

University of Illinois at Urbana-Champaign

Tutorial 1: Modern SMT Solvers and Verification

Sayan Mitra Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana Champaign

Tutorial 1: Modern SMT Solvers and Verification

Sayan Mitra

slides adapted from a lecture by Clark Barrett

Plan

- SAT problem
 - Logic and circuit representation
 - Conversion to CNF
 - DPLL
 - Modeling and BMC using SAT (Z3)
- SMT
 - Architecture
 - Theories
 - Examples

The satisfiability problem

<u>SAT Problem</u>: Given a well-formed formula α in propositional logic, decide whether there exists a satisfying solution for α .

Example: $\alpha(x_1, x_2, \dots, x_n) \coloneqq (x_1 \land x_2 \lor x_3) \land (x_1 \land \neg x_3 \lor x_2)$

Satisfying solution: $(x_1 = 1; x_2 = 1; x_3 = 0)$

Complexity: 2^n

First problem shown to be NP-complete [Cook'71]

Though exponential, makes sense to build SAT-solvers and 30+ years of engineering has led to solvers that can solve practical problems

SAT in Verification

Reachability and invariance questions automata can be encoded as SAT questions

Q. U is (not) reachable from Q_0 in n steps:

 $F_{Q_0}(X_0) \wedge F_T(X_0, X_1) \wedge F_T(X_1, X_2) \wedge F_T(X_2, X_3) \wedge \cdots \wedge F_T(X_{n-1}, X_n) \wedge F_U(X_n)$ SAT iff U is reachable (UNSAT iff not reachable)

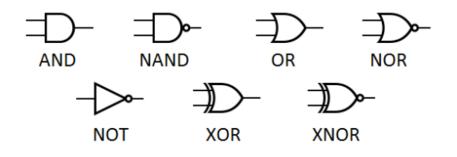
Q. *I* is (not) an inductive invariant:

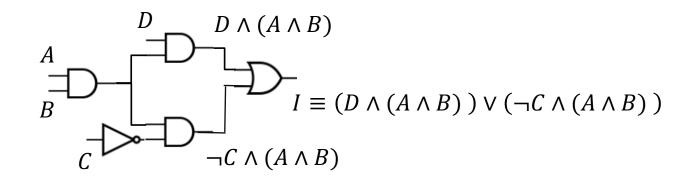
 $F_{Q_0}(X) \to F_I(X) \wedge F_I(X) \wedge F_T(X, X') \to F_I(X')$

Terminology

variables: x_1, x_2

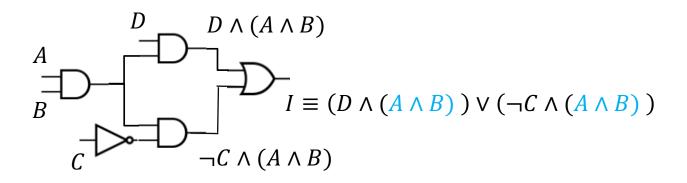
literals: positive or negative appearance of variables in a formula, e.g., x_1 , $\neg x_2$,


clause: disjunction of literals, e.g. $(x_1 \lor \neg x_2 \lor x_3)$


conjunctive normal form (CNF) formula: E.g., $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_1)$

we will assume α to be in CNF

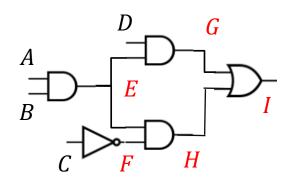
Lecture Slides by Sayan Mitra mitras@illinois.edu


Propositional logic and circuits

Slides by Sayan Mitra (mitras@illinois.edu)

Propositional logic and circuits

Overcome inefficiency by renaming subexpressions


Tautologically equivalent: Every satisfying solution of I is a satisfying solution of I'

Equisatisfiable: I is satisfiable iff I' is satisfiable

 $(A \land B) \leftrightarrow E$ $I' \equiv (D \land E) \lor (\neg C \land E) \land ((A \land B) \leftrightarrow E)$

I' and *I* are not tautologically equivalent, but are equisatisfiable (e.g., C = 0; A = B = 1; E = 0 satisfies *I*)

Converting to CNF

View formula as a circuit

- 1. Give new names to non-leaf nodes
- 2. For each non-leaf add conjunction of I/O clauses
- 3. Take conjunction of everything

$$E \leftrightarrow (A \wedge B)$$

$$\equiv (\neg (A \wedge B) \vee E) \wedge (\neg E \vee (A \wedge B))$$

$$\equiv (\neg A \vee \neg B \vee E) \wedge (\neg E \vee A) \wedge (\neg E \vee B))$$

$$G \leftrightarrow (D \wedge E)$$

$$\neg F \leftrightarrow C$$

$$H \leftrightarrow (F \wedge E)$$

$$I \leftrightarrow (H \vee G)$$

SMT formats

Alternative notations

•
$$(\neg A \lor \neg B \lor E) \land (\neg E \lor A) \land (\neg E \lor B) \land (\neg D \lor E)$$

- $(A' \lor B' \lor E)(E' \lor A)(E' \lor B)(D' \lor E)$
- $(-1 2 5)(-51) \land (-52) \land (-45)$ [DIMACS]

Slides by Sayan Mitra (mitras@illinois.edu)

SAT solving algorithms

- Davis Putnam Logemann Loveland (DPLL) 1962
- Davis Putnam algorithm (DP) 1960

Basic idea: Given α perform a sequence of satisfiability preserving transformations; if this ends with empty clause then UNSAT and if this ends with no clauses then SAT

The DP rules

- 1. <u>Unit propagation:</u> If a clause has a single literal *p* then
 - remove all instances of $\neg p$ from all clauses
 - remove all clauses with p
- 2. <u>Pure literal:</u> If a variable appears only positively or negatively in all clauses then delete all clauses containing that literal
- 3. <u>Resolution</u>: Choose literal *p* (appears both positively and negatively)
 - Let P be the set of clauses in which p is +ve
 - Let N be the set of clauses in which p is –ve
 - Replace P, N with clauses obtained by resolving p in all pairs
 - For a single pair $(p \lor \ell_1 \lor \ell_2 \dots \ell_m)$; $(\neg p \lor k_1 \lor k_2 \dots k_n)$ resolved clause is $(\ell_1 \lor \ell_2 \dots \ell_m \lor k_1 \lor k_2 \dots k_n)$
 - Quadratic blow-up in size of formula

Some experimental results

Problem	tautology	dptaut	dplltaut
prime 3	0.00	0.00	0.00
prime 4	0.02	0.06	0.04
prime 9	18.94	2.98	0.51
prime 10	11.40	3.03	0.96
prime 11	28.11	2.98	0.51
prime 16	>1 hour	out of memory	9.15
prime 17	>1 hour	out of memory	3.87
ramsey 3 3 5	0.03	0.06	0.02
ramsey 3 3 6	5.13	8.28	0.31
mk_adder_test 3 2	>>1 hour	6.50	7.34
mk_adder_test 4 2	>>1 hour	22.95	46.86
mk_adder_test 5 2	>>1 hour	44.83	170.98
mk_adder_test 5 3	>>1 hour	38.27	250.16
mk_adder_test 6 3	>>1 hour	out of memory	1186.4
mk_adder_test 7 3	>>1 hour	out of memory	3759.9

Slides by Sayan Mitra (mitras@illinois.edu)

From talk by Clark Barrett

Incomplete SAT: GSAT [SLM92]

Input: a set of clauses F, MAX-FLIPS, MAX-TRIES Output: a satisfying truth assignment of For \emptyset , if none found for i := 1 to MAX-TRIES v := a randomly generated truth assignment for j := 1 to MAX-FLIPS if v satisfies F then return vp := a propositional variable such that a change in its truth assignment gives the largest increase in the total number of clauses of F that are satisfied by vv := v with the assignment to p reversed end for end for return Ø

Stålmarck's Method [SS98]

Breadth-first approach instead of depth-first.

Dilemma Rule

Given a set of formulas Δ and any basic deduction algorithm, R, the dilemma rule performs a case split on some literal p by considering the new sets of formulas $\Delta \cup \{(\neg p)\}$ and $\Delta \cup \{(p)\}$.

To each of these sets, the algorithm R is applied to yield Δ_0 and Δ_1 respectively.

The original set Δ is then augmented with $\Delta_0 \cap \Delta_1$.

Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL, we use a high-level framework called *Abstract DPLL* [NOT06].

- Abstract DPLL uses states and transitions to model the progress of the algorithm.
- Most states are of the form $M \parallel F$, where
 - *M* is a *sequence of* annotated *literals* denoting a partial truth assignment, and
 - F is the CNF formula being checked, represented as a set of clauses.
- The *initial state* is Ø || F, where F is to be checked for satisfiability.
- Transitions between states are defined by a set of conditional transition rules.

Abstract DPLL

The *final state* is either:

- a special fail state: *fail*, if *F* is unsatisfiable, or
- $M \parallel G$, where G is a CNF formula equisatisfiable with the original formula F, and M satisfies G

We write $M \models C$ to mean that for every truth assignment v, v(M) = True implies v(C) = True.

Abstract DPLL Rules

UnitProp:

Example

 $|1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4 \Rightarrow$ (Pureliteral 4) Ø $|1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4 \Rightarrow (\text{Decide 1})$ 4 $|1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4 \Rightarrow (Unitprop \overline{2})$ 4 1^d 4 1^d $\overline{2}$ | 1 \vee $\overline{2}$, $\overline{1} \vee \overline{2}$, 2 \vee 3, $\overline{3} \vee 2$, 1 \vee 4 \Rightarrow (Unitprop 3) $4 1^{d} \overline{2} 3 | 1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4 \Rightarrow (Backtrack)$ $| 1 \vee \overline{2}, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{3} \vee 2, 1 \vee 4 \Rightarrow (Unitprop)$ 4 1 $4\overline{1}\overline{2}\overline{3}$ | 1 v $\overline{2}$, $\overline{1}$ v $\overline{2}$, 2 v 3, $\overline{3}$ v 2, 1 v 4 \Rightarrow (Fail) fail

Result: Unsatisfiable

Modeling for SAT

Input:

 $\mathcal{A} = \langle Q, Q_0, T \subseteq Q \times Q \rangle$, Invariant *I* or unsafe set *U*

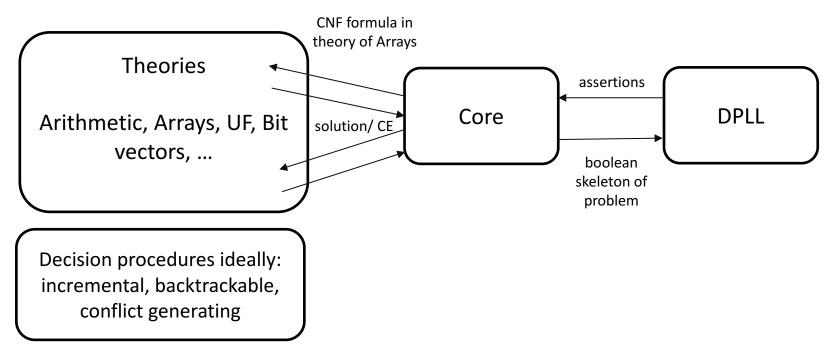
Output: *I* is (not) an invariant of \mathcal{A} *U* is (not) reachable from Q_0 *U* is (not) reachable from Q_0 in *n* steps

Modeling for SAT (2)

 $\mathcal{A} = \langle Q, Q_0, T \subseteq Q \times Q \rangle, \text{ Invariant } I \text{ or unsafe set } U$ Assume Q is finite Select k such that $|Q| \leq 2^k$ Define state variables $X = \{x_1, x_2, \dots, x_k\}, type(x_i) = \{0,1\}$ Then, Q = val(X) $Q_0 \mapsto F_{Q_0}(X)$ a formula encoding initial set $U \mapsto F_U(X)$ a formula encoding unsafe set Define additional vars $Y = \{y_1, y_2, \dots, y_k\}, type(y_i) = \{0,1\}$ $T \mapsto F_T(X, Y)$ a formula encoding transition relation

Bounded model checking

 $Q_0 \mapsto F_{Q_0}(X)$ a formula encoding initial set $U \mapsto F_U(X)$ a formula encoding unsafe set $T \mapsto F_T(X,Y)$ a formula encoding transition relation We need n + 1 copies of variables: $X_0 = \{x_{01}, x_{02}, \dots, x_{0k}\}, X_1 = \{x_{11}, x_{12}, \dots, x_{1k}\}, \dots, X_n$


Q. U is (not) reachable from Q_0 in n steps: $F_{Q_0}(X_0) \wedge F_T(X_0, X_1) \wedge F_T(X_1, X_2) \wedge F_T(X_2, X_3) \wedge \cdots \wedge$ $F_T(X_{n-1}, X_n) \wedge F_U(X_n)$ SAT iff U is reachable (UNSAT iff not reachable)

Tutorial 1 FROM SAT TO SMT

Slides by Sayan Mitra (mitras@illinois.edu)

Architecture of SMT Solvers

Question: Input $\alpha(x)$ formula in some set of logical theories, $\exists x, x \models \alpha$?

Theories and terminology

- Signature : function symbol, predicate symbol, arity, set of variables
- $Terms(\Sigma, V)$:
 - $v |f(t_{0,\ldots},t_k)|$
 - ground terms
- Atomic formula $AF(\Sigma, V)$:
 - $T, F, p(t_0, ..., t_k)$
 - literal: AF or its negation
- $QFF(\Sigma, V): \phi, \neg \phi, \phi_1 \land \phi_2, \phi_1 \lor \phi_2, \phi_1 \lor \phi_2, \phi_1 \rightarrow \phi_2$, where $\phi, \phi_1 \in AF$
- $FOF(\Sigma, V)$:
 - QFF under universal and existential quantifiers
 - Free and bound variables
- Sentence: FOF with no free variables
- *Theory*(Σ, *V*): set of all sentences

- $\Sigma_f := \{0, +\}, \Sigma_p := \{<\}, arity(0) := 0, arity(+) := 2, arity(<) := 2, V := \{x, y, z\}$
- Terms: x, y, z, 0, +(x, y), +(+(x, y), 0)
- AF: x < y, +(x, y) = +(y, x)
 - QFF: + $(x, y) = 0 \land x > y$
- FOF: $\forall x, \exists y: +(x, y) = 0 \land x > y$

Decision procedures

Models give meaning to symbols and formula

A model M for Σ , V defines a domain, gives interpretation to all symbols and assignment to all the variables

Given a theory T a theory solver (decision procedure) takes as input a set of literals Φ and determines whether Φ is *T*-satisfiable, i.e., does there exist a model *M*, such that $M \models \Phi$?

Example theories

Uninterpreted functions (UF)

$$\Sigma_{f} = \{f, g, \dots\}, \Sigma_{p} = \{=\}, V = x_{i}$$

$$x_{1} \neq x_{2} \land x_{3} \neq x_{2} \land f(x_{3}) = f(x_{2})$$

Arithmetic

 $\Sigma_p = \{\langle, \rangle, \leq, \geq, =\}$ Difference logic $\Sigma_f = \{-\}, \Sigma_p = \{\langle, \rangle, \leq, \geq, =\}$ $x_1 - x_2 > k$ Linear arithmetic: $7x_1 - 3x_2 + 6x_3 \le 10$ Nonlinear arithmetic: $7x_1^2 - 3x_2x_1 + 6x_3^3 \le 1$ Arrays Bit vectors

A decision procedure for UF

 $\Phi \coloneqq x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land F(x_1) \neq F(x_3)$

Rules:

- 1. Put all variables and function instances in their own classes
- 2. if $t_i = t_j$ is the predicate then merge the containing classes; repeat
- 3. If t_i and t_j are in the same class, then merge $F(t_i)$ and $F(t_j)$; repeat
- 4. If $t_i \neq t_j$ is in Φ such that t_i and t_j are in the same class then return UNSAT else return SAT

 $\{x_1\}\{x_2\}\{x_3\}\{x_4\}\{x_5\}\{F(x_1)\}\{F(x_3)\} \\ \{x_1, x_2\}\{x_3\}\{x_4, x_5\}\{F(x_1)\}\{F(x_3)\} \\ \{x_1, x_2, x_3\}\{x_4, x_5\}\{F(x_1)\}\{F(x_3)\} \\ \{x_1, x_2, x_3\}\{x_4, x_5\}\{F(x_1), F(x_3)\} \\ \{x_1, x_2, x_3\}\{x_4, x_5\}\{F(x_1), F(x_3)\} \\ \text{UNSAT}$

Back to SMT

Two approaches

- Eager: Translate to equisatisfiable propositional formula
- Lazy: Abstract to propositional form, feed to DPLL, refine

SMT solver example

$$\Phi \coloneqq g(a) = c \wedge f(g(a)) \neq f(c) \vee g(a) = d \wedge c \neq d$$

$$1 \qquad \overline{2} \qquad 3 \qquad \overline{4}$$

Send $\{1, \overline{2} \lor 3, \overline{4}\}$ to SAT SAT solver returns model $\{1, \overline{2}, \overline{4}\}$ UF-solver finds concretization of $\{1, \overline{2}, \overline{4}\}$ UNSAT Send $\{1, \overline{2} \lor 3, \overline{4}, \neg(1 \land \overline{2} \land \overline{4})\}$ to SAT Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4\}$ to SAT SAT solver returns model $\{1, 3, \overline{4}\}$ UF-solver finds concretization of $\{1, 3, \overline{4}\}$ UNSAT Send $\{1, \overline{2} \lor 3, \overline{4}, \overline{1} \lor 2 \lor 4, \overline{1} \lor \overline{3} \lor 4\}$ to SAT SAT solver returns UNSAT; Original formula is UNSAT in UF

Summary

This was just an introduction to SMT solvers

Modern solvers Z3, CVC4, Chaff, have been used to solve practical verification problems

Many, many tools use SAT solvers for verification, synthesis, symbolic simulation, etc.

SMT competitions:

http://www.satcompetition.org/

			SAT 2017 cc	ompetition					
Organizers	Marijn Heule, Matti Järvisal	o Tomáš Balyo							
Past competitions									
			SAT 2016 co	moetition					
Organizers	Mariin Heule, Matti Järvisal	o Tomáš Balvo	0/11 2010 00	mpetition					
Proceedings	Descriptions of the solvers	and benchmarks							
Benchmarks	Available here								
Solvers	Available here								
	Gold	Silver	Bronze	Gold		Silver Bronz	Gold	Silver	Bror
		Agile Track			Main Track			Random Track	
SAT+UNSAT	Riss	TB_Glucose Parallel Track	CHBR_Glucose	MapleCOM		Riss Lingelin			
SAT+UNSAT	Treengeling	Parallel Track Plingeling	CryptoMiniSat	BreakIDCOM	No-Limit Trac	k ingeling stod&		remental Library	Frack Rit
SALTONSAL	Reat Application Br	nchmark Solver in th	Chyproximation			r in the Main Track		cose Hack in the	
SAT+UNSAT	MapleCOMSPS	nonnark aorrer in u	re main nauk	TC Gluo		r in the main mack	Kin	COSE HACK III UIE	nam mau
			SAT-Rac	a 201E					
				8 2015					
Organizing committee	Tomas Balyo, Carsten Sinz	Markus Iser, Armin		e 2015					
			Biere SAT 2014 co						
Organizing committee	Anton Belov, Daniel Diepol	d, Marijn Heule, Matt	Biere SAT 2014 co						
Organizing committee Judges	Anton Belov, Daniel Dispo Pete Manolios, Lakhdar Sa	d. Mariin Heule, Matt s and Peter Stuckey	Biere SAT 2014 co						
Organizing committee Judges Proceedings	Anton Belov, Daniel Diepo Pete Manolios, Lakhdar Sa Descriptions of the solvers	d. Mariin Heule. Matt s and Peter Stuckey and benchmarks	Biere SAT 2014 co						
Organizing committee Judges Proceedings Benchmarks	Anton Belov, Daniel Dispo Pete Manolios, Lakhdar Sa Descriptions of the solvers Application, Hard combina	d, Marijn Heule, Matt s and Peter Stuckey and benchmarks orial, Random	Biere SAT 2014 co						
Organizing committee Judges Proceedings	Anton Belov, Daniel Diepo Pete Manolios, Lakhdar Sa Descriptions of the solvers	d, Marijn Heule, Matt s and Peter Stuckey and benchmarks orial, Random ACC	Biere SAT 2014 co		Hard combinato	rial		Random	
Organizing committee Judges Proceedings Benchmarks	Anton Belov, Daniel Dispo Pete Manolios, Lakhdar Sa Descriptions of the solvers Application, Hard combina	d, Marijn Heule, Matt s and Peter Stuckey and benchmarks orial, Random	Biere SAT 2014 co		Hard combinato Silver	rial Bronze	Gold	Random Silver	Bronze
Organizing committee Judges Proceedings Benchmarks Solvers	Anton Belov, Daniel Diepol Poto Manollos, Lakhdar Sa Descriptions of the solvern Application, Hard combina Source code available in ED/ Cold	d, Marijn Heule, Matt s and Peter Stuckey and benchmarks orial, Random Acc Application Silver	Biere SAT 2014 cc Järvisalo Bronze	Cold Core	Silver	Bronze			Bronze
Organizing committee Judges Proceedings Benchmarks Solvers SAT+UNSAT	Anton Belov, Daniel Diepol Pote Manolios, Lakhdar Sa Descriptions of the solvers Application, Hard combina Source code available in ED Gold Lingeling	t, Mariin Heule, Matti and Poter Stuckey and benchmarks corial, Random ACC Application Silver SWDIA5BY	Biere SAT 2014 cc Järvisalo Bronze Risa BlackBox	Gold Core glueSpit clasp	Silver solvers Lingeling	Bronze	8	Silver	
Organizing committee Judges Proceedings Benchmarks Solvers SAT+UNSAT SAT	Anton Below, Daniel Dieso Pate Manolose, Lakhdar Sa Descriptions of the solvers Assilication, Hard combins Source code available in ED Gold Lingeling minisat, Mid	d, Mariin Heule, Matti s and Peter Stuckey and benchmarks orial, Random UCC Application Silver SWDIA5BY Riss BitskBox	Biere SAT 2014 cc Ušrvisalo Bronze Riss BlackBox SVDJASBY	Gold Gold GueSpit_clasp SystrowToRbiss	Silver solvers Lingeling CCAnr+glucos	Bronze SparrowToRis SGSeq		Silver	Bronze 2SCCSat2
Organizing committee Judges Proceedings Benchmarks Solvers SAT+UNSAT	Anton Belov, Daniel Diepol Pote Manolios, Lakhdar Sa Descriptions of the solvers Application, Hard combina Source code available in ED Gold Lingeling	t, Mariin Heule, Matti and Poter Stuckey and benchmarks corial, Random ACC Application Silver SWDIA5BY	Biere SAT 2014 cc Järvisalo Bronze Risa BlackBox	Gold Gold GueSpit clasp SperrowToRiss Stas BlackBox	Silver solvers Lingeling CCAnr+glucos Lingeling (drupli	Bronze SparrowToRis SGSeq	8	Silver	
Organizing committee Jadges Proceedings Benchmarks Solvers SAT+UNBAT SAT Certified UNSAT	Anton Belov, Davial Diroci Pela Manolios, Lakhdar Sa Dascriptican di Ma solava Asolication, Hard combina Soura costa valiaba he 15 Gold Lingsing minist, bibd Lingsing (drupig)	d, Mariin Heule, Mati s and Peter Stuckey and benchmarks orial, Random ACC Application Silver SWDIASBY Riss BlackBox glucose	Blere SAT 2014 cc Ušrvisalo Bronze Riss BlackBox SWD438Y SWD438Y	Gold Gold GueSpit_clasp ScarrowTofbas Riss BlackBox Core solt	Silver solvers Lingeling CCAnr+glucos Lingeling (drupil rers, Parallel	Bronze SparrowToRis e SGSeq g) glucose	8 Dimetheus	Silver	
Organizing committee Judges Proceedings Benchmarks Solvers Salvers Salvers Salvers Salvers Salvers Salvers Salvers Salvers Salvers Salvers	Anton Below, Daniel Dieso Pate Manolose, Lakhdar Sa Descriptions of the solvers Assilication, Hard combins Source code available in ED Gold Lingeling minisat, Mid	d, Mariin Heule, Matti s and Peter Stuckey and benchmarks orial, Random UCC Application Silver SWDIA5BY Riss BitskBox	Biere SAT 2014 cc Ušrvisalo Bronze Riss BlackBox SVDJASBY	Gold Gold GueSpit clasp SperrowToRiss Stas BlackBox	Silver solvers Lingeling CCAnr+glucos Lingeling (drupli	Bronze SparrowToRis SGSeq	Dimethous	Silver BalancedZ	SCCS#2
Organizing committee Labora Proceedings Benchmarks Solvers Saf +LINISAT Saf Centified UNISAT	Anton Belov, Davial Diroci Pela Manolios, Lakhdar Sa Dascriptican di Ma solava Asolication, Hard combina Soura costa valiaba he 15 Gold Lingsing minist, bibd Lingsing (drupig)	d, Mariin Heule, Mati s and Peter Stuckey and benchmarks orial, Random ACC Application Silver SWDIASBY Riss BlackBox glucose	Blere SAT 2014 cc Ušrvisalo Bronze Riss BlackBox SWD438Y SWD438Y	Gold Cord Sparrow FoRes Riss BlackBox Core sof Treengeing	Silver solvers Lingeling CCAnr+glucos Lingeling (drupil rers, Parallel	Bronze SparrowToRis e SGSeq g) glucose	8 Dimetheus	Silver BalancedZ	

Slides by Sayan Mitra (mitras@illinois.edu)