
An Introduction to HyTech

Purandar Bhaduri
Dept. of CSE
IIT Guwahati

Email: pbhaduri@iitg.ernet.in

Outline

• Hybrid Systems and Hybrid Automata

• Safety Requirements

• Linear Hybrid Automata

• HyTech

• Examples

• References

Hybrid Systems

Continuous

Dynamical Systems

Differential Equations

(Physics, Engineering, Control)

Discrete Systems

State Machines,

Automata

(Computer Science)

Hybrid Systems

Continuous + Discrete

Dynamics

(CPS, Software controlled systems)

+

Hybrid Systems

• Continuous dynamics
– Real-valued state variables 𝑋 = {𝑥1, … , 𝑥𝑛}
– State: 𝜎 ∈ 𝑅𝑛

– Flow: a curve 𝝌: 𝑇 → 𝑅𝑛

• 𝑇 : set of time points (usually non-negative reals)
• Often described as a differential equation 𝝌 = 𝑭 𝝌, 𝒕 or differential inclusion

 𝝌 ∈ 𝑭 𝝌, 𝒕

• Discrete dynamics
– Control modes 𝑄
– Transitions (jumps)

• Hybrid (dynamical) system
– Both continuous and discrete state variables

• State space: 𝑄 × 𝑅𝑛

– A trajectory is a sequence of flows and jumps

•

Hybrid Automata

Mode 1

Flow: 𝒙 = 𝑭𝟏(𝒙)
Invariant: 𝒙 ∈ 𝑰𝒏𝒗𝟏(𝒙)

Mode 2

Flow: 𝒙 = 𝑭𝟐(𝒙)
Invariant: 𝒙 ∈ 𝑰𝒏𝒗𝟐(𝒙)

Edge

Guard: 𝝓 𝒙
Action: 𝝍(𝒙, 𝒙′)

𝑰𝒏𝒊𝒕 𝒙
Discrete States

locations / modes

Continuous dynamics

Condition for remaining in current mode

Initial Condition
Models of Hybrid Systems

Safety Requirement

• Safety Property
– nothing bad will ever happen
– Often specified by describing “unsafe” states
– Satisfied iff all reachable states are safe
– Safety Verification = Computing Reachable States

• Safety for Hybrid Automata
– Specified using state assertion: 𝜙(𝑣) for control mode 𝑣 is a predicate

over 𝑋; e.g., 𝜙 𝑣 𝑥1, 𝑥2 ≜ 𝑥2 ≥ 𝑥1
– the states for which 𝜙 is true are called 𝜙-states
– Let unsafe: state assertion for HA A.
– Then A satisfies the safety requirement specified by unsafe if unsafe is

false for all reachable states of A.
– Sometimes additional variables and control modes may be necessary

to specify safety requirement.

Computing Reachable States

• Compute a state assertion reach which is true for the
reachable states of HA A.

• If there is a state for which reach and unsafe are both true
then the safety requirement is violated; if not the safety
requirement is satisfied

• Computing state assertion reach
– For a state assertion 𝜙 let 𝑃𝑜𝑠𝑡(𝜙) be a state assertion that is

true precisely for the jump and flow successors of 𝜙-states
– Compute 𝜙1 = 𝑃𝑜𝑠𝑡 𝑖𝑛𝑖𝑡 : all states that are reachable by

trajectories of length one (single jump or flow)
– Compute 𝜙2 = 𝑃𝑜𝑠𝑡 𝜙1 , 𝜙3 = 𝑃𝑜𝑠𝑡 𝜙2 , …
– If 𝜙𝑘+1 = 𝜙𝑘 for some number 𝑘 then reach = 𝜙𝑘

Can we compute reach this way?

• For state assertion 𝜙 need to be able to compute
𝑃𝑜𝑠𝑡(𝜙)
– Can be done efficiently for a restricted class of HA:

Linear Hybrid Automata

• Iterative computation of reach must converge
within a finite number of applications of Post
– Can be guaranteed for an even more restricted class

of HA: Timed Automata
– Practical solution: iterate till available time or space

resources are exhausted
• Semidecision procedure: no guarantee of termination

Linear Hybrid Automata
• Hybrid Automaton model

– very expressive but prohibits automatic analysis

• Linear Hybrid Automata: restricted class of HA
1. Linearity: flow, invariant, initial, jump conditions are convex linear

predicates
• finite conjunction of linear inequalities with rational coefficients and

constants) over variables in 𝑋 ∪ 𝑋,

• e.g., (2𝑥1 − 3 𝑥2 ≤
3

4
) ∧ (3 𝑥1 − 𝑥2 ≥ 5)

2. Flow independence: flow conditions are predicates over the variables
in 𝑋 i.e., do not contain variables from 𝑋

• Theorem: If 𝐴 is an LHA and 𝜙 is a linear state assertion for A then
𝑃𝑜𝑠𝑡(𝜙) can be computed and it is a linear state assertion for A.

• Intuition: In an LHA every flow curve can be replaced by a straight
line between the two endpoints.

What if your HA is not an LHA?

• Nonlinear HA cannot be verified directly

• Have to replace a nonlinear HA by an LHA

1. Clock Translation: sometimes the value of a
variable can be determined from a past value
and the time that has elapsed

2. Linear Phase Portrait Approximation: Relax
nonlinear flow, invariant, initial and jump
conditions using weaker linear conditions.

Example 1: A Thermostat

• Two operating modes: on and off
• Initially the heater is on and the temperature 𝑥 is 15

degrees.
• When the heater is on the temperature rises at the rate
− 𝑥 + 30 degrees per hour.

• When the heater is off the temperature falls at the rate 𝑥
degrees per hour.

• Heater can be turned off when 𝑥 = 25
• Heater can be turned on when 𝑥 = 15
• Inavriants in modes are used to force mode switches

– E.g., the invariant 𝑥 ≤ 25 in mode on says that a mode switch
must occur before the temperature rises above 25 degrees

Hybrid Automaton for Thermostat

on off

turn_off

turn_on

𝑥 = 𝟐𝟓

𝑥 = 𝟏𝟓

𝑥 = 𝟐

𝑥 ≤ 𝟐𝟓 𝟏𝟓 ≤ 𝑥

 𝒙 = 𝟑𝟎 − 𝒙 𝒙 = −𝒙

Not a Linear Hybrid Automaton!

Can use clock translation to convert to LHA.

Example 2: Railway Crossing

• Three components: train, gate, controller
• Speed of train: always between 10 and 20 m per second
• Initially

– Train at least 1000 m away from intersection
– Gate fully raised

• As train approaches
– It triggers a sensor 300 m away from the intersection with gate fully raised
– Controller then sends a ‘lower’ command to the gate after a delay of up to 𝛼 seconds

• On receiving the ‘lower’ command the gate is lowered at a rate of 9 degrees per
second

• Once the train has exited the intersection and is 30 m away it sends an exit signal
to the controller

• The controller then commands the gate to be raised
• Role of the controller

1. Ensure that the gate is closed whenever the train is at the intersection.
2. The gate is not closed unnecessarily long.

Hybrid Automata for Railway Crossing

far

𝒙 ≥ 𝟑𝟎𝟎

−𝟐𝟎 ≤ 𝒙 ≤ −𝟏𝟎

near

𝒙 ≥ 𝟎

−𝟐𝟎 ≤ 𝒙 ≤ −𝟏𝟎

past

𝒙 ≤ 𝟑𝟎

𝟏𝟎 ≤ 𝒙 ≤ 𝟐𝟎
𝒙 ≥ 𝟏𝟎𝟎𝟎

approaching at_intersection

exit

Train Automaton

𝒙 = 𝟑𝟎𝟎 𝒙 = 𝟎

𝒙 = 𝟑𝟎 → 𝒙 ≔ 𝟏𝟎𝟎𝟎,∞

raising

𝒈 ≤ 𝟗𝟎

 𝒈 = 𝟗

open

𝒈 = 𝟗𝟎

 𝒈 = 𝟎

lowering

𝒈 ≥ 𝟎

 𝒈 = −𝟗

closed

𝒈 = 𝟎

 𝒈 = 𝟎

Gate Automaton

𝒈 = 𝟗𝟎

𝒈 = 𝟗𝟎

𝒈 = 𝟎

raise lower

raise

lower

raise raise

lower lower

Hybrid Automata for Railway Crossing
(cont)

about_to_lower

𝒕 ≤ 𝜶

 𝒕 = 𝟏

idle

 𝒕 = 𝟎

about _to_raise

𝒕 ≤ 𝜶

 𝒕 = 𝟏

approaching

Controller Automaton

𝒕 ≔ 𝟎

exit

𝒕 ≔ 𝟎

lower exit

𝒕 ≔ 𝟎

raise

approaching

𝒕 ≔ 𝟎

Railway Crossing System

• Linear Hybrid Automaton: Modelled as the parallel

composition of three LHA

• Communication through event synchronization and shared

variables

HyTech

• Symbolic model checker for LHA
– Dynamics: linear differential inequalities of the form 𝑨 𝒙 ∼ 𝒃

• State sets represented by polyhedral constraints
• Termination is not guaranteed! (Unlike TA)

– Many examples do terminate
– Can explore behavior over a bounded interval of time

• Useful for Parametric Analysis
– A system is described using parameters

• E.g., the time at which the controller decides to issue the lower command in
order for the gate to be closed by the time the train reaches the crossing

– Designer interested in knowing which values of the parameter
required for correctness

– HyTech computes necessary and sufficient constraints on parameter
values that guarantee correctness.

HyTech

• Input (text file)
1. Collection of LHA

• Automatically composed for analysis

2. Sequence of analysis commands
• Simple while programming language

– Date type “state assertion”

– Operations include Post

– Boolean operators and existential quantification

– Built-in macros: reachability, parametric analysis,
conservative approximation of state assertions, generation
of error trajectories

Example: LHA in HyTech

automaton train

synclabs : app, -- (send) approach signal for train

exit; -- (send) signal that train is leaving

initially far & x>=1000;

loc far: while x>=300 wait {dx in [-20,-10]}

when x=300 sync app goto near;

loc near: while x>=0 wait {dx in [-20,-10]}

when x=0 goto past;

loc past: while x<=30 wait {dx in [10, 20]}

when x=30 do {x' = 1000} sync exit goto far;

end -- train

far

𝒙 ≥ 𝟑𝟎𝟎

−𝟐𝟎 ≤ 𝒙 ≤ −𝟏𝟎

near

𝒙 ≥ 𝟎

−𝟐𝟎 ≤ 𝒙 ≤ −𝟏𝟎

past

𝒙 ≤ 𝟑𝟎

𝟏𝟎 ≤ 𝒙 ≤ 𝟐𝟎

exit

𝒙 = 𝟑𝟎𝟎 𝒙 = 𝟎

𝒙 ≥ 𝟏𝟎𝟎𝟎

Train Automaton

Example: Analysis Commands

var init_reg, final_reg, reached: region;

init_reg := loc[train]=far & x>=1000 &
loc[controller]=idle &
loc[gate]=open & y=90;

final_reg := loc[gate] = raising & x<=10 | loc[gate]=open & x<=10 | loc[gate] =
lowering & x<=10;

reached := reach forward from init_reg endreach;

if empty(reached&final_reg)
then prints "Train-gate controller maintains safety requirement";
else prints "Train-gate controller violates safety requirement";

endif;

Region: a set of states

Example: Parametric Analysis

var init_reg, final_reg, reached: region;

init_reg := loc[train]=far & x>=1000 &
loc[controller]=idle &
loc[gate]=open & y=90;

final_reg := loc[gate] = raising & x<=10 | loc[gate]=open & x<=10 | loc[gate] =
lowering & x<=10;

reached := reach forward from init_reg endreach;

prints "Conditions under which system violates safety requirement";
print omit all locations

hide non_parameters in reached & final_reg endhide;

Outputs the constraint on the parameter 𝜶 under which the system

is not correct.

References

1. Henzinger, Thomas A., Pei-Hsin Ho, and
Howard Wong-Toi, “A user guide to HyTech"
TACAS, LNCS 1019, Springer, 1995.

2. Henzinger, Thomas A., Pei-Hsin Ho, and
Howard Wong-Toi. "HyTech: a model checker
for hybrid systems." International Journal on
Software Tools for Technology Transfer, vol 1,
1997.

