Homework \# 2

Purandar Bhaduri
CS 301 - Theory of Computation
Monsoon 2018

September 7, 2018

Problems: Prove that each of the following problems is NP-complete by giving a polytime reduction from a known NP-complete problem (either proved in the class or in Sipser's book).

1. Given a graph G and integer k, does G have a cycle, with no repeated nodes, of length at least k ?
2. Given m equations

$$
\sum_{i=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m
$$

in n variables with integer coefficients $a_{i j}$ and b_{i}, does the system have a solution in which all x_{j} 's are either zero or one?
3. Given a directed graph G with a positive lengths $d_{i j}$ on each edge (i, j), two nodes 1 and n, and an integer k, is there a path from 1 to n, not repeating any node, with total length k or more?
4. Given a family of sets $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ and an integer b is there a set H with b or fewer elements such that H intersects all sets in the family?
5. Given a family \mathcal{F} of subsets of a universe U and an integer k are there k sets in \mathcal{F} whose union equals U ?
6. The problem is to schedule n tasks on two machines, with the following conditions:

- Both machines have the same speed.
- Each task can be executed on either machine.
- There are no restrictions on the order of task execution.

Given the execution times a_{1}, \ldots, a_{n} of the tasks and a deadline D, all in binary, can all the tasks be completed within their deadline?

