

Lecture 9: Formal Synthesis Part B

Sayan Mitra

Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana Champaign

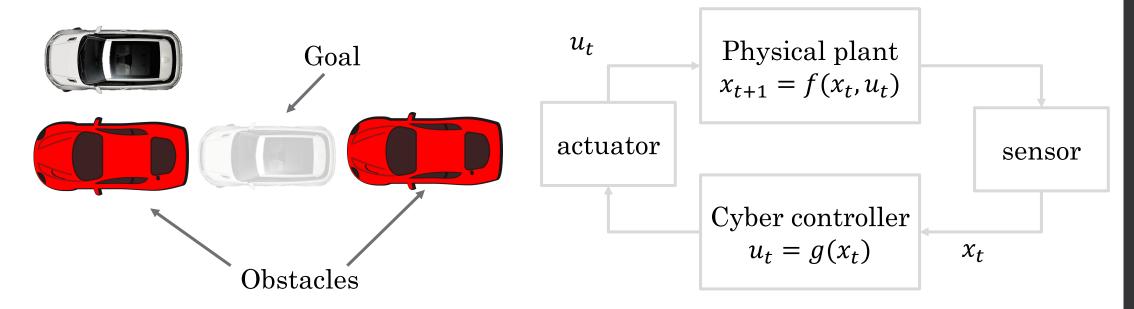
Controller Synthesis for Linear Time-varying Systems with Adversaries

Zhenqi Huang¹, Yu Wang¹

Sayan Mitra¹, Geir Dullerud¹, Swarat Chaudhuri²

¹University of Illinois at Urbana-Champaign ²Rice University

Cyber-physical systems reach avoid



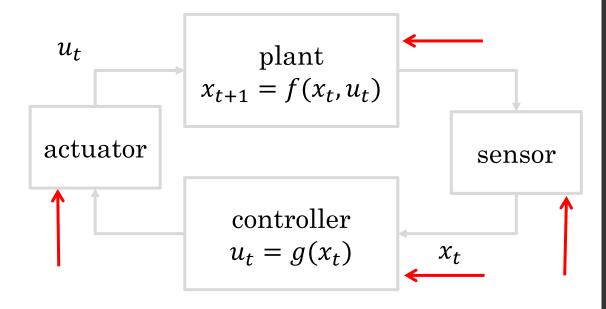
• Requirements:

• reach goal while avoiding obstacles

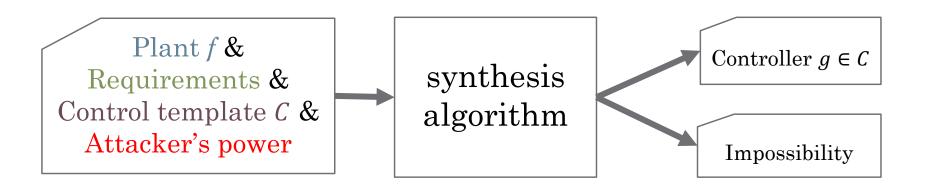
 x_t : state of plant, e.g. position, heading, velocity u_t : control command, e.g. throttle, braking, steering

Cyber-physical systems and attack surface

- multi-faceted attack surface
 - error injection to sensor data
 - error injection to actuator command
 - uncertainty in dynamics
- E.g. spoofing speed sensor, GPS [Shoukry2013], [Warner2003]
- We abstract the attack as an additive error injected to the system
 - i.e. measurement = $x_t + a_t$
- We characterize the power of attacker as $b = \sum ||a_t||^2$



Controller synthesis algorithm



given a system *model*, *safe* and *goal*, <u>find</u> control such that all behaviors are safe and reach goal

- yes (controller strategy g)
- no (impossibility certificate "no controller exists")

Example: linearized helicopter dynamics

$$x_{t+1} = Ax_t + Bu_t + Ca_t$$

Variables	Components of Variables		
X _t 16-dimentional	Cartesian Coordinates / Velocities		
	Euler Angles / Velocities		
	Flapping Angles		
u_t 4-dimentional	Lateral / longitude Deflection		
	Pedal / collective control input		
a_t 4-dimentional	Additive error injected to each control input channal		

Reach-avoid problem formulation

 $x_{t+1} = Ax_t + Bu_t + Ca_t$

• A, B, C: matrices

- x_t : state at time t with *init*
- u_t : control input to be synthesized
- a_t : adversary input

• Denote $\xi(x_0, u, a, t)$ as the state visited at time t with initial state x_0 , control input u and adversary input a

Find $u, \forall a$ $\forall t \leq T.\xi(x_0, u, a, t) \in safe \land \xi(x_0, u, a, T) \in Goal$

SMT solvers: quick overview

- First order logic formula have quantifiers over variables
 - Example: $\exists y \forall x. (x^2 \le y + 1) \Rightarrow (\sin x > \cos(\log y))$
- Satisfiability modulo theories (SMT) solvers
 - Finding satisfying solutions for first order logic formula, or
 - Prove no solution satisfies the formula
 - E.g. Z3, CVC4, VeriT, dReal

- Perform best for <u>quantifier-free</u> bitvector/integer/linear arithmetic
 - Scales up to hundreds of real variables & thousands of constraints

- Handle nondeterminism by adversary
- Bounded controller synthesis
- Unbounded controller synthesis

Adversarial leverage

Goal:

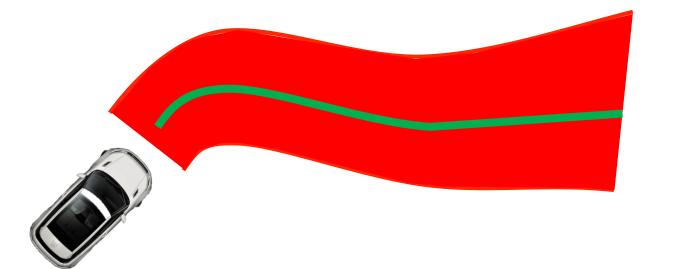
 $\exists u, \forall a, \forall t \leq T. \, \xi(x_0, u, a, t) \in safe \land \xi(x_0, u, a, T) \in Goal$

Reachability for adversarial input : $Parab(w, w, t) = (w, t) = \xi$

 $Reach(x_0, u, t) = \{ x \mid \exists a : x = \xi(x_0, u, a, t) \}$

Adversarial leverage :

 $\operatorname{Reach}(x_0, u, t) = \xi(x_0, u, 0, t) \bigoplus L(x_0, u, t)$



Linear system with L2 attack budget

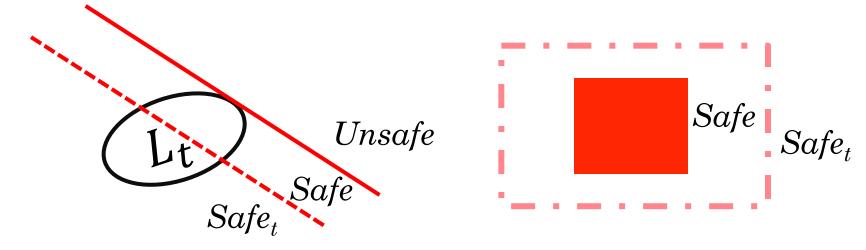
When the adversary's budget is $\sum ||a_t||^2 \le b$, in the linear system $x_{t+1} = Ax_t + Bu_t + Ca_t$.

The adversarial leverage is an ellipsoid independent of x_t and u_t $L_t = \{x \mid x^T W_t^{-1} x \le b\},$ where $W_t = \sum_{s=0}^{t-1} A^{t-s-1} C C^T (A^T)^{t-s-1}$

For general systems, $L(x_0, u, t)$ can be computed by reachability tools: flow*, breach, C2E2, et al.

Strengthened safe / goal set

- For each t ≤ T, generate strengthened set safe_t and goal_t:
 safe_t = safe ⊖ L_t
 goal_t = goal ⊖ L_t
- For ellipsoid adversarial leverage, $safe_t, goal_t \text{ computed by conic}$ programming



Adversary-free synthesis

• Original problem:

 $\exists u: \forall a: \wedge_{t \leq T} \xi(x_0, u, a, t) \in safe \text{ and } \xi(x_0, u, a, T) \in Goal$

• Adversary-free synthesis:

 $\exists u : \wedge_{t \leq T} \ \xi(x_0, u, 0, t) \in safe_t \text{ and } \xi(x_0, u, 0, T) \in Goal_T$

• **Theorem.** the adversary-free synthesis is equivalent to the original problem with adversary

• Handle nondeterminism by adversary

• Bounded controller synthesis

• Unbounded controller synthesis

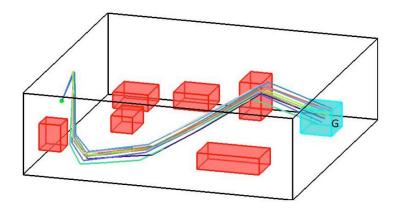
Open-loop controller $\{u_0 \dots u_T\}$ plant $x_{t+1} = f(x_t, u_t)$ sensoractuatorcontroller $\{u_0 \dots u_T\} = g(x_0)$ x_0

• For finite horizon $\{u_t\}_{t \leq T}$, the reach-avoid problem is equivalent to the satisfiability of the first-order theory $\exists u \land_{t \leq T} (\xi(x_0, u, 0, t) \in safe_t \land \xi(x_0, u, 0, T) \in Goal_T)$

Application: helicopter autopilot

- Autopilot helicopter
 16D, 4 inputs
- $\cdot x_{t+1} = A_t x_t + B_t u_t + C_t a_t$

• $Adv: \sum |a_i|^2 \le b$ intrusion budget constraints



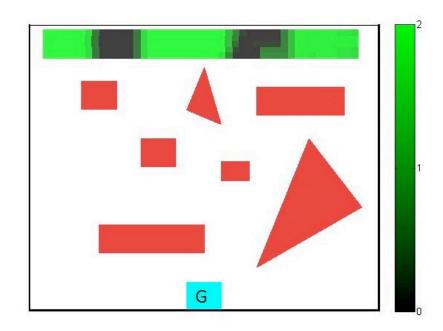
Т	$ \phi $	Result	R.time (s)
40	804	Unsat	2.79
80	3844	Sat	35.22
320	8964	Sat	532.5

Work best for short horizon T

Application: security budget

Security budget determination

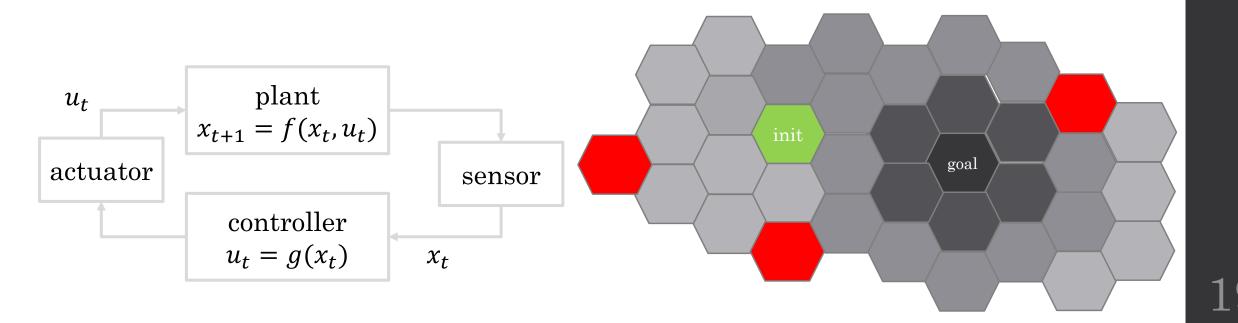
• The minimum budget for adversary such that no safety control exists



- Handle nondeterminism by adversary
- Bounded controller synthesis
- Unbounded controller synthesis

State-dependent controller as lookup table

- Lookup table controller:
 - **P**: cover of the state space, sensor quantization or heuristic
 - g: $P \rightarrow U$
 - post(C,g) denote the immediate reachable cells from $C \in P$



Inductive synthesis rules [Huang15]

Find $g: \mathbb{P} \to U, \mathbb{V}: \mathbb{P} \to \mathbb{N}, k \in \mathbb{N}$ such that for all $C \in \mathbb{P}$ g: controller, V: ranking function

- (control invariant) $V(init) = k \wedge V(C) \ge V(post(C,g))$
- (safe) $V(C) \le k \Rightarrow C \subseteq safe$
- (goal) $C \subseteq goal \Leftrightarrow V(C) = 0;$
- (progress) $0 < V(C) \le k \land V(C) > V(post^T(C,g))$

soundness & relative completeness of rules

- If the *post()* operator is computed accurately, the algorithm
 - $\boldsymbol{\cdot}$ (a) either finds control g and proof V or
 - (b) certifies that there exists **no** such controller in C, R.

 If the *post()* operator is computed with some bounded error *ε*, the algorithm whether or not there exists a controller that robustly solve the reach-avoid problem.

soundness & relative completeness of rules

- If the *post()* operator is computed accurately, the algorithm
 - $\boldsymbol{\cdot}$ (a) either find control g and proof V or
 - $\boldsymbol{\cdot}$ (b) give a proof that there exists no such controller in C, R.
- If the *post()* operator is computed with some bounded error ϵ , the algorithm whether or not there exists a controller
- the Given controller C and ranking function templates R, the problem M is robust if there exists $\epsilon > 0$:
 - exists $g \in C, V \in R$ such that for any problem M that is ϵ -close to M, the g, V solves the synthesis problem for M with some k, OR
 - for none of the problems M' that are ϵ -close to M, have solutions to the synthesis problem with any $g \in C, V \in R$

Application: path planning

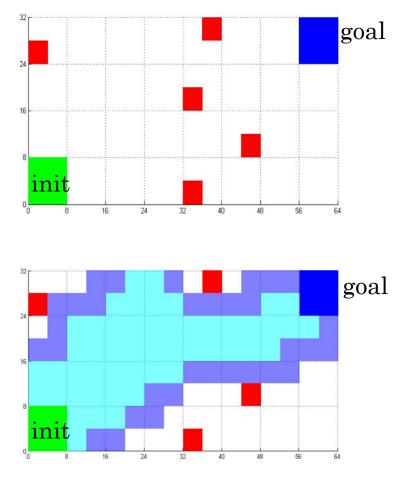
implemented using CVC4 SMT solver

4D nonlinear vehicle navigation with noise and obstacles

C: regions in state space

 $V\colon C\to \mathbb{N}$

768 cells, 3072 realvalued/boolean variables, solved in less than 10 minutes



Light (under) and dark (over) approximation of post

Summary and outlook

- We have developed a new class of synthesis algorithms for control systems under attacks
- The approach allows us to automatically characterize feasibility of control problems in terms of the strength of attackers
- We use SMT-solvers to compute both bounded and unbounded time controllers

- Ongoing: synthesis of attacks on power networks
 - goal: system unstable

Going forward

• Review the notes and slides (big gain)

• Choose your favorite application and model it

Try to verify (connect with potential collaborators)
We are available if you are using C2E2 / DryVR

• Target venues: CAV, HSCC, TACAS, VMCAI

• FMSD, IEEE TAC, ACM TECS, ACM CPS

Reach-avoid problem: a general class of synthesis problem

- Denote $\xi(x_0, u, a, t)$ as the state visited at time *t* with initial state x_0 , control input *u* and adversary input *a*
- A reach-avoid problem is specified by a safe set and a goal set. We aim to solve:

Find $u, \forall a$ $\forall t \leq T.\xi(x_0, u, a, t) \in safe \land \xi(x_0, u, a, T) \in Goal$