
32 1 Propositional Logic

PL is an important logic with applications in software and hardware de-
sign and analysis, knowledge representation, combinatorial optimization, and
complexity theory, to name a few. Although relatively simple, the Boolean
structure that is central to PL is often a main source of complexity in appli-
cations of the algorithmic reasoning that is the focus of Part II. Exercise 8.1
explores this point in more depth.

Besides being an important logic in its own right, PL serves to introduce
the main concepts that are important throughout the book, in particular
syntax, semantics, and satisfiability and validity. Chapter 2 presents first-
order logic by building on the concepts of this chapter.

Bibliographic Remarks

For a complete and concise presentation of propositional logic, see Smullyan’s
text First-Order Logic [87]. The semantic argument method is similar to
Smullyan’s tableau method.

The DPLL algorithm is based on work by Davis and Putnam, presented
in [26], and by Davis, Logemann, and Loveland, presented in [25].

Exercises

1.1 (PL validity & satisfiability). For each of the following PL formulae,
identify whether it is valid or not. If it is valid, prove it with a truth table or
semantic argument; otherwise, identify a falsifying interpretation. Recall our
conventions for operator precedence and associativity from Section 1.1.

(a) P ∧ Q → P → Q

(b) (P → Q) ∨ P ∧ ¬Q

(c) (P → Q → R) → P → R

(d) (P → Q ∨ R) → P → R

(e) ¬(P ∧ Q) → R → ¬R → Q

(f) P ∧ Q ∨ ¬P ∨ (¬Q → ¬P )
(g) (P → Q → R) → ¬R → ¬Q → ¬P

(h) (¬R → ¬Q → ¬P ) → P → Q → R

1.2 (Template equivalences). Use the truth table or semantic argument
method to prove the following template equivalences.

(a) > ⇔ ¬⊥
(b) ⊥ ⇔ ¬>
(c) ¬¬F ⇔ F

(d) F ∧> ⇔ F

(e) F ∧⊥ ⇔ ⊥
(f) F ∧ F ⇔ F



E x e rcises 33

(g) F ∨> ⇔ >
(h) F ∨⊥ ⇔ F

(i) F ∨ F ⇔ F

(j) F → > ⇔ >
(k) F → ⊥ ⇔ ¬F

(l) > → F ⇔ F

(m) ⊥ → F ⇔ >
(n) > ↔ F ⇔ F

(o) ⊥ ↔ F ⇔ ¬F

(p) ¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

(q) ¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

(r) F1 → F2 ⇔ ¬F1 ∨ F2

(s) F1 → F2 ⇔ ¬F2 → ¬F1

(t) ¬(F1 → F2) ⇔ F1 ∧ ¬F2

(u) (F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)
(v) (F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
(w) (F1 → F3) ∧ (F2 → F3) ⇔ F1 ∨ F2 → F3

(x) (F1 → F2) ∧ (F1 → F3) ⇔ F1 → F2 ∧ F3

(y) F1 → F2 → F3 ⇔ F1 ∧ F2 → F3

(z) (F1 ↔ F2) ∧ (F2 ↔ F3) ⇒ (F1 ↔ F3)

1.3 (R edundant lo g ical co nnectives). G iven >, ∧, and ¬, prove that ⊥,
∨, →, and ↔ are redundant logical connectives. That is, show that each of ⊥,
F1 ∨ F2, F1 → F2, and F1 ↔ F2 is equivalent to a formula that uses only F1,
F2, >, ∨, and ¬.

1.4 (Th e nand co nnective). Let the logical connective ∧ (pronounced
“ nand” ) be defined according to the following truth table:

F1 F2 F1∧F2

0 0 1
0 1 1
1 0 1
1 1 0

Show that all standard logical connectives can be defined in terms of ∧.

1.5 (N o rmal fo rms). Convert the following PL formulae to N N F, DN F, and
CN F via the transformations of Section 1.6.

(a) ¬(P → Q)
(b) ¬(¬(P ∧ Q) → ¬R)
(c) (Q ∧ R → (P ∨ ¬Q)) ∧ (P ∨ R)
(d) ¬(Q → R) ∧ P ∧ (Q ∨ ¬(P ∧ R))



34 1 Propositional Logic

1.6 (G raph co lo ring ). A solution to a g raph co lo ring problem is an as-
signment of colors to vertices such that no two adjacent vertices have the same
color. Formally, a finite graph G = 〈V,E〉 consists of vertices V = {v1, . . . ,vn}
and edges E = {〈vi1 ,wi1 〉, . . . ,〈vik

,wik
〉}. The finite set of colors is given by

C = {c1, . . . ,cm}. A problem instance is given by a graph and a set of colors:
the problem is to assign each vertex v ∈ V a color(v) ∈ C such that for every
edge 〈v,w〉 ∈ E, color(v) 6= color(w). Clearly, not all instances have solutions.

Show how to encode an instance of a graph coloring problem into a PL
formula F . F should be satisfiable iff a graph coloring exists.

(a) Describe a set of constraints in PL asserting that every vertex is colored.
Since the sets of vertices, edges, and colors are all finite, use notation such
as “ color(v) = c” to indicate that vertex v has color c. Realize that such
an assertion is encodeable as a single propositional variable P c

v .
(b) Describe a set of constraints in PL asserting that every vertex has at most

one color.
(c) Describe a set of constraints in PL asserting that no two connected vertices

have the same color.
(d) Identify a significant optimization in this encoding. H int: Can any con-

straints be dropped? W hy?
(e) If the constraints are not already in CN F, specify them in CN F now. For

N vertices, K edges, and M colors, how many variables does the optimized
encoding require? H ow many clauses?

1.7 (C N F ). Example 1.25 constructs a CN F formula that is equisatisfiable
to a given small formula in DN F.

(a) If distribution of disjunction over conjunction (described in Section 1.6)
were used, how many clauses would the resulting formula have?

(b) Consider the formulae

Fn :
n∨

i= 1

(Qi ∧ Ri)

for positive integers n. As a function of n, how many clauses are in
(i) the formula F ′ constructed based on distribution of disjunction over

conjunction?
(ii) the formula

F ′ : Rep(Fn) ∧
∧

G∈SFn

En(G) ?

(iii) For which n is the distribution approach better?

1.8 (D PLL). Describe the execution of DPLL on the following formulae.

(a) (P ∨ ¬Q ∨ ¬R) ∧ (Q ∨ ¬P ∨ R) ∧ (R ∨ ¬Q)
(b) (P ∨ Q ∨ R) ∧ (¬P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (Q ∨ ¬R)


