
Exercises 67

Bibliographic Remarks

For a complete and concise presentation of propositional and first-order logic,
see Smullyan’s text First-Order Logic [87]. The semantic argument method
is similar to Smullyan’s tableau method. Also, the proofs of completeness of
the semantic argument method, the Compactness Theorem, and the Craig
Interpolation Lemma are inspired by Smullyan’s presentation.

The history of the development of mathematical logic is rich. For an
overview, see [98] and related articles in The Stanford Encyclopedia of Phi-

losophy. We mention in particular Hilbert’s program of the 1920s — see, for
example, [38] — to find a consistent and complete axiomatization of arith-
metic. Gödels two incompleteness theorems proved that such a goal is impos-
sible. The first incompleteness theorem, which Gödel presented in a lecture
in September, 1930, and then in [36], states that any axiomatization of arith-
metic contains theorems that are not provable within the theory. The second,
which Gödel had proved by October, 1930, states that a theory such as Peano
arithmetic cannot prove its own consistency unless it is itself inconsistent.
Earlier, Gödel proved that first-order logic is complete [35]: every theorem
has a proof. However, Church — and, independently, Turing — proved that
satisfiability in first-order logic is undecidable [13]. Thus, while every theorem
of first-order logic has a finite proof, invalid formulae need not have a finite
proof of their invalidity.

For an introduction to formal languages, decidability, and complexity the-
ory, see [85, 72, 41].

Exercises

2.1 (English and FOL). Encode the following English sentences into FOL.

(a) Some days are longer than others.
(b) In all the world, there is but one place that I call home.
(c) My mother’s mother is my grandmother.
(d) The intersection of two convex sets is convex.

2.2 (FOL validity & satisfiability). For each of the following FOL formu-
lae, identify whether it is valid or not. If it is valid, prove it with a semantic
argument; otherwise, identify a falsifying interpretation.

(a) (∀x, y. p(x, y) → p(y, x)) → ∀z. p(z, z)
(b) ∀x, y. p(x, y) → p(y, x) → ∀z. p(z, z)
(c) (∃x. p(x)) → ∀y. p(y)
(d) (∀x. p(x)) → ∃y. p(y)
(e) ∃x, y. (p(x, y) → (p(y, x) → ∀z. p(z, z)))

2.3 (Semantic argument). Use the semantic argument method to prove the
following formula schemata.
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(a) ¬(∀x. F ) ⇔ ∃x. ¬F

(b) ¬(∃x. F ) ⇔ ∀x. ¬F

(c) ∀x, y. F ⇔ ∀y, x. F

(d) ∃y. ∀x. F ⇒ ∀x. ∃y. F

(e) ∃x. F ∨ G ⇔ (∃x. F ) ∨ (∃y. G)
(f) ∃x. F → G ⇔ (∀x. F ) → (∃x. G)
(g) ∃x. F ∨ G ⇔ (∃x. F ) ∨ G, provided x 6∈ free(G)
(h) ∀x. F ∨ G ⇔ (∀x. F ) ∨ G, provided x 6∈ free(G)
(i) ∃x. F ∧ G ⇔ (∃x. F ) ∧ G, provided x 6∈ free(G)
(j) ∀x. F → G ⇔ (∃x. F ) → G, provided x 6∈ free(G)

2.4 (N o rmal fo rms). Put the following formulae into prenex normal form.

(a) (∀x. ∃y. p(x, y)) → ∀x. p(x, x)
(b) ∃z. (∀x. ∃y. p(x, y)) → ∀x. p(x, z)
(c) ∀w . ¬(∃x, y. ∀z. p(x, z) → q(y, z)) ∧ ∃z. p(w , z)

2.5 (FC haracteristic fo rmula). Why is the characteristic formula of a line
on a closed branch of a semantic argument valid?


