CS 302, Theory of Computation Even Semester, 2004-2005 Home Assignment # 3 Due Date: Sunday 17/04/2005 20 marks

05/01/2005

- 1. Suppose $f : \mathbb{N} \to \mathbb{N}$ is a primitive recursive function. Define $F : \mathbb{N} \to \mathbb{N}$ by $F(n) = f^n(n)$, where $f^0(x) = x$ and $f^{n+1}(x) = f(f^n(x))$. Show that F is primitive recursive. (5 marks)
- 2. Suppose that f is a total recursive bijective (i.e., one-to-one and onto) function from \mathbb{N} to \mathbb{N} . Show that its inverse f^{-1} is also total recursive. (5 marks)
- 3. Without using Rice's theorem, show that the set T = {x | {x}₁ is a total function} is not recursive. (10 marks) [Hint: Use the special case of the S-m-n theorem to show that K ≤_m T.]