursion depth.

In this section, we limit ourselves to reasoning about loops. Techniques for deter-
mining loop bounds are a current research topic and a full survey of these methods
is out of scope of this chapter. We will limit ourselves to presenting illustrative
examples for loop bound inference.

The simplest case is that of for loops that have a specified constant bound, as in
Example 15.4 below. This case occurs often in embedded software, in part due to
a discipline of programming enforced by designers who must program for real-time
constraints and limited resources.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 385

http://LeeSeshia.org

15.3. FACTORS DETERMINING EXECUTION TIME

result = 1;
i = EXP_BITS:

(i > 0)?

result = update(result);

i--:

return result;

1

0
res = r;
((exponent & 1) == 1)?

res = (res * base) % mod;

exponent >>= 1;
base = (base * base) % mod;

0
1

return res;

call

return

Figure 15.2: Control-flow graphs for the modexp call and update func-
tions in Example 15.3. Call/return edges are indicated with dashed lines.

386 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

Example 15.4: Consider the function modexp1 below. It is a slight
variant of the function modexp introduced in Example 15.1 that performs
modular exponentiation, in which the while loop has been expressed as
an equivalent for loop.

1 #define EXP_BITS 32
2

3 typedef unsigned int UI;
4

5 UI modexp1(UI base, UI exponent, UI mod) {
6 UI result = 1; int i;
7

8 for(i=EXP_BITS; i > 0; i--) {
9 if ((exponent & 1) == 1) {

10 result = (result * base) % mod;
11 }
12 exponent >>= 1;
13 base = (base * base) % mod;
14 }
15 return result;
16 }

In the case of this function, it is easy to see that the for loop will take
exactly EXP BITS iterations, where EXP BITS is defined as the constant
32.

In many cases, the loop bound is not immediately obvious (as it was for the above
example). To make this point, here is a variation on Example 15.4.

Example 15.5: The function listed below also performs modular expo-
nentiation, as in Example 15.4. However, in this case, the for loop is
replaced by a while loop with a different loop condition – the loop exits
when the value of exponent reaches 0. Take a moment to check whether
the while loop will terminate (and if so, why).

1 typedef unsigned int UI;
2

3 UI modexp2(UI base, UI exponent, UI mod) {
4 UI result = 1;
5

Lee & Seshia, Introduction to Embedded Systems, version 0.5 387

http://LeeSeshia.org

15.3. FACTORS DETERMINING EXECUTION TIME

6 while (exponent != 0) {
7 if ((exponent & 1) == 1) {
8 result = (result * base) % mod;
9 }

10 exponent >>= 1;
11 base = (base * base) % mod;
12 }
13 return result;
14 }

Now let us analyze the reason that this loop terminates. Notice that
exponent is an unsigned int, which we will assume to be 32 bits wide.
If it starts out equal to 0, the loop terminates right away and the function
returns result = 1. If not, in each iteration of the loop, notice that Line
10 shifts exponent one bit to the right. Since exponent is an unsigned
int, after the right shift, its most significant bit will be 0. Reasoning thus,
after at most 32 right shifts, all bits of exponent must be set to 0, thus
causing the loop to terminate. Therefore, we can conclude that the loop
bound is 32.

Let us reflect on the reasoning employed in the above example. The key compo-
nent of our “proof of termination” was the observation that the number of bits of
exponent decreases by 1 each time the loop executes. This is a standard argument
for proving termination – by defining a progress measure or ranking function that
maps each state of the program to a mathematical structure called a well order. In-
tuitively, a well order is like a program that counts down to zero from some initial
value in the natural numbers.

15.3.2 Exponential Path Space

Execution time is a path property. In other words, the amount of time taken by the
program is a function of how conditional statements in the program evaluate to true
or false. A major source of complexity in execution time analysis (and other program
analysis problems as well) is that the number of program paths can be very large,
exponential in the size of the program. We illustrate this point with the example
below.

388 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

Example 15.6: Consider the function count listed below, which runs
over a two-dimensional array, counting and accumulating non-negative
and negative elements of the array separately. The function includes a
nested loop. We observe that each loop executes MAXSIZE (100) times.
Thus, the inner body of the loop (comprising Lines 10–16) will execute
10,000 times – as many times as the number of elements of Array.

1 #define MAXSIZE 100
2

3 int Array[MAXSIZE][MAXSIZE];
4 int Ptotal, Pcnt, Ntotal, Ncnt;
5 ...
6 void count() {
7 int Outer, Inner;
8 for (Outer = 0; Outer < MAXSIZE; Outer++) {
9 for (Inner = 0; Inner < MAXSIZE; Inner++) {

10 if (Array[Outer][Inner] >= 0) {
11 Ptotal += Array[Outer][Inner];
12 Pcnt++;
13 } else {
14 Ntotal += Array[Outer][Inner];
15 Ncnt++;
16 }
17 }
18 }
19 }

In each iteration of the inner body of the loop, the conditional on Line 10
can either evaluate to true or false, thus resulting in 210000 possible ways
the loop can execute. In other words, this program has 210000 paths.

Fortunately, as we will see in Section 15.4.1, one does not need to explicitly enu-
merate all possible program paths in order to perform execution time analysis.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 389

http://LeeSeshia.org

15.3. FACTORS DETERMINING EXECUTION TIME

15.3.3 Path Feasibility

Another source of complexity in program analysis is that all program paths may not
be executable. A computationally expensive function is irrelevant for execution time
analysis if that function is never executed.

A path p in program P is said to be feasible if there exists an input x to P such that
P executes p on x. In general, even if P is known to terminate, determining whether
a path p is feasible is a computationally intractable problem. In practice, however,
in many cases, it is possible to determine path feasibility.

Example 15.7: Recall Example 12.3 of a software task from the open
source Paparazzi unmanned aerial vehicle (UAV) project (Nemer et al.,
2006):

1 #define PPRZ_MODE_AUTO2 2
2 #define PPRZ_MODE_HOME 3
3 #define VERTICAL_MODE_AUTO_ALT 3
4 #define CLIMB_MAX 1.0
5 ...
6 void altitude_control_task(void) {
7 if (pprz_mode == PPRZ_MODE_AUTO2
8 || pprz_mode == PPRZ_MODE_HOME) {
9 if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {

10 float err = estimator_z - desired_altitude;
11 desired_climb
12 = pre_climb + altitude_pgain * err;
13 if (desired_climb < -CLIMB_MAX) {
14 desired_climb = -CLIMB_MAX;
15 }
16 if (desired_climb > CLIMB_MAX) {
17 desired_climb = CLIMB_MAX;
18 }
19 }
20 }
21 }

This program has 11 paths in all. However, the number of feasible
program paths is only 9. To see this, note that the two conditionals
desired climb < -CLIMB MAX on Line 13 and desired climb
> CLIMB MAX on Line 16 cannot both be true. Thus, only three out of

390 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

the four paths through the two innermost conditional statements are feasi-
ble. This infeasible inner path can be taken for two possible evaluations
of the outermost conditional on Lines 7 and 8: either if pprz mode ==
PPRZ MODE AUTO2 is true, or if that condition is false, but pprz mode
== PPRZ MODE HOME is true.

15.3.4 Memory Hierarchy

The preceding sections have focused on properties of programs that affect execu-
tion time. We now discuss how properties of the execution platform, specifically of
cache memories, can significantly impact execution time. The material on caches
introduced in Sec. 8.2.3 is highly relevant for this discussion.

Example 15.8: Consider the function dot product listed below, which
computes the dot product of two vectors of floating point numbers. Each
vector is of dimension n, where n is an input to the function. Clearly, the
number of iterations of the loop depends on the value of n. However, even
if we know an upper bound on n, hardware effects can still cause execution
time to vary widely for seemingly similar values of n.

1 float dot_product(float *x, float *y, int n) {
2 float result = 0.0;
3 int i;
4

5 for(i=0; i < n; i++) {
6 result += x[i] * y[i];
7 }
8

9 return result;
10 }

Suppose this program is executing on a 32-bit processor with a direct-
mapped cache. Suppose also that the cache can hold two sets, each of
which can hold 4 floats. Finally, let us suppose that x and y are stored
contiguously in memory starting with address 0.

Let us first consider what happens if n = 2. In this case, the entire arrays
x and y will be in the same block and thus in the same cache set. Thus,

Lee & Seshia, Introduction to Embedded Systems, version 0.5 391

http://LeeSeshia.org

15.4. BASICS OF EXECUTION TIME ANALYSIS

in the very first iteration of the loop, the first access to read x[0] will be
a cache miss, but thereafter every read to x[i] and y[i] will be a cache
hit, yielding best case performance for loads.

Consider next what happens when n = 8. In this case, each x[i] and
y[i] map to the same cache set. Thus, not only will the first access to
x[0] be a miss, the first access to y[0] will also be a miss. Moreover,
the latter access will evict the block containing x[0]-x[3], leading to a
cache miss on x[1], x[2], and x[3] as well. The reader can see that
every access to an x[i] or y[i] will lead to a cache miss.

Thus, a seemingly small change in the value of n from 2 to 8 can lead to a
drastic change in execution time of this function.

15.4 Basics of Execution Time Analysis

Execution time analysis is a current research topic, with many problems still to be
solved. There have been over two decades of research, resulting in a vast litera-
ture. We cannot provide a comprehensive survey of the methods in this chapter.
Instead, we will present some of the basic concepts that find widespread use in cur-
rent techniques and tools for WCET analysis. Readers interested in a more detailed
treatment may find an overview in a recent survey paper (Wilhelm et al., 2008) and
further details in books (e.g. Li and Malik (1999)) and book chapters (e.g., Wilhelm
(2005)).

15.4.1 Optimization Formulation

An intuitive formulation of the WCET problem can be constructed using the view
of programs as graphs. Given a program P, let G = (V,E) denote its control-flow
graph (CFG). Let n = |V | be the number of nodes (basic blocks) in G, and m = |E|
denote the number of edges. We refer to the basic blocks by their index i, where i
ranges from 1 to n.

We assume that the CFG has a unique start or source node s and a unique sink or end
node t. This assumption is not restrictive: If there are multiple start or end nodes,

392 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

one can add a dummy start/end node to achieve this condition. Usually we will set
s = 1 and t = n.

Let xi denote the number of times basic block i is executed. We call xi the execution
count of basic block i. Let x = (x1,x2, . . . ,xn) be a vector of variables recording
execution counts. Not all valuations of x correspond to valid program executions.
We say that x is valid if the elements of x correspond to a (valid) execution of the
program. The following example illustrates this point.

Example 15.9: Consider the CFG for the modular exponentiation function
modexp introduced in Example 15.1. There are six basic blocks in this
function, labeled 1 to 6 in Figure 15.1. Thus, x = (x1,x2, . . . ,x6). Basic
blocks 1 and 6, the start and end, are each executed only once. Thus, x1 =
x6 = 1; any other valuation cannot correspond to any program execution.

Next consider basic blocks 2 and 3, corresponding to the conditional
branches i > 0 and (exponent & 1) == 1. One can observe that
x2 must equal x3 + 1, since the block 3 is executed every time block 2 is
executed, except when the loop exits to block 6.

Along similar lines, one can see that basic blocks 3 and 5 must be executed
an equal number of times.

Flow Constraints

The intuition expressed in Example 15.9 can be formalized using the theory of net-
work flow, which finds use in many contexts including modeling traffic, fluid flow,
and the flow of current in an electrical circuit. In particular, in our problem context,
the flow must satisfy the following two properties:

1. Unit Flow at Source: The control flow from source node s = 1 to sink node
t = n is a single execution and hence corresponds to unit flow from source to
sink. This property is captured by the following two constraints:

x1 = 1 (15.6)

xn = 1 (15.7)

Lee & Seshia, Introduction to Embedded Systems, version 0.5 393

http://LeeSeshia.org

15.4. BASICS OF EXECUTION TIME ANALYSIS

2. Conservation of Flow: For each node (basic block) i, the incoming flow to
i from its predecessor nodes equals the outgoing flow from i to its successor
nodes.

To capture this property, we introduce additional variables to record the num-
ber of times that each edge in the CFG is executed. Following the notation of
Li and Malik (1999), let di j denote the number of times the edge from node
i to node j in the CFG is executed. Then we require that for each node i,
1≤ i≤ n,

xi = ∑
j∈Pi

d ji = ∑
j∈Si

di j, (15.8)

where Pi is the set of predecessors to node i and Si is the set of successors. For
the source node, P1 = /0, so the sum over predecessor nodes is omitted. Simi-
larly, for the sink node, Sn = /0, so the sum over successor nodes is omitted.

Taken together, the two sets of constraints presented above suffice to implicitly de-
fine all source-to-sink execution paths of the program. Since this constraint-based
representation is an implicit representation of program paths, this approach is also
referred to in the literature as implicit path enumeration or IPET.

We illustrate the generation of the above constraints with an example.

Example 15.10: Consider again the function modexp of Example 15.1,
with CFG depicted in Figure 15.1.

The constraints for this CFG are as follows:

x1 = 1

x6 = 1

x1 = d12

x2 = d12 +d52 = d23 +d26

x3 = d23 = d34 +d35

x4 = d34 = d45

x5 = d35 +d45 = d52

x6 = d26

394 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

Any solution to the above system of equations will result in integer values
for the xi and di j variables. Furthermore, this solution will generate valid
execution counts for basic blocks. For example, one such valid solution is

x1 = 1, d12 = 1, x2 = 2, d23 = 1, x3 = 1, d34 = 0, d35 = 1,

x4 = 0, d45 = 0, x5 = 1, d52 = 1, x6 = 1, d26 = 1.

Readers are invited to find and examine additional solutions for them-
selves.

Overall Optimization Problem

We are now in a position to formulate the overall optimization problem to determine
worst-case execution time. The key assumption we make in this section is that we
know an upper bound wi on the execution time of the basic block i. (We will later see
in Section 15.4.3 how the execution time of a single basic block can be bounded.)
Then the WCET is given by the maximum ∑n

i=1 wixi over valid execution counts xi.

Putting this together with the constraint formulation of the preceding section, our
goal is to find values for xi that give

max
xi,1≤i≤n

n

∑
i=1

wixi

subject to

x1 = xn = 1

xi = ∑
j∈Pi

d ji = ∑
j∈Si

di j

This optimization problem is a form of a linear programming (LP) problem (also
called a linear program), and it is solvable in polynomial time.

However, two major challenges remain:

• This formulation assumes that all source to sink paths in the CFG are feasible
and does not bound loops in paths. As we have already seen in Section 15.3,
this is not the case in general, so solving the above maximization problem may

Lee & Seshia, Introduction to Embedded Systems, version 0.5 395

http://LeeSeshia.org

15.4. BASICS OF EXECUTION TIME ANALYSIS

yield a pessimistic loose bound on the WCET. We will consider this challenge
in Section 15.4.2.

• The upper bounds wi on execution time of basic blocks i are still to be deter-
mined. We will briefly review this topic in Section 15.4.3.

15.4.2 Logical Flow Constraints

In order to ensure that the WCET optimization is not too pessimistic by includ-
ing paths that cannot be executed, we must add so-called logical flow constraints.
These constraints rule out infeasible paths and incorporate bounds on the number of
loop iterations. We illustrate the use of such constraints with two examples.

Loop Bounds

For programs with loops, it is necessary to use bounds on loop iterations to bound
execution counts of basic blocks.

Example 15.11: Consider the modular exponentiation program of Exam-
ple 15.1 for which we wrote down flow constraints in Example 15.10.

Notice that those constraints impose no upper bound on x2 or x3. As argued
in Examples 15.4 and 15.5, the bound on the number of loop iterations in
this example is 32. However, without imposing this additional constraint,
since there is no upper bound on x2 or x3, the solution to our WCET op-
timization will be infinite, implying that there is no upper bound on the
WCET.

The following single constraint suffices:

x3 ≤ 32

From this constraint on x3, we derive the constraint that x2 ≤ 33, and also
upper bounds on x4 and x5. The resulting optimization problem will then
return a finite solution, for finite values of wi.

396 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

Adding such bounds on values of xi does not change the complexity of the optimiza-
tion problem. It is still a linear programming problem.

Infeasible Paths

Some logical flow constraints rule out combinations of basic blocks that cannot ap-
pear together on a single path.

Example 15.12: Consider a snippet of code from Example 15.7 describ-
ing a software task from the open source Paparazzi unmanned aerial vehi-
cle (UAV) project (Nemer et al., 2006):

1 #define CLIMB_MAX 1.0
2 ...
3 void altitude_control_task(void) {
4 ...
5 err = estimator_z - desired_altitude;
6 desired_climb
7 = pre_climb + altitude_pgain * err;
8 if (desired_climb < -CLIMB_MAX) {
9 desired_climb = -CLIMB_MAX;

10 }
11 if (desired_climb > CLIMB_MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 return;
15 }

The CFG for the snippet of code shown above is given in Figure 15.3.
The system of flow constraints for this CFG according to the rules in Sec-
tion 15.4.1 is as follows:

x1 = 1

x5 = 1

x1 = d12 +d13

x2 = d12 = d23

x3 = d13 +d23 = d34 +d35

x4 = d34 = d45

x5 = d35 +d45

Lee & Seshia, Introduction to Embedded Systems, version 0.5 397

http://LeeSeshia.org

15.4. BASICS OF EXECUTION TIME ANALYSIS

A solution for the above system of equations is

x1 = x2 = x3 = x4 = x5 = 1,

implying that each basic block gets executed exactly once, and that both
conditionals evaluate to true. However, as we discussed in Example 15.7, it
is impossible for both conditionals to evaluate to true. Since CLIMB MAX
= 1.0, if desired climb is less than −1.0 in basic block 1, then at the
start of basic block 3 it will be set to −1.0.

The following constraint rules out the infeasible path:

d12 +d34 ≤ 1 (15.9)

This constraint specifies that both conditional statements cannot be true
together. It is of course possible for both conditionals to be false. We
can check that this excludes the infeasible path when added to the original
system.

More formally, for a program without loops, if a set of k edges

(i1, j1),(i2, j2), . . . ,(ik, jk)

in the CFG cannot be taken together in a program execution, the following constraint
is added to the optimization problem:

di1 j1 +di2 j2 + . . .+dik jk ≤ k−1 (15.10)

For programs with loops, the constraint is more complicated since an edge can be
traversed multiple times, so the value of a di j variable can exceed 1. We omit the
details in this case; the reader can consult Li and Malik (1999) for a more elaborate
discussion of this topic.

In general, the constraints added above to exclude infeasible combinations of edges
can change the complexity of the optimization problem, since one must also add the
following integrality constraints:

xi ∈ N, for all i = 1,2, . . . ,n (15.11)

di j ∈ N, for all i, j = 1,2, . . . ,n (15.12)

398 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

err = estimator_z - desired_altitude;
desired_climb

= pre_climb + altitude_pgain * err;
(desired_climb < -CLIMB_MAX)?

desired_climb = -CLIMB_MAX;

(desired_climb > CLIMB_MAX)?

return;

1

0

0

1

2

3

4

5

desired_climb = CLIMB_MAX;

1

Figure 15.3: Control-flow graph for Example 15.12.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 399

http://LeeSeshia.org

15.4. BASICS OF EXECUTION TIME ANALYSIS

In the absence of such integrality constraints, the optimization solver can return frac-
tional values for the xi and di j variables. However, adding these constraints results
in an integer linear programming (ILP) problem. ILP programs are known to be
NP-hard. Even so, in many practical instances, one can solve these ILP problems
fairly efficiently (see for example Li and Malik (1999)).

15.4.3 Bounds for Basic Blocks

In order to complete the optimization problem for WCET analysis, we need to com-
pute upper bounds on the execution times of basic blocks – the wi coefficients in the
cost function of Section 15.4.1. Execution time is typically measured in CPU cycles.
Generating such bounds requires detailed microarchitectural modeling. We briefly
outline some of the issues in this section.

A simplistic approach to this problem would be to generate conservative upper
bounds on the execution time of each instruction in the basic block, and then add
up these per-instruction bounds to obtain an upper bound on the execution time of
the overall basic block.

The problem with this approach is that there can be very wide variation in the ex-
ecution times for some instructions, resulting in very loose upper bounds on the
execution time of a basic block. For instance, consider the latency of memory in-
structions (loads and stores) for a system with a data cache. The difference between
the latency when there is a cache miss versus a hit can be a factor of 100 on some
platforms. In these cases, if the analysis does not differentiate between cache hits
and misses, it is possible for the computed bound to be a hundred times larger than
the execution time actually exhibited.

Several techniques have been proposed to better use program context to predict ex-
ecution time of instructions more precisely. These techniques involve detailed mi-
croarchitectural modeling. We mention two main approaches below:

• Integer linear programming (ILP) methods: In this approach, pioneered by Li
and Malik (1999), one adds cache constraints to the ILP formulation of Sec-
tion 15.4.1. Cache constraints are linear expressions used to bound the number
of cache hits and misses within basic blocks. The approach tracks the memory
locations that cause cache conflicts – those that map onto the same cache set,
but have different tags – and adds linear constraints to record the impact of

400 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

such conflicts on the number of cache hits and misses. Measurement through
simulation or execution on the actual platform must be performed to obtain the
cycle count for hits and misses. The cost constraint of the ILP is modified to
compute the program path along which the overall number of cycles, includ-
ing cache hits and misses, is the largest. Further details about this approach
are available in Li and Malik (1999).

• Abstract interpretation methods: Abstract interpretation is a theory of ap-
proximation of mathematical structures, in particular those that arise in defin-
ing the semantic models of computer systems (Cousot and Cousot (1977)).
In particular, in abstract interpretation, one performs sound approximation,
where the set of behaviors of the system is a subset of that of the model gen-
erated by abstract interpretation. In the context of WCET analysis, abstract
interpretation has been used to infer invariants at program points, in order
to generate loop bounds, and constraints on the state of processor pipelines
or caches at the entry and exit locations of basic blocks. For example, such a
constraint could specify the conditions under which variables will be available
in the data cache (and hence a cache hit will result). Once such constraints are
generated, one can run measurements from states satisfying those constraints
in order to generate execution time estimates. Further details about this ap-
proach can be found in Wilhelm (2005).

In addition to techniques such as those described above, accurate measurement of
execution time is critical for finding tight WCET bounds. Some of the measurement
techniques are as follows:

1. Sampling CPU cycle counter: Certain processors include a register that records
the number of CPU cycles elapsed since reset. For example, the time stamp
counter register on x86 architectures performs this function, and is accessi-
ble through a rdtsc (“read time stamp counter”) instruction. However, with
the advent of multi-core designs and power management features, care must
be taken to use such CPU cycle counters to accurately measure timing. For
example, it may be necessary to lock the process to a particular CPU.

2. Using a logic analyzer: A logic analyzer is an electronic instrument used to
measure signals and track events in a digital system. In the current context,
the events of interest are the entry and exit points of the code to be timed,
definable, for example, as valuations of the program counter. Logic analyzers

Lee & Seshia, Introduction to Embedded Systems, version 0.5 401

http://LeeSeshia.org

15.5. OTHER QUANTITATIVE ANALYSIS PROBLEMS

are less intrusive than using cycle counters, since they do not require instru-
menting the code, and they can be more accurate. However, the measurement
setup is more complicated.

3. Using a cycle-accurate simulator: In many cases, timing analysis must be
performed when the actual hardware is not yet available. In this situation, a
cycle-accurate simulator of the platform provides a good alternative.

15.5 Other Quantitative Analysis Problems

Although we have focused mainly on execution time in this chapter, several other
quantitative analysis problems are relevant for embedded systems. We briefly de-
scribe two of these in this section.

15.5.1 Memory Bound Analysis

Embedded computing platforms have very limited memory as compared to general-
purpose computers. For example, as mentioned in Chapter 8, the Luminary Micro
LM3S8962 controller has only 64 KB of RAM. It is therefore essential to structure
the program so that it uses memory efficiently. Tools that analyze memory consump-
tion and compute bounds on memory usage can be very useful.

There are two kinds of memory bound analysis that are relevant for embedded sys-
tems.

In stack size analysis (or simply stack analysis), one needs to compute an upper
bound on the amount of stack-allocated memory used by a program. Recall from
Section 8.3.2 that stack memory is allocated whenever a function is called or an
interrupt is handled. If the program exceeds the memory allocated for the stack, a
stack overflow is said to occur.

If the program does not contain recursive functions and runs uninterrupted, one can
bound stack usage by traversing the call graph of the program – the graph that tracks
which functions call which others. If the space for each stack frame is known, then
one can track the sequence of calls and returns along paths in the call graph in order
to compute the worst-case stack size.

402 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

Probing Further: Tools for Execution-Time Analysis

Current techniques for execution-time analysis are broadly classified into those pri-
marily based on static analysis and those that are measurement-based.

Static tools rely on abstract interpretation and dataflow analysis to compute facts
about the program at selected program locations. These facts are used to identify de-
pendencies between code fragments, generate loop bounds, and identify facts about
the platform state, such as the state of the cache. These facts are used to guide timing
measurements of basic blocks and combined into an optimization problem as pre-
sented in this chapter. Static tools aim to find conservative bounds on extreme-case
execution time; however, they are not easy to port to new platforms, often requiring
several man-months of effort.

Measurement-based tools are primarily based on testing the program on multiple
inputs and then estimating the quantity of interest (e.g., WCET) from those measure-
ments. Static analysis is often employed in performing a guided exploration of the
space of program paths and for test generation. Measurement-based tools are easy
to port to new platforms and apply broadly to both extreme-case and average-case
analysis; however, not all techniques provide guarantees for finding extreme-case
execution times.

Further details about many of these tools are available in Wilhelm et al. (2008). A
partial list of tools and links to papers and websites is included in the table below:

Name Primary Type Institution & Website/References
aiT Static AbsInt Angewandte Informatik GmbH

http://www.absint.com/ait/, Wilhelm (2005)
Bound-T Static Tidorum Ltd.

http://www.bound-t.com/

Chronos Static National University of Singapore
http://www.comp.nus.edu.sg/˜rpembed/chronos/, Li et al. (2005)

Heptane Static IRISA Rennes
http://www.irisa.fr/aces/work/heptanedemo/heptane.htm

SWEET Static Mälardalen University
http://www.mrtc.mdh.se/projects/wcet/

GameTime Measurement UC Berkeley
Seshia and Rakhlin (2008)

RapiTime Measurement Rapita Systems Ltd.
http://www.rapitasystems.com/

SymTA/P Measurement Technical University Braunschweig
http://www.ida.ing.tu-bs.de/research/projects/symta/

Vienna M./P. Measurement Technical University of Vienna
http://www.wcet.at/

Lee & Seshia, Introduction to Embedded Systems, version 0.5 403

http://www.absint.com/ait/
http://www.bound-t.com/
http://www.comp.nus.edu.sg/~rpembed/chronos/
http://www.irisa.fr/aces/work/heptanedemo/heptane.htm
http://www.mrtc.mdh.se/projects/wcet/
http://www.rapitasystems.com/
http://www.ida.ing.tu-bs.de/research/projects/symta/
http://www.wcet.at/
http://LeeSeshia.org

15.6. SUMMARY

Performing stack size analysis for interrupt-driven software is significantly more
complicated. We point the interested reader to Brylow et al. (2001).

Heap analysis is the other memory bound analysis problem that is relevant for em-
bedded systems. This problem is harder than stack bound analysis since the amount
of heap space used by a function might depend on the values of input data and may
not be known prior to run-time. Moreover, the exact amount of heap space used by a
program can depend on the implementation of dynamic memory allocation and the
garbage collector.

15.5.2 Power and Energy Analysis

Power and energy consumption are increasingly important factors in embedded sys-
tem design. On the one hand, many embedded systems are autonomous, limited
by battery power, so a designer must ensure that the task can be completed within a
limited energy budget. On the other hand, the increasing ubiquity of embedded com-
puting is also increasing its energy footprint, which must be reduced for sustainable
development.

To first order, the energy consumed by a program running on an embedded device
depends on its execution time. However, estimating execution time alone is not
sufficient. For example, energy consumption depends on circuit switching activ-
ity, which can depend more strongly on the data values with which instructions are
executed.

For this reason, most techniques for energy and power estimation of embedded soft-
ware focus on estimating the average-case consumption. The average case is typi-
cally estimated by profiling instructions for several different data values, guided by
software benchmarks. For an introduction to this topic, see Tiwari et al. (1994).

15.6 Summary

Quantitative properties, involving physical parameters or specifying resource con-
straints, are central to embedded systems. This chapter gave an introduction to basic
concepts in quantitative analysis. First, we considered various types of quantitative
analysis problems, including extreme-case analysis, average-case analysis, and ver-

404 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

ifying threshold properties. As a representative example, this chapter focused on
execution time analysis. Several examples were presented to illustrate the main is-
sues, including loop bounds, path feasibility, path explosion, and cache effects. An
optimization formulation that forms the backbone of execution time analysis was
presented. Finally, we briefly discussed two other quantitative analysis problems,
including computing bounds on memory usage and on power or energy consump-
tion.

Quantitative analysis remains an active field of research – exemplifying the chal-
lenges in bridging the cyber and physical aspects of embedded systems.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 405

http://LeeSeshia.org

EXERCISES

Exercises

1. This problem studies execution time analysis. Consider the C program listed
below:

1 int arr[100];
2

3 int foo(int flag) {
4 int i;
5 int sum = 0;
6

7 if (flag) {
8 for(i=0;i<100;i++)
9 arr[i] = i;

10 }
11

12 for(i=0;i<100;i++)
13 sum += arr[i];
14

15 return sum;
16 }

Assume that this program is run on a processor with data cache of size big
enough that the entire array arr can fit in the cache.

(a) How many paths does the function foo of this program have? Describe
what they are.

(b) Let T denote the execution time of the second for loop in the program.
How does executing the first for loop affect the value of T ? Justify
your answer.

2. Consider the program given below:

1 void testFn(int *x, int flag) {
2 while (flag != 1) {
3 flag = 1;
4 *x = flag;
5 }
6 if (*x > 0)
7 *x += 2;
8 }

In answering the questions below, assume that x is not NULL.

406 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

15. QUANTITATIVE ANALYSIS

(a) Draw the control-flow graph of this program. Identify the basic blocks
with unique IDs starting with 1.

(b) Is there a bound on the number of iterations of the while loop? Justify
your answer.

(c) How many total paths does this program have? How many of them are
feasible, and why?

(d) Write down the system of flow constraints, including any logical flow
constraints, for the control-flow graph of this program.

(e) Consider running this program uninterrupted on a platform with a data
cache. Assume that the data pointed to by x is not present in the cache
at the start of this function.
For each read/write access to *x, argue whether it will be a cache hit or
miss.
Now, assume that *x is present in the cache at the start of this function.
Identify the basic blocks whose execution time will be impacted by this
modified assumption.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 407

http://LeeSeshia.org

EXERCISES

408 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Part IV

Appendices

409

Appendix A

Sets and Functions

This appendix reviews some basic notation on sets and functions.

A.1 Sets

In this section, we review the notation for sets. A set is a collection of objects. When
object a is in set A, we write a ∈ A. We define the following sets:

• B = {0,1}, the set of binary digits.

• N = {0,1,2, · · ·}, the set of natural numbers.

• Z = {· · · ,−1,0,1,2, · · ·}, the set of integers.

• R, the set of real numbers.

• R+, the set of non-negative real numbers.

When set A is entirely contained by set B, we say that A is a subset of B and write
A⊆B. For example, B⊆N⊆Z⊆R. The sets may be equal, so the statement N⊆N
is true, for example. The powerset of a set A is defined to be the set of all subsets. It
is written 2A. The empty set, written /0, is always a member of the powerset, /0 ∈ 2A.

411

A.2. RELATIONS AND FUNCTIONS

We define set subtraction as follows,

A\B = {a ∈ A : a /∈ B}

for all sets A and B. This notation is read “the set of elements a from A such that a
is not in B.”

A cartesian product of sets A and B is a set written A×B and defined as follows,

A×B = {(a,b) : a ∈ A,b ∈ B}.

A member of this set (a,b) is called a tuple. This notation is read “the set of tuples
(a,b) such that a is in A and b is in B.” A cartesian product can be formed with three
or more sets, in which case the tuples have three or more elements. For example, we
might write (a,b,c) ∈ A×B×C. A cartesian product of a set A with itself is written
A2 = A×A. A cartesian product of a set A with itself n times, where n ∈N is written
An. A member of the set An is called an n-tuple. By convention, A0 is a singleton set,
or a set with exactly one element, regardless of the size of A. Specifically, we define
A0 = { /0}. Note that A0 is not itself the empty set. It is a singleton set containing the
empty set (for insight into the rationale for this definition, see the box on page 418).

A.2 Relations and Functions

A relation from set A to set B is a subset of A×B. A partial function f from set A
to set B is a relation where (a,b) ∈ f and (a,b′) ∈ f imply that b = b′. Such a partial
function is written f : A ⇀ B. A total function or simply function f from A to B
is a partial function where for all a ∈ A, there is a b ∈ B such that (a,b) ∈ f . Such
a function is written f : A→ B, and the set A is called its domain and the set B its
codomain. Rather than writing (a,b) ∈ f , we can equivalently write f (a) = b.

Example 1.1: An example of a partial function is f : R ⇀ R defined by
f (x) =

√
x for all x ∈ R+. It is undefined for any x < 0 in its domain R.

A partial function f : A ⇀ B may be defined by an assignment rule, as done in the
above example, where an assignment rule simply explains how to obtain the value

412 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

A. SETS AND FUNCTIONS

of f (a) given a ∈ A. Alternatively, the function may be defined by its graph, which
is a subset of A×B.

Example 1.2: The same partial function from the previous example has
the graph f ⊆ R2 given by

f = {(x,y) ∈ R2 : x≥ 0 and y =
√

x} .

Note that we use the same notation f for the function and its graph when
it is clear from context which we are talking about.

The set of all functions f : A→ B is written (A→ B) or BA. The former notation
is used when the exponential notation proves awkward. For a justification of the
notation BA, see the box on page 418.

The function composition of f : A→ B and g : B→C is written (g◦ f) : A→C and
defined by

(g◦ f)(a) = g(f (a))

for any a ∈ A. Note that in the notation (g◦ f), the function f is applied first. For a
function f : A→ A, the composition with itself can be written (f ◦ f) = f 2, or more
generally

(f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸ = f n

n times

for any n ∈ N. In case n = 1, f 1 = f . For the special case n = 0, the function f 0 is
by convention the identity function, so f 0(a) = a for all a ∈ A. When the domain
and codomain of a function are the same, i.e. f ∈ AA, then f n ∈ AA for all n ∈ N.

For every function f : A→ B, there is an associated image function f̂ : 2A → 2B

defined on the powerset of A as follows,

∀ A′ ⊆ A, f̂ (A′) = {b ∈ B : ∃ a ∈ A′, f (a) = b}.

The image function f̂ is applied to sets A′ of elements in the domain, rather than
to single elements. Rather than returning a single value, it returns the set of all
values that f would return, given an element of A′ as an argument. We call f̂ the

Lee & Seshia, Introduction to Embedded Systems, version 0.5 413

http://LeeSeshia.org

A.2. RELATIONS AND FUNCTIONS

lifted version of f . When there is no ambiguity, we may write the lifted version of
f simply as f rather than f̂ (see problem 2(c) for an example of a situation where
there is ambiguity).

For any A′ ⊆ A, f̂ (A′) is called the image of A′ for the function f . The image f̂ (A)
of the domain is called the range of the function f .

Example 1.3: The image f̂ (R) of the function f : R→ R defined by
f (x) = x2 is R+.

A function f : A→ B is onto (or surjective) if f̂ (A) = B. A function f : A→ B is
one-to-one (or injective) if for all a,a′ ∈ A,

a 6= a′⇒ f (a) 6= f (a′). (A.1)

That is, no two distinct values in the domain yield the same values in the codomain.
A function that is both one-to-one and onto is bijective.

Example 1.4: The function f : R→ R defined by f (x) = 2x is bijective.
The function f : Z→ Z defined by f (x) = 2x is one-to-one, but not onto.
The function f : R2→R defined by f (x,y) = xy is onto but not one-to-one.

The previous example underscores the fact that an essential part of the definition of
a function is its domain and codomain.

Proposition A.1. If f : A→ B is onto, then there is a one-to-one function h : B→ A.

Proof. Let h be defined by h(b) = a where a is any element in A such that
f (a) = b. There must always be at least one such element because f is onto. We
can now show that h is one-to-one. To do this, consider any two elements b,b′ ∈ B
where b 6= b′. We need to show that h(b) 6= h(b′). Assume to the contrary that
h(b) = h(b′) = a for some a ∈ A. But then by the definition of h, f (a) = b and
f (a) = b′, which implies b = b′, a contradiction.

414 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

A. SETS AND FUNCTIONS

The converse of this proposition is also easy to prove.

Proposition A.2. If h : B→A is one-to-one, then there is an onto function f : A→B.

Any bijection f : A→ B has an inverse f−1 : B→ A defined as follows,

f−1(b) = a ∈ A such that f (a) = b , (A.2)

for all b ∈ B. This function is defined for all b ∈ B because f is onto. And for each
b ∈ B there is a single unique a ∈ A satisfying (A.2) because f is one-to-one. For
any bijection f , its inverse is also bijective.

A.2.1 Restriction and Projection

Given a function f : A→ B and a subset C ⊆ A, we can define a new function f |C
that is the restriction of f to C. It is defined so that for all x ∈C, f |C(x) = f (x).

Example 1.5: The function f : R→ R defined by f (x) = x2 is not one-
to-one. But the function f |R+ is.

Consider an n-tuple a = (a0,a1, · · · ,an−1) ∈ A0×A1×·· ·×An−1. A projection of
this n-tuple extracts elements of the tuple to create a new tuple. Specifically, let

I = (i0, i1, · · · , im) ∈ {0,1, · · · ,n−1}m

for some m ∈ N \ {0}. That is, I is an m-tuple of indexes. Then we define the
projection of a onto I by

πI(a) = (ai0 ,ai1 , · · · ,aim) ∈ Ai0×Ai1×·· ·×Aim .

The projection may be used to permute elements of a tuple, to discard elements, or
to repeat elements.

Projection of a tuple and restriction of a function are related. An n-tuple a ∈ An

where a =(a0,a1, · · · ,an−1) may be considered a function of the form a : {0,1, · · · ,n−
1} → A, in which case a(0) = a0, a(1) = a1, etc. Projection is similar to restriction

Lee & Seshia, Introduction to Embedded Systems, version 0.5 415

http://LeeSeshia.org

A.3. SEQUENCES

of this function, differing in that restriction, by itself, does not provide the ability to
permute, repeat, or renumber elements. But conceptually, the operations are similar,
as illustrated by the following example.

Example 1.6: Consider a 3-tuple a = (a0,a1,a2) ∈ A3. This is rep-
resented by the function a : {0,1,2} → A. Let I = {1,2}. The projec-
tion b = πI(a) = (a1,a2), which itself can be represented by a function
b : {0,1}→ A, where b(0) = a1 and b(1) = a2.

The restriction a|I is not exactly the same function as b, however. The
domain of the first function is {1,2}, whereas the domain of the second is
{0,1}. In particular, a|I(1) = b(0) = a1 and a|I(2) = b(1) = a2.

A projection may be lifted just like ordinary functions. Given a set of n-tuples B ⊆
A0 × A1 × ·· · × An−1 and an m-tuple of indexes I ∈ {0,1, · · · ,n− 1}m, the lifted
projection is

π̂I(B) = {πI(b) : b ∈ B} .

A.3 Sequences

A tuple (a0,a1) ∈ A2 can be interpreted as a sequence of length 2. The order of
elements in the sequence matters, and is in fact captured by the natural ordering of
the natural numbers. The number 0 comes before the number 1. We can generalize
this and recognize that a sequence of elements from set A of length n is an n-tuple
in the set An. A0 represents the set of empty sequences, a singleton set (there is only
one empty sequence).

The set of all finite sequences of elements from the set A is written A∗, where we
interpret ∗ as a wildcard that can take on any value in N. A member of this set with
length n is an n-tuple.

The set of infinite sequences of elements from A is written AN or Aω. The set of
finite and infinite sequences is written

A∗∗ = A∗∪AN .

416 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

A. SETS AND FUNCTIONS

Finite and infinite sequences play an important role in the semantics of concurrent
programs. They can be used, for example, to represent streams of messages sent
from one part of the program to another. Or they can represent successive assign-
ments of values to a variable. For programs that terminate, finite sequences will be
sufficient. For programs that do not terminate, we need infinite sequences.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 417

http://LeeSeshia.org

A.3. SEQUENCES

Insight: Exponential Notation for Sets of Functions

The exponential notation BA for the set of functions of form f : A→ B is worth ex-
plaining. Recall that A2 is the cartesian product of set A with itself, and that 2A is the
powerset of A. These two notations are naturally thought of as sets of functions. A
construction attributed to John von Neumann defines the natural numbers as follows,

0 = /0
1 = {0}= { /0}
2 = {0,1}= { /0,{ /0}}
3 = {0,1,2}= { /0,{ /0},{ /0,{ /0}}}
· · ·

With this definition, the powerset 2A is the set of functions mapping the set A into
the set 2. Consider one such function, f ∈ 2A. For each a ∈ A, either f (a) = 0 or
f (a) = 1. If we interpret “0” to mean “nonmember” and “1” to mean “member,”
then indeed the set of functions 2A represents the set of all subsets of A. Each such
function defines a subset.

Similarly, the cartesian product A2 can be interpreted as the set of functions of
form f : 2→ A, or using von Neumann’s numbers, f : {0,1}→ A. Consider a tuple
a = (a0,a1) ∈ A2. It is natural to associate with this tuple a function a : {0,1} → A
where a(0) = a0 and a(1) = a1. The argument to the function is the index into the
tuple. We can now interpret the set of functions BA of form f : A→ B as a set of
tuples indexed by the set A instead of by the natural numbers.

Let ω = { /0,{ /0},{ /0,{ /0}}, · · ·} represent the set of von Neumann numbers. This
set is closely related to the set N (see problem 2). Given a set A, it is now natural to
interpret Aω as the set of all infinite sequences of elements from A, the same as AN.

The singleton set A0 can now be interpreted as the set of all functions whose
domain is the empty set and codomain is A. There is exactly one such function
(no two such functions are distinguishable), and that function has an empty graph.
Before, we defined A0 = { /0}. Using von Neumann numbers, A0 = 1, corresponding
nicely with the definition of a zero exponent on ordinary numbers. Moreover, you
can think of A0 = { /0} as the set of all functions with an empty graph.

It is customary in the literature to omit the bold face font for A0, 2A, and A2,
writing instead simply A0, 2A, and A2.

418 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

A. SETS AND FUNCTIONS

Exercises

1. This problem explores properties of onto and one-to-one functions.

(a) Show that if f : A→ B is onto and g : B→C is onto, then (g◦ f) : A→C
is onto.

(b) Show that if f : A→ B is one-to-one and g : B→C is one-to-one, then
(g◦ f) : A→C is one-to-one.

2. Let ω = { /0,{ /0},{ /0,{ /0}}, · · ·} be the von Neumann numbers as defined in the
box on page 418. This problem explores the relationship between this set and
N, the set of natural numbers.

(a) Let f : ω→ N be defined by

f (x) = |x|, ∀ x ∈ ω .

That is, f (x) is the size of the set x. Show that f is bijective.

(b) The lifted version of the function f in part (a) is written f̂ . What is the
value of f̂ ({0,{0}})? What is the value of f ({0,{0}})? Note that on
page 414 it is noted that when there is no ambiguity, f̂ may be written
simply f . For this function, is there such ambiguity?

Lee & Seshia, Introduction to Embedded Systems, version 0.5 419

http://LeeSeshia.org

EXERCISES

420 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Bibliography

Abelson, H. and G. J. Sussman, 1996: Structure and Interpretation of Computer
Programs. MIT Press, 2nd ed.

Adam, T. L., K. M. Chandy, and J. R. Dickson, 1974: A comparison of list schedules
for parallel processing systems. Communications of the ACM, 17(12), 685–690.

Adve, S. V. and K. Gharachorloo, 1996: Shared memory consistency models: A
tutorial. IEEE Computer, 29(12), 66–76.

Allen, J. ., 1975: Computer architecture for signal processing. Proceedings of the
IEEE, 63(4), 624– 633.

Alpern, B. and F. B. Schneider, 1987: Recognizing safety and liveness. Distributed
Computing, 2(3), 117–126.

Alur, R., C. Courcoubetis, and D. Dill, 1991: Model-checking for probabilistic real-
time systems. In Proc. 18th Intl. Colloquium on Automata, Languages and Pro-
gramming (ICALP), pp. 115–126.

André, C., 1996: SyncCharts: a visual representation of reactive behaviors. Tech.
Rep. RR 95–52, revision: RR (96–56), University of Sophia-Antipolis. Avail-
able from: http://www-sop.inria.fr/members/Charles.Andre/
CA%20Publis/SYNCCHARTS/overview.html.

ARM Limited, 2006: CortexTM- M3 technical reference manual. Tech. rep. Avail-
able from: http://www.arm.com.

Audsley, N. C., A. Burns, R. I. Davis, K. W. Tindell, and A. J. Wellings, 2005:
Fixed priority pre-emptive scheduling: An historical perspective. Real-Time Sys-
tems, 8(2-3), 173–198. Available from: http://www.springerlink.
com/content/w602g7305r125702/.

421

http://www-sop.inria.fr/members/Charles.Andre/CA%20Publis/SYNCCHARTS/overview.html
http://www-sop.inria.fr/members/Charles.Andre/CA%20Publis/SYNCCHARTS/overview.html
http://www.arm.com
http://www.springerlink.com/content/w602g7305r125702/
http://www.springerlink.com/content/w602g7305r125702/

BIBLIOGRAPHY

Ball, T., R. Majumdar, T. Millstein, and S. K. Rajamani, 2001: Automatic predi-
cate abstraction of c programs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, vol. 36 of ACM SIGPLAN Notices, pp.
203–213.

Ball, T. and S. K. Rajamani, 2001: The slam toolkit. In 13th International Confer-
ence on Computer Aided Verification (CAV), Springer, vol. 2102 of Lecture Notes
in Computer Science, pp. 260–264.

Barr, M. and A. Massa, 2006: Programming Embedded Systems. O’Reilly, 2nd ed.

Barrett, C., R. Sebastiani, S. A. Seshia, and C. Tinelli, 2009: Satisfiability modulo
theories. In Biere, A., H. van Maaren, and T. Walsh, eds., Handbook of Satisfia-
bility, IOS Press, vol. 4, chap. 8.

Beeck, M. v. d., 1994: A comparison of Statecharts variants. In Langmaack, H.,
W. P. de Roever, and J. Vytopil, eds., Third International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, Springer-Verlag, Lübeck,
Germany, vol. 863 of Lecture Notes in Computer Science, pp. 128–148.

Ben-Ari, M., Z. Manna, and A. Pnueli, 1981: The temporal logic of branching time.
In 8th Annual ACM Symposium on Principles of Programming Languages.

Benveniste, A. and G. Berry, 1991: The synchronous approach to reactive and real-
time systems. Proceedings of the IEEE, 79(9), 1270–1282.

Berger, A. S., 2002: Embedded Systems Design: An Introduction to Processes,
Tools, & Techniques. CMP Books.

Berry, G., 1999: The Constructive Semantics of Pure Esterel - Draft Version 3. Book
Draft. Available from: http://www-sop.inria.fr/meije/esterel/
doc/main-papers.html.

—, 2003: The effectiveness of synchronous languages for the development of safety-
critical systems. White paper, Esterel Technologies.

Berry, G. and G. Gonthier, 1992: The Esterel synchronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19(2),
87–152.

422 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://www-sop.inria.fr/meije/esterel/doc/main-papers.html
http://www-sop.inria.fr/meije/esterel/doc/main-papers.html
http://LeeSeshia.org

BIBLIOGRAPHY

Beyer, D., T. A. Henzinger, R. Jhala, and R. Majumdar, 2007: The software model
checker Blast. International Journal on Software Tools for Technology Transfer
(STTT), 9(5-6), 505–525.

Biere, A., A. Cimatti, E. M. Clarke, and Y. Zhu, 1999: Symbolic model checking
without bdds. In 5th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS), Springer, vol. 1579 of Lecture Notes
in Computer Science, pp. 193–207.

Boehm, H.-J., 2005: Threads cannot be implemented as a library. In Program-
ming Language Design and Implementation (PLDI), ACM SIGPLAN Notices,
vol. 40(6), pp. 261 – 268.

Booch, G., I. Jacobson, and J. Rumbaugh, 1998: The Unified Modeling Language
User Guide. Addison-Wesley.

Bryant, R. E., 1986: Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 677–691.

Brylow, D., N. Damgaard, and J. Palsberg, 2001: Static checking of interrupt-driven
software. In Proc. Intl. Conference on Software Engineering (ICSE), pp. 47–56.

Buck, J. T., 1993: Scheduling Dynamic Dataflow Graphs with Bounded Memory Us-
ing the Token Flow Model. Ph.d. thesis, University of California, Berkeley. Avail-
able from: http://ptolemy.eecs.berkeley.edu/publications/
papers/93/jbuckThesis/.

Burns, A. and A. Wellings, 2001: Real-Time Systems and Programming Languages:
Ada 95, Real-Time Java and Real-Time POSIX. Addison-Wesley, 3rd ed.

Buttazzo, G. C., 2005a: Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, 2nd ed.

—, 2005b: Rate monotonic vs. edf: judgment day. Real-Time Systems,
29(1), 5–26. Available from: http://dx.doi.org/10.1023/B:TIME.
0000048932.30002.d9.

Cassandras, C. G., 1993: Discrete Event Systems, Modeling and Performance Anal-
ysis. Irwin.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 423

http://ptolemy.eecs.berkeley.edu/publications/papers/93/jbuckThesis/
http://ptolemy.eecs.berkeley.edu/publications/papers/93/jbuckThesis/
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://LeeSeshia.org

BIBLIOGRAPHY

Cataldo, A., E. A. Lee, X. Liu, E. Matsikoudis, and H. Zheng, 2006: A con-
structive fixed-point theorem and the feedback semantics of timed systems. In
Workshop on Discrete Event Systems (WODES), Ann Arbor, Michigan. Avail-
able from: http://ptolemy.eecs.berkeley.edu/publications/
papers/06/constructive/.

Chapman, B., G. Jost, and R. van der Pas, 2007: Using OpenMP: Portable Shared
Memory Parallel Programming. MIT Press.

Chetto, H., M. Silly, and T. Bouchentouf, 1990: Dynamic scheduling of real-time
tasks under precedence constraints. Real-Time Systems, 2(3), 181–194.

Clarke, E. M. and E. A. Emerson, 1981: Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, pp. 52–71.

Clarke, E. M., O. Grumberg, S. Jha, Y. Lu, and H. Veith, 2000: Counterexample-
guided abstraction refinement. In 12th International Conference on Computer
Aided Verification (CAV), Springer, vol. 1855 of Lecture Notes in Computer Sci-
ence, pp. 154–169.

Coffman, E. G., Jr., M. J. Elphick, and A. Shoshani, 1971: System deadlocks. Com-
puting Surveys, 3(2), 67–78.

Coffman, E. G., Jr. (Ed), 1976: Computer and Job Scheduling Theory. Wiley.

Conway, R. W., W. L. Maxwell, and L. W. Miller, 1967: Theory of Scheduling.
Addison-Wesley.

Cousot, P. and R. Cousot, 1977: Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Symposium on Principles of Programming Languages (POPL), ACM Press, pp.
238–252.

Dennis, J. B., 1974: First version data flow procedure language. Tech. Rep. MAC
TM61, MIT Laboratory for Computer Science.

Derenzo, S. E., 2003: Practical Interfacing in the Laboratory: Using a PC for
Instrumentation, Data Analysis and Control. Cambridge University Press.

Dijkstra, E. W., 1968: Go to statement considered harmful (letter to the editor).
Communications of the ACM, 11(3), 147–148.

424 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://ptolemy.eecs.berkeley.edu/publications/papers/06/constructive/
http://ptolemy.eecs.berkeley.edu/publications/papers/06/constructive/
http://LeeSeshia.org

BIBLIOGRAPHY

Eden, M. and M. Kagan, 1997: The Pentium R©processor with MMXTMtechnology.
In IEEE International Conference (COMPCON), IEEE, San Jose, CA, USA, pp.
260–262.

Edwards, S. A., 2000: Languages for Digital Embedded Systems. Kluwer Academic
Publishers.

Edwards, S. A. and E. A. Lee, 2003: The semantics and execution of a synchronous
block-diagram language. Science of Computer Programming, 48(1).

Eidson, J. C., E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, 2009: Time-
centric models for designing embedded cyber-physical systems. Technical Report
UCB/EECS-2009-135, EECS Department, University of California, Berkeley.

Emerson, E. A. and E. M. Clarke, 1980: Characterizing correctness properties of
parallel programs using fixpoints. In Proc. 7th Intl. Colloquium on Automata,
Languages and Programming (ICALP), Lecture Notes in Computer Science 85,
pp. 169–181.

European Cooperation for Space Standardization, 2002: Space engineering –
SpaceWire – links, nodes, routers, and networks (draft ECSS-E-50-12A). Avail-
able from: http://www.spacewire.esa.int/tech/spacewire/
standards/.

Fishman, G. S., 2001: Discrete-Event Simulation: Modeling, Programming, and
Analysis. Springer-Verlag.

Fujimoto, R., 2000: Parallel and Distributed Simulation Systems. John Wiley and
Sons.

Gajski, D. D., S. Abdi, A. Gerstlauer, and G. Schirner, 2009: Embedded System
Design - Modeling, Synthesis, and Verification. Springer.

Galison, P., 2003: Einstein’s Clocks, Poincaré’s Maps. W. W. Norton & Company,
New York.

Galletly, J., 1996: Occam-2. University College London Press, 2nd ed.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, 1994: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 425

http://www.spacewire.esa.int/tech/spacewire/standards/
http://www.spacewire.esa.int/tech/spacewire/standards/
http://LeeSeshia.org

BIBLIOGRAPHY

Geilen, M. and T. Basten, 2003: Requirements on the execution of kahn process
networks. In European Symposium on Programming Languages and Systems,
Springer, LNCS, pp. 319–334.

Ghosal, A., T. A. Henzinger, C. M. Kirsch, and M. A. Sanvido, 2004: Event-driven
programming with logical execution times. In Seventh International Workshop on
Hybrid Systems: Computation and Control (HSCC), Springer-Verlag, vol. LNCS
2993, pp. 357–371.

Goldstein, H., 1980: Classical Mechanics. Addison-Wesley, 2nd ed.

Graham, R. L., 1969: Bounds on multiprocessing timing anomalies. SIAM Journal
on Applied Mathematics, 17(2), 416–429.

Guernic, P. L., T. Gauthier, M. L. Borgne, and C. L. Maire, 1991: Programming
real-time applications with signal. Proceedings of the IEEE, 79(9).

Halbwachs, N., P. Caspi, P. Raymond, and D. Pilaud, 1991: The synchronous data
flow programming language LUSTRE. Proceedings of the IEEE, 79(9), 1305–
1319.

Hansson, H. and B. Jonsson, 1994: A logic for reasoning about time and reliability.
Formal Aspects of Computing.

Harel, D., 1987: Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8, 231–274.

Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot, 1990: STATEMATE: A working environment for
the development of complex reactive systems. IEEE Transactions on Software
Engineering, 16(4).

Harel, D. and A. Pnueli, 1985: On the development of reactive systems.

Harter, E. K., 1987: Response times in level structured systems. ACM Transactions
on Computer Systems, 5(3), 232–248.

Hayes, B., 2007: Computing in a parallel universe. American Scientist, 95, 476–480.

Henzinger, T. A., B. Horowitz, and C. M. Kirsch, 2001: Giotto: A time-triggered
language for embedded programming. In EMSOFT 2001, Springer-Verlag, Tahoe
City, CA, vol. LNCS 2211.

426 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

BIBLIOGRAPHY

Henzinger, T. A., R. Jhala, R. Majumdar, and G. Sutre, 2003: Software verifica-
tion with Blast. In 10th SPIN Workshop on Model Checking Software (SPIN),
Springer-Verlag, vol. LNCS 2648, pp. 235–239.

Hoare, C. A. R., 1978: Communicating sequential processes. Communications of
the ACM, 21(8).

Hoffmann, G., D. G. Rajnarqan, S. L. Waslander, D. Dostal, J. S. Jang,
and C. J. Tomlin, 2004: The stanford testbed of autonomous rotorcraft
for multi agent control (starmac). In Digital Avionics Systems Conference
(DASC). Available from: http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=1390847.

Holzmann, G. J., 2004: The SPIN Model Checker – Primer and Reference Manual.
Addison-Wesley, Boston.

Hopcroft, J. and J. Ullman, 1979: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA.

Hopcroft, J. E., R. Motwani, and J. D. Ullman, 2007: Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 3rd ed.

Horn, W., 1974: Some simple scheduling algorithms. Naval Research Logistics
Quarterly, 21(1), 177 – 185.

Jackson, J. R., 1955: Scheduling a production line to minimize maximum tardiness.
Management Science Research Project 43, University of California Los Angeles.

Jantsch, A., 2003: Modeling Embedded Systems and SoCs - Concurrency and Time
in Models of Computation. Morgan Kaufmann.

Jensen, E. D., C. D. Locke, and H. Tokuda, 1985: A time-driven scheduling model
for real-time operating systems. In Real-Time Systems Symposium (RTSS), IEEE,
pp. 112–122.

Joseph, M. and P. Pandya, 1986: Finding response times in a real-time system. The
Computer Journal (British Computer Society), 29(5), 390–395.

Kahn, G., 1974: The semantics of a simple language for parallel programming. In
Proc. of the IFIP Congress 74, North-Holland Publishing Co.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 427

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1390847
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1390847
http://LeeSeshia.org

BIBLIOGRAPHY

Kahn, G. and D. B. MacQueen, 1977: Coroutines and networks of parallel processes.
In Gilchrist, B., ed., Information Processing, North-Holland Publishing Co., pp.
993–998.

Kamal, R., 2008: Embedded Systems: Architecture, Programming, and Design. Mc-
Graw Hill.

Klein, M. H., T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour, 1993: A Practi-
tioner’s Guide for Real-Time Analysis. Kluwer Academic Publishers.

Kodosky, J., J. MacCrisken, and G. Rymar, 1991: Visual programming using struc-
tured data flow. In IEEE Workshop on Visual Languages, IEEE Computer Society
Press, Kobe, Japan, pp. 34–39.

Kohler, W. H., 1975: A preliminary evaluation of the critical path method for
scheduling tasks on multiprocessor systems. IEEE Transactions on Computers,
24(12), 1235–1238.

Kopetz, H., 1997: Real-Time Systems : Design Principles for Distributed Embedded
Applications. Springer.

Kopetz, H. and G. Bauer, 2003: The time-triggered architecture. Proceedings of the
IEEE, 91(1), 112–126.

Kopetz, H. and G. Grunsteidl, 1994: TTP - a protocol for fault-tolerant real-time
systems. Computer, 27(1), 14–23.

Kremen, R., 2008: Operating inside a beating heart. Technology Review, Octo-
ber 21, 2008. Available from: http://www.technologyreview.com/
biomedicine/21582/.

Kurshan, R., 1994: Automata-theoretic verification of coordinating processes. In
Cohen, G. and J.-P. Quadrat, eds., 11th International Conference on Analysis and
Optimization of Systems – Discrete Event Systems, Springer Berlin / Heidelberg,
vol. 199 of Lecture Notes in Control and Information Sciences, pp. 16–28.

Lamport, L., 1977: Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2), 125–143.

—, 1979: How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Transactions on Computers, 28(9), 690–691.

428 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://www.technologyreview.com/biomedicine/21582/
http://www.technologyreview.com/biomedicine/21582/
http://LeeSeshia.org

BIBLIOGRAPHY

Landau, L. D. and E. M. Lifshitz, 1976: Mechanics. Pergamon Press, 3rd ed.

Lapsley, P., J. Bier, A. Shoham, and E. A. Lee, 1997: DSP Processor Fudamentals
– Architectures and Features. IEEE Press, New York.

Lawler, E. L., 1973: Optimal scheduling of a single machine subject to precedence
constraints. Management Science, 19(5), 544–546.

Lea, D., 1997: Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, Reading MA.

—, 2005: The java.util.concurrent synchronizer framework. Science of Computer
Programming, 58(3), 293–309.

Lee, E. A., 1999: Modeling concurrent real-time processes using discrete events.
Annals of Software Engineering, 7, 25–45.

—, 2001: Soft walls - modifying flight control systems to limit the flight
space of commercial aircraft. Technical Memorandum UCB/ERL M001/31,
UC Berkeley. Available from: http://ptolemy.eecs.berkeley.edu/
publications/papers/01/softwalls2/.

—, 2003: Soft walls: Frequently asked questions. Technical Memorandum
UCB/ERL M03/31, UC Berkeley. Available from: http://ptolemy.eecs.
berkeley.edu/papers/03/softwalls/.

—, 2006: The problem with threads. Computer, 39(5), 33–42.

—, 2009a: Computing needs time. Tech. Rep. UCB/EECS-2009-30, EECS Depart-
ment, University of California, Berkeley. Available from: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html.

—, 2009b: Disciplined message passing. Technical Report UCB/EECS-2009-
7, EECS Department, University of California, Berkeley. Available
from: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-7.html.

—, 2009c: Finite state machines and modal models in Ptolemy II. Tech. Rep.
UCB/EECS-2009-151, EECS Department, University of California, Berkeley.
Available from: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2009/EECS-2009-151.html.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 429

http://ptolemy.eecs.berkeley.edu/publications/papers/01/softwalls2/
http://ptolemy.eecs.berkeley.edu/publications/papers/01/softwalls2/
http://ptolemy.eecs.berkeley.edu/papers/03/softwalls/
http://ptolemy.eecs.berkeley.edu/papers/03/softwalls/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-30.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html
http://LeeSeshia.org

BIBLIOGRAPHY

Lee, E. A. and S. Ha, 1989: Scheduling strategies for multiprocessor real-time DSP.
In Global Telecommunications Conference (GLOBECOM), vol. 2, pp. 1279 –
1283. doi:10.1109/GLOCOM.1989.64160.

Lee, E. A., S. Matic, S. A. Seshia, and J. Zou, 2009: The case for timing-centric
distributed software. In IEEE International Conference on Distributed Comput-
ing Systems Workshops: Workshop on Cyber-Physical Systems, IEEE, Montreal,
Canada, pp. 57–64.

Lee, E. A. and E. Matsikoudis, 2009: The semantics of dataflow with firing. In
Huet, G., G. Plotkin, J.-J. Lévy, and Y. Bertot, eds., From Semantics to Computer
Science: Essays in memory of Gilles Kahn, Cambridge University Press.

Lee, E. A. and D. G. Messerschmitt, 1987: Synchronous data flow. Proceedings of
the IEEE.

Lee, E. A. and T. M. Parks, 1995: Dataflow process networks. Proceedings of the
IEEE, 83(5), 773–801.

Lee, E. A. and P. Varaiya, 2003: Structure and Interpretation of Signals and Systems.
Addison Wesley.

Lee, E. A. and H. Zheng, 2005: Operational semantics of hybrid systems. In Morari,
M. and L. Thiele, eds., Hybrid Systems: Computation and Control (HSCC),
Springer-Verlag, Zurich, Switzerland, vol. LNCS 3414, pp. pp. 25–53.

—, 2007: Leveraging synchronous language principles for heterogeneous modeling
and design of embedded systems.

Lee, I. and V. Gehlot, 1985: Language constructs for distributed real-time program-
ming. In Proc. Real-Time Systems Symposium (RTSS), San Diego, CA, pp. 57–66.

Lee, R. B., 1996: Subword parallelism with MAX2. IEEE Micro, 16(4), 51–59.

Leung, J. Y.-T. and J. Whitehead, 1982: On the complexity of fixed priority schedul-
ing of periodic real-time tasks. Performance Evaluation, 2(4), 237250.

Li, X., Y. Liang, T. Mitra, and A. Roychoudhury, 2005: Chronos: A tim-
ing analyzer for embedded software. Technical report, National University
of Singapore, http://www.comp.nus.edu.sg/˜rpembed/chronos/
chronos_tool.pdf.

430 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://dx.doi.org/10.1109/GLOCOM.1989.64160
http://www.comp.nus.edu.sg/~rpembed/chronos/chronos_tool.pdf
http://www.comp.nus.edu.sg/~rpembed/chronos/chronos_tool.pdf
http://LeeSeshia.org

BIBLIOGRAPHY

Li, Y.-T. S. and S. Malik, 1999: Performance Analysis of Real-Time Embedded Soft-
ware. Kluwer Academic.

Liu, C. L. and J. W. Leyland, 1973: Scheduling algorithms for multiprogramming
in a hard real time environment. Journal of the ACM, 20(1), 46–61.

Liu, J. and E. A. Lee, 2003: Timed multitasking for real-time embedded software.
IEEE Control Systems Magazine, 65–75.

Liu, J. W. S., 2000: Real-Time Systems. Prentice-Hall.

Liu, X. and E. A. Lee, 2008: CPO semantics of timed interactive actor networks.
Theoretical Computer Science, 409(1), 110–125.

Liu, X., E. Matsikoudis, and E. A. Lee, 2006: Modeling timed concurrent systems.
In CONCUR 2006 - Concurrency Theory, Springer, Bonn, Germany, vol. LNCS
4137.

Luminary Micro R©, 2008a: Stellaris R© LM3S8962 evaluation board user’s man-
ual. Tech. rep., Luminary Micro, Inc. Available from: http://www.
luminarymicro.com.

—, 2008b: Stellaris R© LM3S8962 microcontroller data sheet. Tech. rep., Luminary
Micro, Inc. Available from: http://www.luminarymicro.com.

—, 2008c: Stellaris R© peripheral driver library - user’s guide. Tech. rep., Luminary
Micro, Inc. Available from: http://www.luminarymicro.com.

Maler, O., Z. Manna, and A. Pnueli, 1992: From timed to hybrid systems. In Real-
Time: Theory and Practice, REX Workshop, Springer-Verlag, pp. 447–484.

Malik, S. and L. Zhang, 2009: Boolean satisfiability: From theoretical hardness to
practical success. Communications of the ACM, 52(8), 76–82.

Manna, Z. and A. Pnueli, 1992: The Temporal Logic of Reactive and Concurrent
Systems. Springer, Berlin.

—, 1993: Verifying hybrid systems. In Hybrid Systems, vol. LNCS 736, pp. 4–35.

Marion, J. B. and S. Thornton, 1995: Classical Dynamics of Systems and Particles.
Thomson, 4th ed.

Marwedel, P., 2003: Embedded System Design. Kluwer Academic Publishers.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 431

http://www.luminarymicro.com
http://www.luminarymicro.com
http://www.luminarymicro.com
http://www.luminarymicro.com
http://LeeSeshia.org

BIBLIOGRAPHY

Mealy, G. H., 1955: A method for synthesizing sequential circuits. Bell System Tech-
nical Journal, 34, 1045–1079.

Milner, R., 1980: A Calculus of Communicating Systems, vol. 92 of Lecture Notes
in Computer Science. Springer.

Mishra, P. and N. D. Dutt, 2005: Functional Verification of Programmable Embed-
ded Processors - A Top-down Approach. Springer.

Misra, J., 1986: Distributed discrete event simulation. ACM Computing Surveys,
18(1), 39–65.

Moore, E. F., 1956: Gedanken-experiments on sequential machines. Annals of
Mathematical Studies, 34(Automata Studies, C. E. Shannon and J. McCarthy
(Eds.)), 129–153.

Murata, T., 1989: Petri nets: Properties, analysis and applications. Proceedings of
IEEE, 77(4), 541–580.

Nemer, F., H. Cass, P. Sainrat, J.-P. Bahsoun, and M. D. Michiel, 2006: Papabench:
A free real-time benchmark. In 6th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis. Available from: http://www.irit.fr/recherches/
ARCHI/MARCH/rubrique.php3?id_rubrique=97.

Noergaard, T., 2005: Embedded Systems Architecture: A Comprehensive Guide for
Engineers and Programmers. Elsevier.

Oshana, R., 2006: DSP Software Development Techniques for Embedded and Real-
Time Systems. Embedded Technology Series, Elsevier.

Ousterhout, J. K., 1996: Why threads are a bad idea (for most purposes) (invited
presentation). In Usenix Annual Technical Conference.

Papadimitriou, C., 1994: Computational Complexity. Addison-Wesley.

Parab, J. S., V. G. Shelake, R. K. Kamat, and G. M. Naik, 2007: Exploring C for
Microcontrollers. Springer.

Parks, T. M., 1995: Bounded scheduling of process networks. Ph.D. Thesis
Tech. Report UCB/ERL M95/105, UC Berkeley. Available from: http://
ptolemy.eecs.berkeley.edu/papers/95/parksThesis.

432 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://ptolemy.eecs.berkeley.edu/papers/95/parksThesis
http://ptolemy.eecs.berkeley.edu/papers/95/parksThesis
http://LeeSeshia.org

BIBLIOGRAPHY

Patterson, D. A. and D. R. Ditzel, 1980: The case for the reduced instruction set
computer. ACM SIGARCH Computer Architecture News, 8(6), 25–33.

Patterson, D. A. and J. L. Hennessey, 1996: Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2nd ed.

Plotkin, G., 1981: A Structural Approach to Operational Semantics.

Pnueli, A., 1977: The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 46–57.

Pottie, G. and W. Kaiser, 2005: Principles of Embedded Networked Systems Design.
Cambridge University Press.

Price, H. and R. Corry, eds., 2007: Causation, Physics, and the Constitution of
Reality. Clarendon Press, Oxford.

Queille, J.-P. and J. Sifakis, 1981: Iterative methods for the analysis of Petri nets. In
Selected Papers from the First and the Second European Workshop on Application
and Theory of Petri Nets, pp. 161–167.

Ravindran, B., J. Anderson, and E. D. Jensen, 2007: On distributed real-time
scheduling in networked embedded systems in the presence of crash failures. In
IFIFP Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems (SEUS), IEEE ISORC.

Rice, J., 2008: Heart surgeons as video gamers. Technology Review, June
10, 2008. Available from: http://www.technologyreview.com/
biomedicine/20873/.

Sander, I. and A. Jantsch, 2004: System modeling and transformational design re-
finement in forsyde. IEEE Transactions on Computer-Aided Design of Circuits
and Systems, 23(1), 17–32.

Scott, D. and C. Strachey, 1971: Toward a mathematical semantics for computer
languages. In Symposium on Computers and Automata, Polytechnic Institute of
Brooklyn, pp. 19–46.

Seshia, S. A. and A. Rakhlin, 2008: Game-theoretic timing analysis. In Proc.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.
575–582.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 433

http://www.technologyreview.com/biomedicine/20873/
http://www.technologyreview.com/biomedicine/20873/
http://LeeSeshia.org

BIBLIOGRAPHY

Sha, L., T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok, 2004: Real time scheduling theory: A
historical perspective. Real-Time Systems, 28(2), 101–155. doi:10.1023/B:
TIME.0000045315.61234.1e.

Sha, L., R. Rajkumar, and J. P. Hehoczky, 1990: Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers, 39(9),
1175–1185.

Simon, D. E., 2006: An Embedded Software Primer. Addison-Wesley.

Sipser, M., 2005: Introduction to the Theory of Computation. Course Technology
(Thomson), 2nd ed.

Sriram, S. and S. S. Bhattacharyya, 2009: Embedded Multiprocessors: Scheduling
and Synchronization. CRC press, 2nd ed.

Stankovic, J. A., I. Lee, A. Mok, and R. Rajkumar, 2005: Opportunities and obliga-
tions for physical computing systems. Computer, 23–31.

Stankovic, J. A. and K. Ramamritham, 1987: The design of the Spring kernel. In
Real-Time Systems Symposium (RTSS), IEEE, pp. 146–157.

—, 1988: Tutorial on Hard Real-Time Systems. IEEE Computer Society Press.

Sutter, H. and J. Larus, 2005: Software and the concurrency revolution. ACM Queue,
3(7), 54–62.

Tiwari, V., S. Malik, and A. Wolfe, 1994: Power analysis of embedded software: a
first step towards software power minimization. IEEE Transactions on VLSI, 2(4),
437–445.

Tremblay, M., J. M. O’Connor, V. Narayannan, and H. Liang, 1996: VIS speeds new
media processing. IEEE Micro, 16(4), 10–20.

Valvano, J. W., 2007: Embedded Microcomputer Systems - Real Time Interfacing.
Thomson, 2nd ed.

Vardi, M. Y. and P. Wolper, 1986: Automata-theoretic techniques for modal logics
of programs. Journal of Computer and System Sciences, 32(2), 183–221.

434 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://LeeSeshia.org

BIBLIOGRAPHY

Wang, Y., S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke, 2009: The theory of
deadlock avoidance via discrete control. In Principles of Programming Languages
(POPL), Savannah, Georgia, USA.

Wiener, N., 1948: Cybernetics: Or Control and Communication in the Animal and
the Machine. Librairie Hermann & Cie, Paris, and MIT Press.Cambridge, MA.

Wilhelm, R., 2005: Determining Bounds on Execution Times. In Zurawski, R., ed.,
Handbook on Embedded Systems, CRC Press.

Wilhelm, R., J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenstr, 2008: The worst-case execution-time problem -
overview of methods and survey of tools. ACM Transactions on Embedded Com-
puting Systems (TECS), 7(3), 1–53.

Wolf, W., 2000: Computers as Components: Principles of Embedded Computer
Systems Design. Morgan Kaufman.

Wolfe, V., S. Davidson, and I. Lee, 1993: Rtc: Language support for real-time
concurrency. Real-Time Systems, 5(1), 63–87.

Wolper, P., M. Y. Vardi, and A. P. Sistla, 1983: Reasoning about infinite computation
paths. In 24th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 185–194.

Young, W., W. Boebert, and R. Kain, 1985: Proving a computer system secure.
Scientific Honeyweller, 6(2), 18–27.

Zeigler, B., 1976: Theory of Modeling and Simulation. Wiley Interscience, New
York.

Zeigler, B. P., H. Praehofer, and T. G. Kim, 2000: Theory of Modeling and Simula-
tion. Academic Press, 2nd ed.

Zhao, Y., E. A. Lee, and J. Liu, 2007: A programming model for time-synchronized
distributed real-time systems. In Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), IEEE, Bellevue, WA, USA.

Lee & Seshia, Introduction to Embedded Systems, version 0.5 435

http://LeeSeshia.org

NOTATION INDEX

436 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Notation Index

x|t≤τ restriction in time 29
¬ negation 52
∧ conjunction 52
∨ disjunction 52
L(M) language 71
:= assignment 53
VCC supply voltage 230
=⇒ implies 334
Gφ globally 336
Fφ eventually 337
Uφ until 340
Xφ next state 339
La(M) language accepted by an FSM 355
λ empty sequence 356
B = {0,1} binary digits 411
N = {0,1,2, · · ·} natural numbers 411
Z = {· · · ,−1,0,1,2, · · ·} integers 411
R real numbers 411
R+ non-negative real numbers 411
A⊆ B subset 411
2A powerset 411
/0 empty set 411
A\B set subtraction 412
A×B cartesian product 412
(a,b) ∈ A×B tuple 412
A0 singleton set 412
f : A→ B function 412

437

NOTATION INDEX

f : A ⇀ B partial function 412
g◦ f function composition 413
f n : A→ A function to a power 413
f 0(a) identity function 413
f̂ : 2A→ 2B image function 413
(A→ B) set of all functions from A to B 413
BA set of all functions from A to B 413
πI projection 415
π̂I lifted projection 416
f |C restriction 415
A∗ finite sequences 416
AN infinite sequences 416
ω = { /0,{ /0},{ /0,{ /0}}, · · ·} von Neumann numbers 418
Aω infinite sequences 418
A∗∗ finite and infinite sequences 416

438 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

Index

ω-regular language, 358
n-tuple, 412
1080p, 183
32-bit architecture, 218
32-bit microprocessor, 212
3D graphics, 184
64-bit microprocessor, 212
8-bit microcontroller, 212

6800, 178
6811, 178
8051, 178
8080, 178
8086, 179
80386, 179

A-440, 39
abstract interpretation, 401, 403
abstraction, xvi, 12, 14, 115, 350
acceleration, 21
acceleration of gravity, 93
accepting state, 355, 358
accumulator, 185, 194
acquire a lock, 280
action, 53, 272
active high logic, 230, 232
active low logic, 230
actor, 26, 79, 108, 132, 163, 349
actor function, 145
actor model for state machines, 80

actor models, 25
Ada, 304
adaptive antennas, 198
ADC, 211, 250
adder, 28, 30
address space, 209, 220
address translation, 209, 288
ADL, xxi
Advanced Television Systems Commit-

tee, 182
AGV, 95
Aiken, Howard H., 211
Airbus, 4, 144
Alcatel, 178
aliasing distortion, 257
alignment, 218
allocation, 220
alphabet, 356
ALU, 190
AMD, 177, 179, 184
AMI, 180
amplifier, 230
analog, 228, 250
analog comparator, 250
analog to digital converter, 250
analysis, 8
Android, 282
anti-aircraft gun, 2
API, 241, 274

439

INDEX

Apple, 178, 282
application program interface, 274
architecture description languages, xxi
arithmetic logic unit, 190
ARM, 178, 211, 218, 244
ARM CortexTM- M3, 209, 210, 228, 240,

262
ARM instruction set, 243
ARM Limited, 178
arrival of tasks, 300, 312, 314
arrival time, 301
ArrivalDetector, 44
assignment, 53, 85, 437
assignment rule, 412
assignment to a processor, 299
associative memory, 216, 217
asynchronous, 143, 234
asynchronous composition, 109, 113, 245
Atmel, 178, 260
Atmel AVR, 10, 178, 234, 260
Atom, Intel, 177, 179
atomic operation, 14, 114, 117, 242, 245,

274, 278
atomic proposition, 334
ATSC, 182, 251, 278
audio, 180, 251
auto increment, 180
autocoding, 270
automata, 84
automated guided vehicle, 95
automatic variable, 222
automotive, 179
automotive safety, 4
AVR, 178, 260

Büchi automaton, 358
Büchi, Julius Richard, 358
balance equation, 148

bare iron, 270, 274
baseband processing, 179
basic block, 382
baud, 235
BCET, 379
behavior, 70, 77, 353, 365, 374
Bell Labs, 60, 180
best-case execution time, 379
BIBO stable, 31
big endian, 218
bijective, 414, 419
binary digits, 411, 437
binary point, 199, 201
bipolar transistor, 232
bisimilar, 368
bisimulates, 368
bisimulation, 360, 368
bisimulation relation, 368, 369
bit banding, 212
bit reversed addressing, 180
BlackBerry OS, 282
Blefuscu, 218
block, 214
block diagrams, 166
blocked, 300, 315
blocking reads, 156
blocking writes, 157
Bogen, Alf-Egil, 178
boundary scan, 236
bounded, 31
bounded buffers, 147
bounded liveness, 338
bounded-input bounded-output stable, 31
branching-time logic, 339
breakpoint, 237
brittle, 321
brittleness, xvi

440 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

Broadcom, 178
bus, 238
bus arbiter, 238
bus master, 238
byte, 218

C data type, 234
C programming language, 186, 270
C54x, 193, 194
C55x, 197
c6000, 198
c62x, 198
C64x, 202
c64x, 198
c67x, 198
C#, 287
cache, 14, 202, 213, 391
cache constraints, 400
cache hit, 214
cache line, 214
cache miss, 213, 214
cache organization, 215
cache set, 214
calculus of communicating systems, 157
call edge, 384
call graph, 402
callback, 270
callee function, 384
caller function, 384
cartesian product, 412, 418, 437
cascade composition, 27, 118, 147
causal, 29, 30
CCS, 157
CD, 208, 251
CDs, 178
cellular base stations, 198
central processing unit, 177
Centronics, 237

CFG, 382
char, 218
chattering, 53, 54
chip, 176
chrominance, 183
circular buffer, 185, 194
circular buffers, 180
Cirrus Logic, 178
CISC, 193, 198
classical mechanics, 19
clock, 84, 137
clock signal, 134, 161
CMOS, 232
code generation, 270
codomain, 135, 412
ColdFire, 178
collision sense multiple access, 238
color, 182, 195
color channels, 183
communicating sequential processes, 157
communication event, 133
compact disc, 251
compiler, 187
complete, 350
complex instruction set computer, 193
component, 132
compositional, 111, 115, 141
computation tree, 72
computation tree logic, 339
computed branch, 190
concurrent, 132, 186, 267
condition variable, 290
Conditional, 154, 155
conditional branch, 190
conditional branch instruction, 192
conditioning filter, 253
conflict miss, 216

Lee & Seshia, Introduction to Embedded Systems, version 0.5 441

http://LeeSeshia.org

INDEX

conjunction, 52, 334, 437
consistent, 151
constructive, 142, 159, 162
consumer electronics, 198
content-addressable memory, 216
context switch time, 307
continuous, 44
continuous state, 86, 92, 93
continuous-time model of computation,

164
continuous-time signal, 21, 25, 29, 45,

80, 81
continuous-time signals, 163
continuous-time system, 25
contrapositive, 335
control hazard, 192
control law, 5
control system, 2
control-flow graph, 382, 383
controller, 94
convolution, 255
cooperative multitasking, 277
coordination language, 144
core, 207
coroutines, 156
Cortex, 209, 210, 228, 240, 262
CortexTM, 211, 244
Counter, 45–49
counterexample, 336
counting semaphore, 291
CPS, xiv, 1, 12
CPU, 177
critical path, 320, 321
critical section, 158, 280
crosswalk, 63, 65, 76
cryptographic algorithm, 381
CSMA, 238

CSP, 157
CTL∗, 339
cyber-physical system, xiv, 1, 2, 12, 159,

228
cybernetics, 2
cyberspace, 2
cycle-accurate simulator, 402
Cypress Semiconductor, 178
Cyrix, 179

DAC, 251
Dallas Semiconductor, 178
data hazard, 191
dataflow, xv, xxi, 57, 119, 143, 158, 161
dataflow analysis, 187
dB, 253
DB-25, 237
DB-9, 234
DDF, 153
DE, 161
deadline, 298, 302
deadline monotonic, 304
deadlock, 147, 151, 283, 287, 318, 321
deallocate, 220
debugging, 237
decibels, 253
decidable, 152
decode pipeline stage, 190
default transition, 55, 56, 59, 343
defragmentation, 221
Delay, 146–148, 151, 153
delay, 31, 162
delay line, 182
delayed branch, 192
delta function, 255
delta functions, 257
Department of Defense, 304
DepartureDetector, 44

442 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

design, 8
design time, 299, 303
desired part, 252
determinate, 59, 111, 135, 136
deterministic, xvi, 59, 371
device driver, 249, 282
DEVS, 161
differential equation, 9, 19, 79, 211
digital, 228
digital signal, 250
digital signal processor, 179, 180
digital television, 198
digital to analog converter, 251
Dijkstra, Edsger W., 291
Dirac delta function, 255
Dirac delta functions, 257
direct memory access, 239
direct-mapped cache, 216
directed cycles, 32
discrete, 44, 46, 77
discrete dynamics, 44, 50, 69
discrete event, 45
discrete signal, 46, 133
discrete state, 86
discrete system, 44, 137
discrete-event systems, 161
discrete-time Fourier transform, 255
disjunction, 52, 334, 437
disk, 208
disk drive controllers, 180
disk drives, 209
DM, 304
DMA, 239
DMA controller, 239
DoD, 304
domain, 135, 412
double, 218

DRAM, 206, 209, 212
driver assist, 179
DSP, xxi, 179, 180, 190, 193, 196, 199,

228
DSP processors, 179
DSP1, 180
DTFT, 255
DVD, 208
dynamic dataflow, 153
dynamic memory allocation, 220
dynamic priority, 302, 312
dynamic RAM, 206
dynamics, xv, 12, 19, 84

earliest deadline first, 312
earliest due date, 310
ECU, 378
EDD, 310
EDF, 312, 313, 325
EDF*, 314
edge triggered, 244
EEPROM, 207
EIA, 233
Eindhoven University of Technology, 291
electrical isolation, 231
Electronics Industries Association, 233
Embedded Linux, 282
embedded software, xiii
embedded systems, xiii
empty sequence, 356, 437
empty set, 411, 437
enabled, 51, 301
energy, 253
energy conservation, 52
energy:of a discrete-time signal, 255
engine controller, 188
environment, 47, 53, 54, 65, 68, 94, 111,

115

Lee & Seshia, Introduction to Embedded Systems, version 0.5 443

http://LeeSeshia.org

INDEX

error, 32
error signal, 33
Esterel, 144
Esterel Technologies, 144
event queue, 161
event triggered, 47, 53, 55, 263
eventually, 337, 437
exception, 239
execute pipeline stage, 190
execution action, 132
execution count, 393
execution time, 302
execution trace, 71, 75, 333, 358, 365
execution-time analysis, 378
exhaustive search, 141
explicit pipeline, 191
extended state machine, 59, 62, 85, 108,

110, 114, 123, 170, 271, 353

f=ma, 90
fairness, 277
fast Fourier transforms, 193
fault handler, 45
feasibility analysis, 304
feasible path, 390
feasible schedule, 303, 306, 309
feature extraction, 179
feedback, 2, 30, 32, 121, 134, 148, 168
feedback control, 5
fetch pipeline stage, 189
FFT, 180, 193
fidelity, 12, 38
field-programmable gate array, 202
FIFO, 217, 290
file system, 282, 288
filtering, 179
final state, 355
finally, 337

finish time, 302
finite and infinite sequences, 416, 438
finite impulse response, 180
finite sequences, 416, 438
finite state machine, 83
finite-state machine, 50, 333
FIR, 180, 181, 185, 193

two dimensional, 183
FireWire, 237
firing, 162
firing function, 136, 139, 145
firing rule, 145
firmware, 207
first-in, first-out, 217, 290
fixed point, 136, 139
fixed priority, 302, 306, 307, 309, 310,

325
fixed-point number, 14, 199
fixed-point semantics, 136
flash memory, 178, 208, 229
FlexRay, 159
flight control, 144
flight envelope protection, 4
flip flop, 212
floating-point, 198
floating-point standard, 201
fly-by-wire, 3
font, 282
force, 21
fork, 153
formal specification, 330
formal verification, 15
forward Euler, 165
forwarding, 192
Fourier transform, 254
FPGA, 202
fragmentation, 221

444 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

frame, 179
frame rate, 278
free, 220
FreeRTOS, 282
Freescale, 178
Freescale 6811, 178
Freescale ColdFire, 178
frequency analysis, 179
FSM, 50, 132, 158, 245
fully dynamic scheduler, 299
fully static scheduler, 299
fully-associative cache, 217
function, 412, 437
function composition, 413, 438
function pointer, 241, 271, 273
function to a power, 438

game consoles, 278
games, 179, 184
garage counter, 59
garbage collection, 220
garbage collector, 221, 404
gasoline engine, 188
GB, 209
general-purpose computing, 176
general-purpose I/O, 230
general-purpose OS, 282
Geode, 177
GHz, 179
gigabytes, 209
Gill, Helen, xiv, 2
global variable, 222, 240, 271, 272, 280,

294, 384
globally, 336, 437
Google, 282
goto, 154
GPIB, 238
GPIO, 211, 230, 237, 250

GPU, 184, 202
graph, 413, 418
graphical user interface, 282
graphics, 180, 184
graphics processing unit, 184
gravity, 93
grayscale, 183
guard, 50
GUI, 282
Gullivers Travels, 218

H8, 178
handheld device, 282
hard deadline, 302
hard real-time scheduling, 302
hardware interrupt, 239
Harvard architecture, 180, 190, 211, 211
heap, 220, 222, 273
Heap analysis, 404
Helicopter, 32
helicopter, 24
Hennessy, John, 178
Hertz, 177
heterogeneous multicore, 198
Hewlett Packard, 196
Hewlett-Packard, 238, 282
hexadecimal notation, 218
hierarchical FSM, 122, 247
higher-order actor, 154
history transition, 125
Hitachi H8, 178
hold a lock, 280
Hopper, Grace M., 211
Horn’s algorithm, 312
HP-IB, 238
Hu level scheduling, 320
HVAC, 52
hybrid system, 9, 44, 80

Lee & Seshia, Introduction to Embedded Systems, version 0.5 445

http://LeeSeshia.org

INDEX

hybrid systems modeling, 20
hysteresis, 53, 54, 74, 85, 231
Hz, 178

I2C, 237
I/O, 228
IBM, 178, 211
IBM PC, 179, 237, 238
icons, 28
IDE, 229, 235
identity function, 413, 438
IEEE 1149.1, 236
IEEE 754, 198, 201, 218
IEEE floating point standard, 218
IEEE-1284, 237
IEEE-488, 238
ill formed, 139
ILP, 193, 400
image, 414
image function, 413, 438
imperative, 124, 132, 154, 186, 270, 298,

350
implicit path enumeration, 394
implies, 334, 437
importance, 304
impulse response, 254
inconsistent, 151
incremental garbage collection, 221
inductive coupling, 231
industrial automation, 240
inelastic, 93
Infineon Technologies, 178
infinite sequences, 416, 438
infinitely often, 342, 358
initial segment, 145
initial state, 50, 57
initially at rest, 34
injective, 414

inlining, 385
insidious error, 286, 287, 289
instruction memory, 189
instruction set architecture, 176, 212
instruction-level parallelism, 193
instrumentation, 179, 184
int, 218
integer linear programming, 400
integers, 411, 437
integral equation, 19
integrality, 398
integrated development environment, 229
Integrator, 30, 45–47, 49
Intel, 184, 196, 282
Intel 80386, 179
Intel 8051, 178
Intel 8080, 178
Intel 8086, 179
Intel Atom, 177, 179
Intel x86, 176
intensity, 182
inter-integrated circuit, 237
interchange argument, 310, 312
interleaving semantics, 113, 115, 117
interlock, 191
interrupt, 114, 196, 236, 239, 250, 274,

284, 305, 309
interrupt controller, 212, 244
interrupt handler, 239
interrupt service routine, 239, 305
interrupt vector, 244
interrupt vector table, 244
invariant, 11, 330, 331, 401
inverse, 415
IPET, 394
iPhone OS, 282
ISA, 176, 178, 179, 212, 242

446 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

ISA bus, 238, 239
ISR, 239

Jackson’s algorithm, 310
Java, 220, 287
Java programming language, 186
Jensen, E. Douglas, 304
jiffy, 262, 277, 305
joint test action group, 236
Jonathan Swift, 218
JTAG, 236

Kahn process network, 155
Kahn, Gilles, 155
kernel, 282
kHz, 178
kinetic energy, 93
Kleene closure, 356
Kleene star, 356
Kleene, Stephen, 356

LabVIEW, 20, 57, 155, 161, 167, 169
language, 71, 350, 353, 356, 437
language accepted by an FSM, 355, 356,

358, 437
language containment, 15, 354, 355
language equivalent, 354
language refinement, 354
last-in, first-out, 219
latch, 189
latency, 267
lateness, 303, 310, 312, 314
latest deadline first, 314
LaTeX, xix
law of conservation of bits, 200
LCD display, 212
LDF, 314
LDM instruction, 243

least-recently used, 217
level triggered, 244
LG, 178
LIDAR, 179
LIFO, 219
lifted, 414, 416, 419
lifted projection, 416, 438
Lilliput, 218
linear phase, 194
linear program, 395
linear programming, 395
linear systems, 30
linear temporal logic, 333, 348, 350
linear time-invariant system, 31
linear-time logic, 339
linked list, 271, 273, 290
Linux, 277, 282
list scheduler, 320
little endian, 218
livelock, 283
liveness, 338
liveness property, 338
LM3S8962, 229
LM3S8962 controller, 211, 244
local variable, 220, 222, 271
localization, 7, 10
lock, 279, 299
logic analyzer, 401
logical address, 213
logical connectives, 334
logical execution time, 159
logical flow constraints, 396
logical system, 12
loose bound, 379, 396
low-level control, 94
LP, 395
LRU, 217

Lee & Seshia, Introduction to Embedded Systems, version 0.5 447

http://LeeSeshia.org

INDEX

LTI, 31, 253, 254
LTL, 333, 339, 355, 357, 358
LTL formula, 335
luminance, 183
Luminary Micro, 211, 228–230, 244
Lustre, 144

MAC, 238
Mac OS X, 282
machine learning, 179
machine vision, 198
magnetic core memory, 207
makespan, 303, 320, 326
malloc, 220, 273, 279, 281, 295
Mark I, 211
marking, 158
Markov chain, 339
Markov decision process, 339
Mars Pathfinder, 315
Marvell Technology Group, 178
mask ROM, 207
Masuoka, Fujio, 208
matching game, 361, 368
MathScript, 167
MathWorks, 159, 166
MathWorks, Inc., 20
MATLAB, 167
MATRIXx, 167
Mealy machine, 60
Mealy, George H., 60
mechanics, 20
media-access control, 238
medical electronics, 179
medical imaging, 179, 198
memory addresses, 218
memory allocation, 282
memory consistency, 114, 284
memory fragmentation, 221

memory hierarchy, 206, 209
memory leak, 221
memory management unit, 213
memory map, 209, 210
memory model, 218, 284
memory pipeline stage, 190
memory protection, 220, 220, 282, 288
memory-mapped register, 211, 230, 235,

239, 242, 245
memoryless, 30, 166
message passing, 282, 288, 295
Microchip Technology, 178
microcomputer board, 229
microcontroller, 177, 228, 234
microkernel, 270, 282, 284, 303
MicroSD, 212
Microsoft Windows, 282
MIDI, 237
MIPS, 178
MMU, 213, 288
mobile operating system, 282
MoC, 132
modal model, 83, 161
mode, 83, 87
model, 12
model checking, 358
model of computation, 132, 268
model-order reduction, 24
modeling, 8
modem, 233
modems, 180
modular, 111
modular exponentiation, 381
moment of inertia tensor, 22
momentum, 92
Moore machine, 60, 161
Moore, Edward F., 60

448 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

motion control, 177
Motorola, 178
Motorola 6800, 178
Motorola ColdFire, 178
mph, 95
multi-issue instruction streams, 187
multicore, 198, 207, 298
multiply-accumulate instruction, 194
multiprocessor scheduler, 298
multitasking, 268, 298
multitasking operating system, 188
multithreaded programming, 280
music, 179
musical instrument digital interface, 237
must-may analysis, 142
mutex, 279, 282, 290, 291, 294, 299, 305,

332
mutual exclusion, 158, 279, 291, 292, 299,

300, 315, 323, 350

NAND flash, 208
National Instruments, 20, 155, 161, 167
National Science Foundation, xiv, 2
National Television System Committee,

278
natural numbers, 411, 437
NEC, 178, 180
negation, 52, 334, 437
netbook, 177, 179
network fabric, 5
network flow, 393
network stack, 282
neural impulse propagation, 231
Newton’s cradle, 160
Newton’s law, 90
Newton’s second law, 21
Newtonian mechanics, 20
Newtonian time, 160

next state, 339, 437
no-op, 191
noise, 252
non-montonic, 321
non-negative real numbers, 411, 437
non-preemptive, 300
non-preemptive priority-based scheduler,

302
non-volatile memory, 207, 208
nonblocking write, 156
nondeterminate, 66
nondeterministic, 66, 113, 158, 350, 354
nondeterministic FSM, 67, 358, 362, 368
NOR flash, 208
Norwegian Institute of Technology, 178
NP hard, 320
NP-hard, 400
NTSC, 278
NVIDIA, 178, 184
NXP, 178, 198
Nyquist-Shannon sampling theorem, 252,

256

observable trace, 71, 358
observer pattern, 270
Occam, 157
ODE, 20, 44, 162
off-line scheduler, 299
Ohm’s law, 230
OMAP, 199
OMAP4440, 202
omega-regular language, 358
on-line scheduler, 300
one-to-one, 46, 414
onto, 414
open collector, 232, 232, 233, 245
open drain, 232, 232
open-source, 282

Lee & Seshia, Introduction to Embedded Systems, version 0.5 449

http://LeeSeshia.org

INDEX

OpenMP, 287
operating system, 270, 282, 305
operational semantics, 163
operations research, 304
optical media, 208
optimal with respect to feasibility, 303,

306–308, 312, 314
opto isolator, 231
order preserving, 46
ordering, 299
ordinary differential equation, 20, 162
OS, 282
OS X, 282
out-of-order execution, 192, 196, 243
overflow, 200

PA RISC processor, 196
page fault, 213
PAL, 278
Palm OS, 282
Palm, Inc., 282
parallel, 186
Parallel ATA, 238
parallel interface, 237
parameter, 62, 222
Parseval’s theorem, 254
partial function, 59, 143, 412, 438
partially ordered time, 160
pass by reference, 222
pass by value, 222
Pathfinder, 315
pause time, 221
payload, 273, 290
PC, 189
PCI, 238, 239
PCI Express, 237
PDA, 193, 282
pedestrian, 76

Pentium, 196
performance, 187, 268, 303
period, 161, 306
peripheral bus, 238, 238
peripherals, 211
permuting elements of a tuple, 415
personal digital assistants, 193
Petri nets, 158
Petri, Carl Adam, 158
phase alternating line, 278
Philips, 198
physical address, 213
physical plant, 5
physical system, 12, 19
PIC, 178
pipeline, 14, 189, 189
pipeline bubble, 191
pipeline hazard, 191
PIT, 242
pitch, 21
pixel, 182
pixels, 179
place, 158
plant, 94
platform, 5, 378
PN, 155
Pnueli, Amir, 339
pointer, 221
pointers, 218
popping off a stack, 219
port, 25, 47, 80, 110, 349
portable, 242, 274
POSIX threads, 274
postcondition, 333, 345
power, 253
power amplifier, 230
PowerPC, 178, 218

450 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

powerset, 411, 413, 418, 437
precedence constraints, 299, 301
precedence graph, 312
preconditions, 301
predicate, 51, 53, 334
preemption, 300
preemptive, 300, 309
preemptive priority-based scheduler, 302
preemptive transition, 124, 247
print-on-demand service, 6
printed circuit board, 212
printer port, 237
printing press, 6
priority, 56, 118, 302
priority ceiling, 318
priority inheritance, 317
priority inversion, 316, 321
priority-based preemptive scheduler, 315
probabilistic temporal logic, 339
probabilities, 67
process, 155, 213, 288
process network, 119, 155
processor assignment, 298
processor realization, 176
producer/consumer pattern, 288, 295
program counter, 189
programmable interval timer, 242
progress measure, 388
projection, 415, 438
property, 329
proportional control, 34
proportional-integrator (PI) controller, 41
proposition, 334
propositional logic formula, 334
prototype, 9
pthread cond signal, 290, 293
pthread cond t, 290, 293

pthread cond wait, 290, 291, 293,
295

pthread create, 275, 276
pthread join, 275, 276
pthread mutex lock, 280
pthread mutex t, 280
pthread mutex unlock, 280
pthread t, 275
Pthreads, 274, 290
PTIDES, 163
Ptolemy II, xix, 169
pull-up resistor, 232, 232
pure signal, 45, 77, 78, 80, 134
pushing onto a stack, 219
PV semaphore, 291

QNX, 282
QNX Software Systems, 282
quadrotor, 6, 10
quantitative constraint, 378
quantitative property, 378
quantization noise, 251
quantized, 250
queue, 290

Rabbit 2000, 178
Rabbit Semiconductor, 178
race condition, 159, 279, 287
radar, 179
RAM, 206
random access memory, 206
range, 414
ranking function, 388
rate monotonic, 304, 306, 309
reachable, 65
reachable state, 64, 112, 120, 121, 139,

362

Lee & Seshia, Introduction to Embedded Systems, version 0.5 451

http://LeeSeshia.org

INDEX

reaction, 47, 50, 54, 57, 69, 80, 81, 113,
132, 349

reactive system, 144
read-only memory, 207
real numbers, 411, 437
real-time operating system, 282
real-time systems, 298
real-time temporal logic, 339
Real-Time Workshop, 159
receptive, 59, 71, 355
recursion, 385
recursive programs, 219
reduced instruction set computers, 193
redundant, 231
refinement, 83, 350, 360
refresh of DRAM, 206
register bank, 190
register file, 212
regular expression, 356, 371
regular language, 356, 358
regularizing Zeno systems, 106
relation, 412
release a lock, 280
release time, 301, 307
rendezvous, 157, 295
Research in Motion, 282
reservation table, 190
reserved, 211
reset transition, 125, 247
resolution, 182
response time, 302, 307
responsiveness, 267
restriction, 415, 438
restriction in time, 29, 437
return edge, 384
RGB, 195
RGBA, 183

Richard’s anomalies, 321
RIM, 282
RISC, 178, 180, 193, 198
RM, 306, 312, 325
Robostix, 10
roll, 20
ROM, 207
rounding, 200
routine, 156
RS-232, 233
RS-422, 236
RS-423, 236
RTES, xvi
RTOS, 282
run time, 299
run-time scheduler, 299
Runge-Kutta solver, 166

S28211, 180
safety, 338
safety property, 338
safety-critical system, 243
sample period, 250
sample rate, 148, 177, 182
sampling theorem, 256
Samsung, 178
Scale, 27, 145, 146
scheduler, 277, 282, 298
scheduling, 115
scheduling anomalies, 321
scheduling decision, 299
Schmitt trigger, 231
Schmitt, Otto H., 231
scientific instrumentation, 179
scratchpad, 213
SCSI, 237, 238
SDF, 148, 170

452 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

segmentation fault, 220, 239, 279, 281,
331

Select, 153, 154
self transition, 50, 117
semantics, 57, 108, 113, 132, 417
semaphore, 282, 291, 292, 299, 305, 318
sensor, 94
sensor network, 177
sequence, 416
sequential consistency, 285
serial composition, 118
serial interface, 233
serial peripheral interface bus, 237
serial wire debug, 237
server, 115
set, 411
set action, 62, 83, 85, 92, 94
set of all functions, 413
set subtraction, 412, 437
set-associative cache, 216
setpoint, 52, 86, 103
shading, 184
shared variable, 242
Sharp, 178
short circuit, 231
side-by-side composition, 110, 134
Signal, 144
signal, 21, 45, 46, 133, 177, 353
signal conditioning, 252
signal processing, 177
signal to noise ratio, 253
simulates, 363
simulation, 358, 360, 361
simulation abstraction, 361
simulation refinement, 361
simulation relation, 15, 361, 362, 363
Simulink, 20, 57, 159, 166, 169

simultaneous and instantaneous, 119, 124,
136, 137, 159, 160, 166

single-board computer, 229
singleton set, 48, 135, 412, 416, 418, 437
six degrees of freedom, 20
slave, 238
sleep mode, 177
slow motion video, 183
SNR, 253
soft core, 202
soft real-time scheduling, 302, 304
soft wall, 4
soft walls, 4
software interrupt, 239
software-defined radio, 179
solid-state, 208
solver, 165, 166
sonar, 179
sound, 350, 357
sound approximation, 401
SparcTMprocessors, 196
specification, 14, 69, 329, 348, 357
speculative execution, 192
speech synthesis, 180
SPI, 237
sporadic, 301, 304
Spring algorithm, 304
squid nerves, 231
SR, 136, 137, 159, 166
SRAM, 206, 209, 212
ST Microelectronics, 178
stable system, 31
stack, 219, 222, 240, 271, 272, 277, 305
stack analysis, 402
stack frame, 219, 402
stack overflow, 219, 402
stack pointer, 219, 277, 305

Lee & Seshia, Introduction to Embedded Systems, version 0.5 453

http://LeeSeshia.org

INDEX

stack size analysis, 402
Stanford University, 178
STARMAC, 6
start bit, 236
start routine, 275, 276
start time, 301
starvation, 277
state, 49, 57
state machine, 9, 50, 79, 166
state refinement, 83, 122, 247
state space, 49, 64, 65
Statecharts, xv, 57, 108, 122, 144, 169
Stateflow, 57, 169
STATEMATE, 57
static assignment scheduler, 299, 323
static dataflow, 148
static order scheduler, 299
static properties, 12
static RAM, 206
steady state, 342
Stellaris, 228–230
Stellaris R©, 212
step size, 165
stochastic model, 67
stop bit, 236
stop the world, 221
stream, 289
strictly causal, 29, 30, 32, 60
string, 355
struct, 273
structured dataflow, 154
structured programming, 154
stutter, 55
stuttering, 55, 81, 355, 371
subroutine, 156
subset, 411, 437
subword parallelism, 195

suffix, 336
Sun Microsystems, 196
superdense time, 160
SuperH, 178
superposition, 30
superscalar, 196
supervisory control, 94, 94
supply voltage, 230, 437
surjective, 414
surveillance, 177, 179, 198
suspended, 277
SWD, 237
Switch, 153, 154
Symbian Foundation, 282
Symbian OS, 282
symmetric FIR filter, 194
SyncCharts, 56, 57
synchronous composition, 76, 108, 110,

113, 117
synchronous dataflow, 148
synchronous interleaving semantics, 118
synchronous language, 144
synchronous-reactive, 118, 121, 137, 144,

189
syntax, 108
system, 12
system clock, 277
system identification, 179
SysTick, 240, 262

tag bit, 214
tap values, 181
tapped delay line, 181, 182
task execution, 301
task model, 300, 303
TCTL, 339
telephony, 178
telesurgery, 4

454 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

INDEX

teletype, 233
television, 198, 278
temporal logic, 330, 333
temporal operator, 336
termination, 385
Texas Instruments, 178, 180, 193, 194,

197–199, 211, 229
thermostat, 52, 53, 81
thread, 114, 196, 274, 305, 350
thread library, 186
threshold property, 380
tick, 137
tight bound, 379
time, 26, 160
time of day, 277
time stamp, 161
time stamp counter register, 401
time synchronization, 163
time triggered, 53, 55, 63, 76, 89, 263
time utility functions, 304
time-invariant systems, 31
time-scale invariance, 54, 75
time-triggered architecture, 159
time-triggered bus, 238
timed automata, 85
timed computation tree logic, 339
timed loops, 161
timer, 211, 240, 242, 277, 305, 309
timing, 299
timing constraint, 298
tine, 39
TLB, 209
TMS320, 193, 194, 197
TMS32010, 180
token, 143, 158
token ring, 238
Tomlin, Claire, 6

torque, 22
Toshiba, 208
total completion time, 303
total function, 412
trace, 71, 348
trace containment, 358
tracking error, 35
traffic light, 63, 65, 76
transfer function, 254
transformational system, 144
transformer, 231
transistor, 232
transition, 50, 80, 81
transition function, 58
transition in Petri nets, 158
transition relation, 67
transitivity of simulation, 363
translation lookaside buffer, 209, 217
TriMedia, 198
tristate, 233
truncation, 200, 201
TTA, 159
tuning fork, 39
tuple, 412, 437
Turing Award, 291, 339
twos-complement, 199
type, 48, 69, 119, 133, 145, 349, 350
type check, 119, 134
type equivalent, 352, 363, 368
type refinement, 352, 354

UART, 211, 234
uint8 t, 234
ultrasound, 178
UML, 57
unbounded execution, 147
unbounded liveness, 338
undecidable, 148, 154, 157

Lee & Seshia, Introduction to Embedded Systems, version 0.5 455

http://LeeSeshia.org

INDEX

undesired part, 252
unified modeling language, 57
unit delay, 181
unit step, 32
universal asynchronous receiver/transmit-

ter, 234
universal serial bus, 236
unsigned integer, 234
until, 340, 437
uPD7720, 180
update, 289
update function, 57, 139
update relation, 67
USB, 212, 229, 236, 237, 238
utilization, 303, 310, 312, 325

valid bit, 214
valuation, 48, 48, 50, 55, 57, 71, 112,

333, 353, 358
variable, 61
variable-step solver, 166
vector processor, 196
vehicle health management, 7
very large instruction word, 187, 197
video, 179
video analytics, 179
virtual memory, 209
Viterbi decoding, 193
VLIW, 187, 197
VLSI Technology, 178
voice over IP, 198
voiceband data modems, 180
volatile, 206
volatile keyword, 241
volatile memory, 206, 206
von Neumann, 418
von Neumann architecture, 211
von Neumann numbers, 418, 419, 438

VxWorks, 282

WCET, 302, 379, 380, 392
well formed, 139
well order, 388
Western Electric, 180
Wiener, Norbert, 2
WinCE, 282
Wind River Systems, 282
Windows, 282
Windows CE, 282
Windows Mobile, 282
wired AND, 232
wired NAND, 232
wired OR, 232
Wollan, Vegard, 178
word, 212
worst-case execution time, 302, 379
writeback pipeline stage, 190

x86, 176, 177, 179, 218, 401
x86-64, 179

Yamaha, 178
yaw, 20

Z80, 178
Zeno, 106
zero-overhead loop, 193
Zilog Z80, 178

456 Lee & Seshia, Introduction to Embedded Systems, version 0.5

http://LeeSeshia.org

	Preface
	What this Book is About
	Why We Wrote this Book
	What is Missing
	How to Use this Book
	Sidebar: Reporting Errors
	Intended Audience
	Acknowledgements
	Sidebar: Notes for Instructors
	Sidebar: Further Reading

	Introduction
	Applications
	Sidebar: About the Term ``Cyber-Physical Systems''
	Motivating Example
	The Design Process
	Modeling
	Design
	Analysis

	Summary

	I Modeling Dynamic Behaviors
	Continuous Dynamics
	Newtonian Mechanics
	Actor Models
	Properties of Systems
	Causal Systems
	Memoryless Systems
	Linearity and Time Invariance
	Stability

	Feedback Control
	Summary
	Exercises

	Discrete Dynamics
	Discrete Systems
	Sidebar: Probing Further: Discrete Signals
	Sidebar: Probing Further: Modeling Actors as Functions

	The Notion of State
	Finite-State Machines
	Transitions
	When a Reaction Occurs
	Sidebar: Probing Further: Hysteresis
	Update Functions
	Sidebar: Software Tools Supporting FSMs
	Determinacy and Receptiveness
	Extended State Machines

	Sidebar: Moore Machines and Mealy Machines
	Nondeterminism
	Formal Model
	Uses of Non-Determinism

	Behaviors and Traces
	Summary
	Exercises

	Hybrid Systems
	Modal Models
	Actor Model for State Machines
	Continuous Inputs
	State Refinements

	Classes of Hybrid Systems
	Timed Automata
	Higher-Order Dynamics
	Supervisory control

	Summary
	Exercises

	Composition of State Machines
	Concurrent Composition
	Side-by-Side Synchronous Composition
	Side-by-Side Asynchronous Composition
	Shared Variables
	Sidebar: Scheduling Semantics for Asynchronous Composition
	Cascade Composition
	General Composition

	Hierarchical State Machines
	Summary
	Exercises

	Concurrent Models of Computation
	Structure of Models
	Synchronous-Reactive Models
	Sidebar: Actor Networks as a System of Equations
	Sidebar: Fixed-Point Semantics
	Feedback Models
	Well-Formed and Ill-Formed Models

	Constructing a Fixed Point

	Dataflow Models of Computation
	Dataflow Principles
	Sidebar: Synchronous-Reactive Languages
	Synchronous Dataflow
	Dynamic Dataflow
	Structured Dataflow
	Process Networks

	Sidebar: Petri Nets
	Timed Models of Computation
	Time-Triggered Models
	Sidebar: Models of Time
	Discrete Event Systems
	Continuous-Time Systems
	Sidebar: Probing Further: Discrete Event Semantics

	Summary
	Exercises

	II Design of Embedded Systems
	Embedded Processors
	Types of Processors
	Microcontrollers
	DSP Processors
	Sidebar: Microcontrollers
	Sidebar: The x86 Architecture
	Sidebar: DSP Processors
	Graphics Processors
	Sidebar: Circular Buffers

	Parallelism
	Parallelism vs. Concurrency
	Pipelining
	Instruction-Level Parallelism
	Multicore Architectures
	Sidebar: Fixed-Point Numbers
	Sidebar: Fixed-Point Numbers (continued)
	Sidebar: Fixed-Point Arithmetic in C

	Summary
	Exercises

	Memory Architectures
	Memory Technologies
	RAM
	Non-Volatile Memory

	Memory Hierarchy
	Memory Maps
	Sidebar: Harvard Architecture
	Register Files
	Scratchpads and Caches

	Memory Models
	Memory Addresses
	Stacks
	Memory Protection Units
	Dynamic Memory Allocation
	Memory Model of C

	Summary
	Exercises

	Input and Output
	I/O Hardware
	General-Purpose Digital I/O
	Serial Interfaces
	Parallel Interfaces
	Buses

	Sequential Software in a Concurrent World
	Interrupts and Exceptions
	Atomicity
	Sidebar: Basics: Timers
	Interrupt Controllers
	Modeling Interrupts

	The Analog/Digital Interface
	Digital to Analog and Analog to Digital Converters
	Signal Conditioning
	Sampling and Aliasing
	Sidebar: Probing Further: Impulse Trains

	Summary
	Exercises

	Multitasking
	Imperative Programs
	Sidebar: Linked Lists in C

	Threads
	Creating Threads
	Implementing Threads
	Mutual Exclusion
	Sidebar: Operating Systems
	Deadlock
	Memory Consistency Models
	The Problem with Threads

	Processes and Message Passing
	Summary
	Exercises

	Scheduling
	Basics of Scheduling
	Scheduling Decisions
	Task Models
	Comparing Schedulers
	Implementation of a Scheduler
	Sidebar: Further Reading

	Rate Monotonic Scheduling
	Earliest Deadline First
	EDF with Precedences

	Scheduling and Mutual Exclusion
	Priority Inversion
	Priority Inheritance Protocol
	Priority Ceiling Protocol

	Multiprocessor Scheduling
	Scheduling Anomalies

	Summary
	Exercises

	III Analysis and Verification
	Invariants and Temporal Logic
	Invariants
	Linear Temporal Logic
	Propositional Logic Formulas
	LTL Formulas
	Sidebar: Safety and Liveness Properties
	Sidebar: Probing Further: Alternative Temporal Logics
	Using LTL Formulas

	Summary
	Exercises

	Equivalence and Refinement
	Models as Specifications
	Type Equivalence and Refinement

	Sidebar: Abstraction and Refinement
	Language Equivalence and Containment
	Sidebar: Finite Sequences and Accepting States
	Sidebar: Regular Languages and Regular Expressions
	Simulation
	Sidebar: Probing Further: Omega Regular Languages
	Simulation Relations
	Formal Model
	Transitivity
	Non-Uniqueness of Simulation Relations

	Simulation vs. Language Containment
	Bisimulation
	Summary
	Exercises

	Reachability Analysis and Model Checking
	Open and Closed Systems
	Reachability Analysis
	Abstraction in Model Checking
	Model Checking Liveness Properties

	Quantitative Analysis
	Problems of Interest
	Extreme-Case Analysis
	Threshold Analysis
	Average-Case Analysis

	Programs as Graphs
	Basic Blocks
	Control-Flow Graphs
	Function Calls

	Factors Determining Execution Time
	Loop Bounds
	Exponential Path Space
	Path Feasibility
	Memory Hierarchy

	Basics of Execution Time Analysis
	Optimization Formulation
	Logical Flow Constraints
	Bounds for Basic Blocks
	Other Quantitative Analysis Problems
	Memory Bound Analysis
	Sidebar: Probing Further: Tools for Execution-Time Analysis

	Power and Energy Analysis
	Summary
	Exercises

	IV Appendices
	Sets and Functions
	Sets
	Relations and Functions
	Restriction and Projection
	Sequences

	Sidebar: Insight: Exponential Notation for Sets of Functions
	Exercises

	Bibliography
	Notation Index
	Index

